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Abstract In the paper “Design of α-filter based UDE
controllers considering finite control bandwidth” by
A. Kuperman (Nonlinear Dynamics, vol. 81, no. 1,
July. 2015), performances of a new first-order α-filter
for uncertainty and disturbance estimator (UDE)-based
control and a classical first-order UDE filter where
examined. It was shown that performance superiority
of the α-filter is not straightforward and takes place for
limited operating region only in case practical imple-
mentation issues of the filters are taken into account.
The purpose of this note is complementing (Kuperman
inNonlinear Dyn 81:411–416, 2015) by proving that in
case practical implementation restrictions are extended
to the overall control system and classical UDE-filter-
based controller would always outperform the α-filter-
based controller in terms of disturbance andnoise rejec-
tion, while the α-filter-based controller would be supe-
rior in terms of stability.
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1 Introduction

Consider a class of nonlinear dynamical systems
described by (all the variables are given in time domain
unless stated differently)

ẋ = (− f̄ + � f
)
x + (ḡ + �g) u + n

= − f̄ x + ḡ (u + d) , (1)

where x, u and n represent the state, control input
and external non-measurable disturbance, respectively.
Moreover, f̄ ≥ 0, ḡ > 0 denote nominal (known)
constant part of the system, while � f,�g represent
corresponding (possibly time-varying, state-dependent
and control-dependent) uncertainties. Scalar notations
are utilized for simplicity; yet the obtained results
may be extended to vector-matrix cases as well. The
uncertainty- and disturbance-related terms are lumped
into single variable d as

d = ḡ−1 (� f x + �gu + n) . (2)

Applying the feedback linearizing control law,

u = ḡ−1 (
f̄ x − Ax + Br

) − d (3)

with r denoting the reference command to the sys-
tem and A > 0, B > 0 determining the desired sta-
ble closed-loop dynamics, would bring the closed-loop
system to the form of (A = B is a typical case)

ẋ = −Ax + Br. (4)
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Nevertheless, (3) cannot be applied as is since the
lumped uncertainty and disturbance d is unknown.
Note that according to (1),

d = ḡ−1 (
ẋ + f̄ x

) − u. (5)

Obviously, (5) cannot be used in (3) as is. UDE-based
approach proposes to estimate d as

d̃ = d ∗ h =
(
ḡ−1 (

ẋ + f̄ x
) − u

)
∗ h, (6)

where h(t) is an impulse response of a frequency-
selective filter and ‘∗’ denotes the convolution operator.
Then, d̃ is used in (3) instead of d. Themodified control
law is therefore

u = ḡ−1 (
f̄ x − Ax + Br

)−d̃= ḡ−1 (
f̄ x−Ax+Br

)

−
(
ḡ−1 (

ẋ + f̄ x
) − u

)
∗ h. (7)

Rearranging (7), the UDE-based control law is given
by

u = ḡ−1
(
f̄ x − L−1

{
sH(s)

1 − H(s)

}
∗ x

+ L−1
{

1

1 − H(s)

}
∗ (−Ax + Br)

)
, (8)

where L{·} is the Laplace transform operator and
H(s) = L{h(t)}. Substituting (7) into (1) and rear-
ranging results in the following closed-loop dynamics,

ẋ = −Ax + Br + d − d ∗ h, (9)

Taking Laplace transform and rearranging, there is

X (s) = TR(s)R(s) + TD(s)D(s), (10)

where

TR(s) = BTA(s), TD(s) = TA(s)TH (s), (11a)

with

TA(s) = (s + A)−1, TH (s) = 1 − H(s), (11b)

and X (s) = L{x(t)}, R(s) = L{r(t)}, D(s) =
L{d(t)} and H(s) = L{h(t)}. According to (10), bring-
ing TD(s) as close to zero as possible allows nearly per-
fect tracking. Since A is designed according to desired
transient performance and f̄ denotes the nominal part

of the system, TD(s) can be shaped by proper selection
of H(s).

2 Selection of H(s)

Consider a first-order α-filter given by [2]

H(s) = (1 − α)s + ωT

s + ωT
, (12)

with 0 < α < 1. Then,

TH (s) = αs

s + ωT
, (13)

and

TD(s) = α
s

(s + ωT ) (s + A)
. (14)

It should be emphasized that classicalUDE-filter-based
case obeys (12)–(14) for α = 1. Note that (14) repre-
sents a band-pass filter, i.e. TD(0) = TD(∞) = 0. In
order to determine peaking frequency and correspond-
ing magnitude of TD , letting

(
d

dω
|TD(ω)|

)

ω=ωDM

= 0, (15)

results in

ωDM = √
ωT A, |TD(ωDM )| = α

ωT + A
, (16)

indicating that in order to improve the uncertainty/dist-
urbance rejection capability, either ωT should be
increased (cf. Fig. 1) or α should be decreased (cf.
Fig. 2). In practical cases, where available control
bandwidth is always limited (by e.g. sampling fre-
quency, switching frequency, actuator bandwidth etc.),
neither ωT can be increased to infinity nor α can be
decreased to zero. The following section demonstrates
that in any practical case (i.e. for a finite control band-
width), increasingωT should be preferred over decreas-
ing α since the former leads to better disturbance
rejection.
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Fig. 1 Influence of ωT on |TD(ω)| for A = 100 and α = 1

Fig. 2 Influence of α on |TD(ω)| for A = 100 and ωT = 100

3 Performance analysis

Substituting (12) in (8) and rearranging, theUDE-based
control law is given in Laplace domain by

U (s) = −ḡ−1 (1−α)s2+(− f̄ α+ωT +A
)
s+AωT

αs
X (s)

+ ḡ−1 B (s + ωT )

αs
R(s)

= −HFB(s)X (s) + HFF (s)R(s). (17)

On the other hand, the Laplace transform of the plant
(1) is expressed as

X (s) = T f (s) (U (s) + D(s)) , (18)

with

T f (s) = ḡ
(
s + f̄

)−1
. (19)

The overall system is shown in Fig. 3, demonstrating
its two-degrees-of-freedom nature [3].

Tracking and disturbance rejection capabilities of
the system, given by (10), are then linked to Fig. 3 as

TR(s) = HFF (s)
T f (s)

1 + T f (s)HFB(s)
, (20)

and

TD(s) = T f (s)

1 + T f (s)HFB(s)
, (21)

respectively.
Denote the available control bandwidth asωC . Then,

A ≤ ωC must be satisfied in order to achieve the
desired tracking performance. On the other hand, in
order to assure decent disturbance rejection, the loop
gain L(s) = T f (s)HFB(s) should be higher than
unity within the control bandwidth while satisfying
|L( jωC | ≤ 1/

√
2 in order to respect the available

control bandwidth.Moreover, the loop gain determines
system stability as well. Taking into account (17) and
(19), the loop gain is given by

Fig. 3 The overall system
in Laplace domain
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( )U s
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Fig. 4 α − ωT trade-off for f̄ = 0, A = 200 and ωC = 1000

Fig. 5 Influence of A on the loop gain Bode diagram for ωT =
1000 and f̄ = 200

L(s) = (1 − α)s2 + (− f̄ α + ωT + A
)
s + AωT

αs
(
s + f̄

) .

(22)

Hence, it should satisfy the following inequality,

∣∣∣
∣∣
AωT − (1 − α)ω2

C + j
(− f̄ α + ωT + A

)
ωC

jαωC
(
jωC + f̄

)

∣∣∣
∣∣

≤ 1√
2

⇒
(
A2 + ω2

C

)
ω2
T + 2ω2

Cα
(
A − f̄

)
ωT

Fig. 6 Influence of A on the loop gainmagnitude forωT = 1000
and f̄ = 200

Fig. 7 Influence of α on the loop gain Bode diagram for ωT =
1000, f̄ = 200 and A = 100

+
(

(1 − α)2 − α2

2

)
ω4
C

+ω2
C

(
(
A − f̄ α

)2 − α2

2
f̄ 2

)
≤ 0. (23)

The solution of (23) would reveal the connection
between α and ωT for a given set of A, f̄ and ωC . The
solution is cumbersome and is not listed for brevity. It
is only noted that increasing α leads to decreasing ωT

and vice versa. Fig. 4 demonstrates the α - ωT trade-
off for f̄ = 0, A = 200 and ωC = 1000. On the other
hand, considering the classical UDE filter case, i.e.
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Fig. 8 Influence of α on the loop gain Bode diagram for ωT =
1000, f̄ = 200 and A = 200

L(s)|α=1 =
(
ωT + A − f̄

)
s + AωT

s
(
s + f̄

)

= AωT f̄ −1

s
·

s

AωT (ωT +A− f̄ )
−1 + 1

s
f̄

+ 1
, (24)

allows to obtain an elegant solution of (23), given by

ωT ≤ ωC

√√√√
( 1
2

)
ω2
C −

((
A − f̄

)2 − 1
2 f̄ 2

)

A2 + ω2
C

. (25)

It is interesting to note that if A = f̄ , then

L(s)|α=1,A= f̄ = ωT

s
, (26)

with

ωT ≤ ωC√
2
, (27)

i.e., the system bandwidth is ωT , the phase margin
is 90◦ and gain margin is infinite. In case A> f̄ ,
the crossover frequency increases, while phase mar-
gin decreases. Alternatively, if A< f̄ , the crossover
frequency reduces while phase margin increases. The
three cases are shown in Figs. 5 and 6. Next, consider
the general case of (22) with α < 1. Figs. 7, 8, 9 demon-
strate correspondingBodediagrams for different values
of α. It may be concluded that decreasing α improves
both disturbance rejection (by increasing the loop gain

Fig. 9 Influence of α on the loop gain Bode diagram for ωT =
1000, f̄ = 200 and A = 300

Fig. 10 Comparison of α-filter and UDE-filter-based loop gains

magnitude) and stability (by increasing the phase mar-
gin).

Nevertheless, performance enhancement is achieved
at the expense of increased control bandwidth. Note
that if control bandwidth increase is possible,ωT could
be increased instead of decreasing α. As an example,
consider for simplicity the A = f̄ case with ωT =
1000 and α = 0.75, leading to the crossover frequency
of 1414.2 rad/s and phase margin of 109.5◦. Select-
ing a classical UDE filter (α = 1) with ωT = 1414.2
leads to a similar crossover frequency with phase mar-
gin of 90◦. Themagnitude of theUDE-filter-based loop
gain remains circa 0.5dB above the magnitude of the
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Fig. 11 Time-domain simulation results

α-filter-based loop gain throughout the available band-
width, as shown in Fig. 10. Consequently, for the same
control bandwidth, the α-filter outperforms the UDE
filter in terms of stability but is inferior to the UDE
filter in terms of disturbance rejection. In addition,

while the roll-off of the UDE filter remains -20dB/dec
beyond the crossover frequency, the roll-off of the α-
filter increases, indicating worse high-frequency noise
rejection capabilities. Similar behavior is shown by
arbitrary varying A, f̄ and ωT (not shown for brevity).

Time-domain simulation results corresponding to
Fig. 10 are shown in Fig. 11 for r(t) = u(t) and
d(t) = sin(100t).While the tracking of both systems is
identical, steady-state disturbance rejection of the sys-
tem based on the UDE filter is slightly better than the
one based on the α-filter.
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