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Abstract This paper focuses on the identification
of input nonlinear multivariable systems (i.e., Ham-
merstein multi-input multi-output nonlinear systems)
described by output-error moving average models.
Based on the key-term separation principle, we sep-
arate a proper key term in the nonlinear system and
transform a complex nonlinear optimization problem
into a pseudo-linear optimization problem which does
not involve the products of the parameters between
the linear parts and the nonlinear parts. Thus, a hierar-
chical extended stochastic gradient (H-ESG) algorithm
is given and a hierarchical multi-innovation extended
stochastic gradient (H-MI-ESG) algorithm is derived
for the nonlinear systems. The proposed H-MI-ESG
algorithm is an extension of the H-ESG algorithms.
Compared with the over-parameterization-based least-
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squares identification algorithm, theH-ESG andH-MI-
ESG algorithms have high computational efficiency.
The simulation results show the effectiveness of the
proposed algorithms.
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identification · Nonlinear system · Recursive identifi-
cation · Key-term separation

1 Introduction

The parameter estimation theory and identification
technique have been studied for decades [1–3] and
have many applications in the field of networked con-
trol [4,5], signal processing and filtering [6,7], system
modeling [8–10] and soon. In general, existingparame-
ter identification methods can be roughly divided into
two categories: the recursive algorithms [11–13] which
compute the parameter estimates by using new infor-
mation at each step as time increases and the iterative
algorithms [14–16] which use a batch of data to update
the parameter estimates. For example, Hu et al. [17]
proposed two recursive extended least-squares para-
meter estimation algorithms for Wiener nonlinear sys-
tems with moving average noises bymeans of the over-
parameterizationprinciple;Vörös [18] presented a least
squares-based iterative algorithm for three-block mod-
els with nonlinear static, linear dynamic and nonlinear
dynamic blocks; Chen and Ding developed a hierar-
chical least-squares identification algorithm for Ham-
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merstein nonlinear controlled autoregressive systems
by using the hierarchical identification principle [19].

Finding an appropriate and simple model for a
nonlinear system is a complex problem in the area
of control. The typical nonlinear systems include the
Wiener nonlinear system and the Hammerstein non-
linear system, which consist of a linear time-invariant
block following (followed by) a memoryless nonlinear
block [20–22] and the identification problems of non-
linear systems are vibrant [23–25]. A large amount of
work has been published in this research field [26–28].
Recently, Wang [29] presented a filtering and auxiliary
model-based recursive least-squares algorithm and a
filtering and auxiliary model-based least-squares iter-
ative identification algorithm for Hammerstein non-
linear systems; Zhang [30] derived a recursive least-
squares identification algorithm based on the bias com-
pensation technique for multi-input single-output sys-
tems with colored noises; Ding et al. [31] proposed
a recursive least-squares algorithm for estimating the
parameters of the nonlinear systems based on themodel
decomposition.

The over-parameterization algorithms are common
and useful for the identification of nonlinear sys-
tems [32–34]. In [34], Ding and Chen transformed
the nonlinear system into a pseudo-linear regres-
sive identification model by the over-parameterization
method and proposed an iterative least-squares algo-
rithm and a recursive least-squares algorithm for
Hammerstein nonlinear ARMAX systems. However,
the drawback is that there exist redundant parame-
ters and the over-parameterization-based least- squares
algorithms have heavy computational cost. Motivated
by the over-parameterization algorithms, this paper
develops a multi-innovation algorithm using the key-
term separation principle for Hammerstein multi-input
multi-output output-error moving average (H-MIMO-
OEMA) systems, i.e.,

y(t) = A−1(z)B(z)ū(t) + D(z)v(t),

A(z) := I + A1z
−1 + A2z

−2

+ · · · + Ana z
−na ∈ R

m×m, Al = [ali j ]
∈ R

m×m,

B(z) := B0 + B1z
−1 + B2z

−2

+ · · · + Bnb z
−nb ∈ R

m×m, Bl = [bli j ]
∈ R

m×m,

D(z) := I + D1z
−1 + D2z

−2

+ · · · + Dnd z
−nd ∈ R

m×m, Dl = [dli j ]
∈ R

m×m, (1)

where ū(t) = [ū1(t), ū2(t), . . . , ūm(t)]T ∈ R
m is the

output vector of the nonlinear part, y(t) ∈ R
m is the

output vector, v(t) ∈ R
m is an additive noise with zero

mean, ūi (t) is a linear combinationwith unknown coef-
ficients ci j of a known basis ( f1, f2, . . . , fnc ), i.e.,

ūi (t) = ci1 f1(ui (t)) + ci2 f2(ui (t))

+ · · · + cinc fnc (ui (t)). (2)

ui (t) is the i th element of the system input vector ū(t),
A(z), B(z) and D(z) are polynomial matrices in the
unit backward shift operator z−1: z−1y(t) = y(t − 1).
Assume that the orders na , nb, nc and nd are known
and y(t) = 0, u(t) = 0 and v(t) = 0 for t � 0.

Recently, Shen and Ding [35] considered the iden-
tification problem of Hammerstein multi-input multi-
output output-error (H-MIMO-OE) systemswithwhite
noise. Based on the work in [35], this paper extends
the method in [35] from H-MIMO-OE systems to H-
MIMO-OEMA systems with moving average noise,
presents the multi-innovation extended stochastic gra-
dient algorithm for H-MIMO-OEMA systems and ana-
lyzes the performance of the involved algorithm for dif-
ferent innovation length p. The main contributions of
in this paper lie in the following.

• For H-MIMO-OEMA systems, this paper derives a
hierarchical extended stochastic gradient (H-ESG)
algorithm. In order to improve convergence rates,
a hierarchical multi-innovation extended stochas-
tic gradient (H-MI-ESG) algorithm is presented by
increasing the innovation length.

• Different form the over-parameterization identifi-
cation methods, the parameter vector/matrix in the
proposed algorithm does not involve the products
of the parameters between the linear parts and the
nonlinear parts and has no redundant parameters to
be estimated.

The rest of this paper is organized as follows. Sec-
tion 2 introduces the identification problems for H-
MIMO-OEMA systems using the key-term separation
principle. Sections 3 and 4 discuss the hierarchical
extended stochastic gradient identification algorithm
and the hierarchical multi-innovation extended sto-
chastic gradient algorithm for the H-MIMO-OEMA
systems. Section 5 gives an illustrative example to show
the effectiveness of the proposed algorithm. Finally, we
offer some concluding remarks in Sect. 6.
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2 Problem formulation

Let I represent an identity matrix of appropriate sizes;
the normof amatrix X is defined by ‖X‖2 := tr[XXT].
Define the parameter vector θ and the information
matrix Ψ (t) of the nonlinear part as

θ := [c11, c12, . . . , c1nc , c21, c22, . . . ,
c2nc , . . . , cm1, cm2, . . . , cmnc ]T ∈ R

mnc ,

Ψ (t) := blockdiag[ f (u1(t)), f (u2(t)), . . . ,

f (um(t))] ∈ R
(mnc)×m .

According to Eq. (2), the output vector ū(t) of the non-
linear part can be expressed as

ū(t) = Ψ T(t)θ .

Define an inner vector or the true output vector

x(t) = A−1(z)B(z)ū(t)

= [I − A(z)]x(t) + B(z)ū(t)

= [I − A(z)]x(t) + B0Ψ
T(t)θ

+ B1Ψ
T(t − 1)θ+· · ·+BnbΨ

T(t − nb)θ . (3)

According to Eq. (3), it is clear that there exist the
products of parameters bli j and ci j . Therefore, to obtain
unique parameter estimates, we take ū(t) as a key term,
fix B0 = I and define the system parameter matrices
ϑ s and ϑ as

ϑT
s := [A1, A2, . . . , Ana , B1, B2, . . . , Bnb ]

∈ R
m×(mna+mnb),

ϑT := [ϑT
s , D1, D2, . . . , Dnd ]

∈ R
m×mn, n := na + nb + nd ,

and the information vectors φs(t) and φ(t) as

φs(t) := [−xT(t − 1),−xT(t − 2), . . . ,

− xT(t − na), ūT(t − 1), ūT(t − 2), . . . ,

ūT(t − nb)]T ∈ R
(mna+mnb),

φ(t) := [φT
s (t), vT(t − 1), vT(t − 2), . . . ,

vT(t − nd)]T ∈ R
mn .

Then, Eqs. (1) and (3) can be rewritten as

x(t) = ϑT
s φs(t) + ū(t), (4)

y(t) = x(t) + [D(z) − I]v(t) + v(t)

= ϑTφ(t) + Ψ T(t)θ + v(t). (5)

Compared with the over-parameterization identifica-
tion models in [34], the identification model in (4)–
(5) does not involve the products of the parameters
and avoids the redundant parameters to be estimated.
Next, we investigate the hierarchical extended stochas-
tic gradient identification algorithm and the hierarchi-
cal multi-innovation stochastic gradient algorithm for
the H-MIMO-OEMA system.

3 The hierarchical extended stochastic gradient
identification algorithm

According to Eq. (5), define two fictitious output vec-
tors,

ξ1(t) := y(t) − Ψ T(t)θ ∈ R
m,

ξ2(t) := y(t) − ϑTφ(t) ∈ R
m,

and obtain two subsystems:

S1 : ξ1(t) = ϑTφ(t) + v(t),

S2 : ξ2(t) = Ψ T(t)θ + v(t).

Notice that the associate parameters between two sub-
systems are ci j inφ(t) and θ . Define two cost functions:

J1(ϑ) := 1

2
‖ξ1(t) − ϑTφ(t)‖2,

J2(θ) := 1

2
‖ξ2(t) − Ψ T(t)θ‖2.

The difficulty is that φ(t) contains the unknown vec-
tors x(t − i), ū(t − i) and v(t − i), and the output
vectors ξ1(t) and ξ2(t) contain the unknown parame-
ter matrix/vector ϑ and θ , respectively. The solution
is to apply the hierarchical identification principle and
to replace the unknown vectors x(t − i), ū(t − i) and
v(t − i) with their corresponding estimates x̂(t − i),
ˆ̄u(t−i) and v̂(t−i), and define the information vectors
φ̂s(t) and φ̂(t) as

φ̂s(t) := [−x̂T(t − 1),−x̂T(t − 2), . . . ,−x̂T(t − na),

ˆ̄uT(t − 1), ˆ̄uT(t − 2), . . . ,

ˆ̄uT(t − nb)]T ∈ R
(mna+mnb), (6)

φ̂(t) := [φ̂T
s (t), v̂T(t − 1), v̂T(t − 2), . . . ,

v̂
T
(t − nd)]T ∈ R

mn . (7)

Using the estimate θ̂(t) of θ , the estimate ˆ̄u(t) of ū(t)
and ξ̂1(t) of ξ1(t) can be computed by
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ˆ̄u(t) = Ψ T(t)θ̂(t), (8)

ξ̂1(t) = y(t) − Ψ T(t)θ̂(t − 1), (9)

Ψ (t) = blockdiag[ f (u1(t)), f (u2(t)), . . . , f (um(t))],
(10)

θ̂(t) := [ĉ11(t), ĉ12(t), . . . , ĉ1nc (t), ĉ21(t),
ĉ22(t), . . . , ĉ2nc (t), . . . ,

ĉm1(t), ĉm2(t), . . . , ĉmnc (t)]T ∈ R
mnc . (11)

Replacing φs(t), ū(t) and ϑ s in (4) with their estimates
φ̂s(t), ˆ̄u(t) and ϑ̂ s(t), the estimate x̂(t) of x(t) can be
computed by

x̂(t) = ϑ̂
T
s (t)φ̂s(t) + ˆ̄u(t), (12)

ϑ̂
T
s (t) := [ Â1(t), Â2(t), . . . , Âna (t), B̂1(t), B̂2(t), . . . ,

B̂nb (t)] ∈ R
m×(mna+mnb). (13)

Replacing ϑ , φ(t) and ū(t) in (5) with their estimates
ϑ̂(t), φ̂(t) and ˆ̄u(t), the estimate v̂(t) of v(t) and ξ̂2(t)
of ξ2(t) can be computed by

v̂(t) = y(t) − ϑ̂
T
(t)φ̂(t) − ˆ̄u(t), (14)

ξ̂2(t) = y(t) − ϑ̂
T
(t)φ̂(t), (15)

ϑ̂
T
(t) := [ϑ̂T

s (t), D̂1(t), D̂2(t), . . . ,

D̂nd (t)] ∈ R
m×mn . (16)

Using the negative gradient search and minimizing the
cost functions J1(ϑ) and J2(θ), we can obtain the ESG
algorithm:

ϑ̂(t) = ϑ̂(t − 1) + φ̂(t)

r1(t)
eT1 (t), (17)

e1(t) = ξ̂1(t) − ϑ̂
T
(t − 1)φ̂(t), (18)

r1(t) = r1(t − 1) + ‖φ̂(t)‖2, r1(0) = 1, (19)

θ̂(t) = θ̂(t − 1) + Ψ (t)

r2(t)
e2(t), (20)

e2(t) = ξ̂2(t) − Ψ (t)θ̂(t − 1), (21)

r2(t) = r2(t − 1) + ‖Ψ (t)‖2, r2(0) = 1. (22)

Here, e1(t) ∈ R
m and e2(t) ∈ R

m represent innovation
vectors and each element of e1(t) and e2(t) is a scalar
innovation at the current time. Equations (6)–(22) form
the hierarchical extended stochastic gradient (H-ESG)
identification algorithm for the H-MIMO-OEMA sys-

tem. The steps of computing the estimates ϑ̂(t) and
θ̂(t) by the H-ESG algorithm are as follows.

1. Let t = 1, set the initial values ϑ̂(0) = 1m×(mn)/p0,
θ̂(0) = 1mnc/p0, x̂(0) = 0, ˆ̄u(0) = 0, v̂(0) = 0
for t � 0 (p0 is a large number, e.g., p0 = 106).

2. Collect the input–output data ui (t) and yi (t), and
form Ψ (t) using (10).

3. Form φ̂s(t) using (6) and φ̂(t) using (7).
4. Compute ξ̂1(t), e1(t) and r1(t) using (9), (18) and

(19), and update ϑ̂(t) using (17).
5. Compute ξ̂2(t), e1(t) and r2(t) using (15), (21) and

(22), and update θ̂(t) using (20).
6. Compute ˆ̄u(t) using (8), x̂(t) using (12) and v̂(t)

using (14).
7. Increase t by 1 and go to Step 2.

4 The hierarchical multi-innovation extended
stochastic gradient algorithm

The H-ESG algorithm only uses the current data and
thus has slow convergence rates. In order to enhance
the convergence rate, we derive an H-MI-ESG algo-
rithm with computational efficiency and high accuracy
for subsystems S1 and S2 by expanding the single-
innovation vectors e1(t) and e2(t) to an innovation
matrix E1(p, t) and an innovation vector E2(p, t) as

E1(p, t)

:=

⎡
⎢⎢⎢⎢⎢⎣

ξ̂
T
1 (t) − φ̂

T
(t)ϑ̂(t − 1)

ξ̂
T
1 (t − 1) − φ̂

T
(t − 1)ϑ̂(t − 1)
...

ξ̂
T
1 (t − p + 1) − φ̂

T
(t − p + 1)ϑ̂(t − 1)

⎤
⎥⎥⎥⎥⎥⎦

∈ R
p×m, (23)

E2(p, t)

:=

⎡
⎢⎢⎢⎢⎣

ξ̂2(t) − Ψ T(t)θ̂(t − 1)
ξ̂2(t − 1) − Ψ T(t − 1)θ̂(t − 1)

...

ξ̂2(t − p + 1) − Ψ T(t − p + 1)θ̂(t − 1)

⎤
⎥⎥⎥⎥⎦

∈ R
mp, (24)

where p represents the innovation length.
Define the informationmatricesΦ(p, t) andΩ(p, t)

and the stacking output matrix/vector Y1(p, t) and
Y2(p, t) as

123



Hierarchical multi-innovation extended stochastic gradient algorithms 503

Φ(p, t) := [φ(t),φ(t − 1), . . . ,

φ(t − p + 1)] ∈ R
mn×p,

Ω(p, t) := [Ψ (t),Ψ (t − 1), . . . ,

Ψ (t − p + 1)] ∈ R
(mnc)×(mp),

Y1(p, t) := [ξ1(t), ξ1(t − 1), . . . ,

ξ1(t − p + 1)]T ∈ R
p×m,

Y2(p, t) := [ξT2 (t), ξT2 (t − 1), . . . ,

ξT2 (t − p + 1)]T ∈ R
mp. (25)

The similar difficulties arise that Φ(p, t) contains the
unknown vectors φ(t), Y1(p, t) and Y2(p, t) contain
the unknown fictitious output vectors ξ1(t) and ξ2(t),
respectively. Our approach is to replace the unmeasur-
able inner vectors φ(t − i), ξ1(t − i) and ξ2(t − i)with
their estimates φ̂(t − i), ξ̂1(t − i) and ξ̂2(t − i), and
define

Φ̂(p, t) := [φ̂(t), φ̂(t − 1), . . . ,

φ̂(t − p + 1)] ∈ R
(mn)×p, (26)

Ŷ1(p, t) := [ξ̂1(t), ξ̂1(t − 1), . . . ,

ξ̂1(t − p + 1)]T ∈ R
p×m, (27)

Ŷ2(p, t) := [ξ̂T2 (t), ξ̂
T
2 (t − 1), . . . ,

ξ̂
T
2 (t − p + 1)]T ∈ R

mp. (28)

Referring to [36] and according to the ESG algorithm
in (17)–(22) and Eqs. (23) and (24), the MI-ESG algo-
rithm with the innovation length p can be expressed
as

ϑ̂(t) = ϑ̂(t − 1) + Φ̂(p, t)

r1(t)
E1(p, t), (29)

E1(p, t) = Ŷ1(p, t) − Φ̂
T
(p, t)ϑ̂(t − 1), (30)

r1(t) = r1(t − 1) + ‖φ̂(t)‖2, r1(0) = 1, (31)

θ̂(t) = θ̂(t − 1) + Ω(p, t)

r2(t)
E2(p, t), (32)

E2(p, t) = Ŷ2(p, t) − ΩT(p, t)θ̂(t − 1), (33)

r2(t) = r2(t − 1) + ‖Ψ (t)‖2, r2(0) = 1. (34)

Equations (6)–(16) and (25)–(34) form the hierar-
chical multi-innovation extended stochastic gradient
(H-MI-ESG) algorithm for computing ϑ̂(t) and θ̂(t).
The procedures of computing ϑ̂(t) and θ̂(t) in the H-
MI-ESG algorithm are listed in the following.

Start: set p and t = 1

Initialize: θ̂(0), ϑ̂(0), x̂(0),

ˆ̄u(0) and v̂(0)

Collect ui(t), yi(t) and form

φ̂s(t) and φ̂(t)

Form Ψ (t), Ω(t) and compute ξ̂1(t)

Form Ŷ 1(p, t), compute E1(p, t),

r1(t) and update ϑ̂(t)

Compute ξ̂2(t), form Ŷ 2(p, t)

Compute E2(p, t), r2(t), update θ̂(t)

Compute û(t), x̂(t) and v̂(t)

t := t+ 1

Fig. 1 The flowchart of computing the estimates θ̂(t) and ϑ̂(t)

1. Let t = 1, set the initial values ϑ̂(0) = 1m×(mn)/p0,
θ̂(0) = 1mnc/p0, x̂(0) = 0, ˆ̄u(0) = 0, v̂(0) = 0
for t � 0 (p0 is a large number, e.g., p0 = 106).

2. Collect the input–output data ui (t) and yi (t), form
φ̂s(t) using (6), φ̂(t) using (7), Φ̂(p, t) using (26),
Ψ (t) using (10) and Ω(p, t) using (25).

3. Compute ξ̂1(t) using (9) and form Ŷ1(p, t) using
(27), compute E1(p, t) and r1(t)using (30) and (31)
and update ϑ̂(t) using (29).

4. Compute ξ̂2(t) using (15) and form Ŷ2(p, t) using
(28), compute E2(p, t) and r2(t) using (33) and
(34) and update θ̂(t) using (32).

5. Compute ˆ̄u(t) using (8), x̂(t) using (12) and v̂(t)
using (14).

6. Increase t by 1 and go to Step 2.

The flowchart of computing the parameter estimates
θ̂(t) and ϑ̂(t) in the H-MI-ESG algorithm is shown in
Fig. 1.

Moreover, in order to improve the convergence rate
of the H-MI-ESG algorithm further, we can introduce a
forgetting factor λ, so Eqs. (31) and (34) can be rewrit-
ten as
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Table 1 The H-ESG
estimates and errors

t 100 200 500 1000 2000 3000

a11 = 0.49 0.75689 0.74095 0.54226 0.39886 0.40113 0.44236

a12 = −0.10 0.60103 0.40076 0.20331 −0.09078 −0.17821 −0.19922

b11 = 1.26 0.13204 0.16089 0.36970 0.62481 0.88656 1.06500

b12 = 2.79 0.75857 0.83806 0.99856 1.25881 1.61487 1.89961

d11 = −0.20 −0.38137 −0.30757 −0.23716 −0.36615 −0.55190 −0.63334

d12 = 0 0.20664 0.25457 0.29324 0.22774 0.12794 0.08468

a21 = 0.35 −0.06956 −0.06460 −0.06821 −0.06261 0.04465 0.10561

a22 = −0.80 −0.77384 −0.80396 −0.84364 −0.80959 −0.76893 −0.77005

b21 = 0.79 0.10562 0.12125 0.17475 0.24985 0.31651 0.41977

b22 = 1.65 0.70220 0.73071 0.80188 0.92645 1.11623 1.26803

d21 = 0 −0.32212 −0.26530 −0.26066 −0.38093 −0.50538 −0.56851

d22 = 0.39 0.58827 0.61927 0.61617 0.58524 0.53519 0.50028

c11 = −2.21 −0.79593 −0.83266 −1.65541 −1.94048 −2.24349 −2.27225

c12 = 1.21 1.23283 1.13020 1.19911 1.32668 1.30840 1.23642

c21 = 0.76 0.76993 0.74787 0.58549 0.65408 0.75194 0.76214

c22 = 1.29 0.80176 0.97154 1.17119 1.27766 1.27115 1.29565

δ (%) 66.52201 63.22889 51.32285 42.68745 33.75840 27.65244

r1(t) = λr1(t − 1) + ‖φ̂(t)‖2, r1(0) = 1, 0 < λ � 1,

r2(t) = λr2(t − 1) + ‖Ψ (t)‖2, r2(0) = 1.

As p = 1, the H-MI-ESG algorithm reduces to the
H-ESG algorithm in (6)–(22).

5 Example

Consider the following H-MIMO-OEMA system,

y(t) = x(t) + D(z)v(t),

x(t) = A−1(z)B(z)ū(t),

y(t) =
[
y1(t)
y2(t)

]
, u(t) =

[
u1(t)
u2(t)

]
,

v(t) =
[

v1(t)
v2(t)

]
,

A(z) = I + A1z
−1

=
[

1 + 0.49z−1 −0.10z−1

0.35z−1 1 − 0.80z−1

]
,

B(z) = I + B1z
−1

=
[

1 + 1.26z−1 2.79z−1

0.79z−1 1 + 1.65z−1

]
,

D(z) = I + D1z
−1

=
[

1 − 0.20z−1 0
0 1 + 0.39z−1

]
,

ū(t) =
[
ū1(t)
ū2(t)

]
=

[
c11 f1(u1(t)) + c12 f2(u1(t))
c21 f1(u2(t)) + c22 f2(u2(t))

]

=
[−2.21 f1(u1(t)) + 1.21 f2(u1(t))

0.76 f1(u2(t)) + 1.29 f2(u2(t))

]
,

where f1(ui (t)) = u2i (t) and f2(ui (t)) = ui (t), the
parameter matrix ϑ and the parameter vector θ are

ϑT = [A1, B1, D1]
=

[
0.49 −0.10 1.26 2.79 −0.20 0
0.35 −0.80 0.79 1.65 0 0.39

]
,

θ = [c11, c12, c21, c22]T=[−2.21, 1.21, 0.76, 1.29]T.

The input vector u(t) is taken as an uncorrelated per-
sistent excitation signal vector with zero mean and
unit variances, and v(t) as a white noise vector with
zero mean and variances σ 2

1 = 0.102 for v1(t) and
σ 2
2 = 0.102 for v2(t). Taking the forgetting factor

λ = 0.99 and applying the H-MI-ESG algorithm to
estimate parameters of the example system, the para-
meter estimates, and the estimation errors δ are shown
in Tables 1, 2 with the innovation lengths p = 1 and
p = 5 and the estimation errors versus t are shown in
Fig. 2, where

δ :=
√

‖ϑ̂(t) − ϑ‖2 + ‖θ̂(t) − θ‖2
‖ϑ‖2 + ‖θ‖2 × 100%.
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Table 2 The H-MI-ESG
estimates and errors with
p = 5

t 100 200 500 1000 2000 3000

a11 = 0.49 0.58128 0.58212 0.60026 0.56062 0.52877 0.50158

a12 = −0.10 −0.16805 −0.20361 −0.21335 −0.16956 −0.14479 −0.11458

b11 = 1.26 1.17078 1.21495 1.28530 1.34248 1.30293 1.27752

b12 = 2.79 1.63001 1.81132 2.09725 2.38318 2.63660 2.72962

d11 = −0.20 −0.18453 −0.17924 −0.19600 −0.19846 −0.20386 −0.20539

d12 = 0 −0.05823 −0.02891 −0.04360 −0.03664 −0.03719 −0.03654

a21 = 0.35 0.18292 0.21538 0.32481 0.36189 0.36833 0.35382

a22 = −0.80 −0.69112 −0.77752 −0.82646 −0.82416 −0.82149 −0.81047

b21 = 0.79 0.34002 0.45868 0.62851 0.77082 0.80391 0.79665

b22 = 1.65 0.92404 1.04696 1.23779 1.42435 1.56753 1.61981

d21 = 0 −0.03413 −0.03751 −0.08532 −0.09519 −0.09608 −0.09527

d22 = 0.39 0.38200 0.41466 0.37503 0.37589 0.37721 0.37929

c11 = −2.21 −2.06742 −2.21027 −2.26588 −2.17296 −2.19095 −2.22214

c12 = 1.21 1.45748 1.21311 1.36462 1.21656 1.19714 1.21918

c21 = 0.76 0.88035 0.87460 0.67676 0.72887 0.74178 0.76564

c22 = 1.29 1.08758 1.37270 1.33729 1.34249 1.26327 1.29522

δ (%) 31.80743 25.76417 18.23396 10.53547 4.66747 2.68456

Fig. 2 The H-MI-ESG
estimation errors δ versus t
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The computational efficiency of the H-MI-ESG algo-
rithm is shown in Table 3.

From Tables 1, 2 and Fig. 2, we can draw the fol-
lowing conclusions.

• The H-MI-ESG algorithm has faster convergence
rates than the H-ESG algorithm.

• The H-MI-ESG estimation errors become smaller
with the innovation length p increasing, and the

parameter estimates given by the H-MI-ESG algo-
rithm can converge to their true values with the
increasing of t .

From Table 3, it is clear that although a larger p
leads to a model with high accuracy, the price we have
to pay is a large computational effort. Moreover, the
proposed algorithm can reduce computational load by
decomposing a large-scale system into two subsystems

123



506 Q. Shen, F. Ding

Table 3 The computational efficiency of the H-MI-ESG algorithm

Computational sequences Number of multiplications Number of additions

ϑ̂(t) = ϑ̂(t − 1) + ζ1(p, t)/r1(t) ∈ R
(mn)×m m2n m2n

ζ 1(p, t) := Φ̂(p, t)E1(p, t) ∈ R
(mn)×m m2np m2n(p − 1)

E1(p, t) = Ŷ1(p, t) − Φ̂(p, t)ϑ̂(t − 1) ∈ R
p×m m2np m2np

ξ̂1(t − i) = y(t − i) − Ψ T(t − i)θ̂(t − 1) ∈ R
m mnc p mnc p

θ̂(t) = θ̂(t − 1) + ζ2(p, t)/r2(t) ∈ R
mnc mnc mnc

ζ 2(p, t) := Ω(p, t)E2(p, t) ∈ R
mnc mnc p mnc(p − 1)

E2(p, t) = Ŷ2(p, t) − ΩT(p, t)θ̂(t − 1) ∈ R
mp mnc p mnc p

ξ̂2(t) = y(t) − ϑ̂
T
(t)φ̂(t) ∈ R

m m2np m2np

r1(t) = r1(t − 1) + ‖φ̂(t)‖2 ∈ R mn mn

r2(t) = r2(t − 1) + ‖Ψ (t)‖2 ∈ R m2nc (nc − 1)m2 + m + 1

Sum (3m2n + 3mnc)p + (m2 + m)(n + nc) (3m2n + 3mnc)p + (nc − 1)m2 +
(n + 1)m + 1

Total flops (6m2n + 6mnc)p + (n + 2nc − 1)m2 + (2n + nc + 1)m + 1

and avoid the complexity of identifying the products
of parameters in contrast to the over-parameterization
methods.

6 Conclusions

This paper uses the key term separation principle to
study identification problems of the H-MIMO-OEMA
system and proposes a hierarchical multi-innovation
stochastic gradient algorithm with a forgetting fac-
tor. By expanding the single-innovation vectors, the
proposed H-MI-ESG algorithm has higher estimation
accuracy than the H-ESG algorithm. And separating
a proper key term from the nonlinear system, we can
obtain a pseudo-linear model which avoids the redun-
dant parameters. So the proposed algorithm has high
computational efficiency. However, this algorithm can-
not be used to identify the nonlinear systems with
unknown time delay. The proposed algorithm in this
paper can be extended to study identification algo-
rithms for other linear and nonlinear systems with col-
ored noises [37–39].
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