Nonlinear Dyn (2016) 85:499-507
DOI 10.1007/s11071-016-2701-9

@ CrossMark

ORIGINAL PAPER

Hierarchical multi-innovation extended stochastic gradient
algorithms for input nonlinear multivariable OEMA
systems by the key-term separation principle

Qianyan Shen - Feng Ding

Received: 2 June 2015 / Accepted: 22 February 2016 / Published online: 10 March 2016

© Springer Science+Business Media Dordrecht 2016

Abstract This paper focuses on the identification
of input nonlinear multivariable systems (i.e., Ham-
merstein multi-input multi-output nonlinear systems)
described by output-error moving average models.
Based on the key-term separation principle, we sep-
arate a proper key term in the nonlinear system and
transform a complex nonlinear optimization problem
into a pseudo-linear optimization problem which does
not involve the products of the parameters between
the linear parts and the nonlinear parts. Thus, a hierar-
chical extended stochastic gradient (H-ESG) algorithm
is given and a hierarchical multi-innovation extended
stochastic gradient (H-MI-ESG) algorithm is derived
for the nonlinear systems. The proposed H-MI-ESG
algorithm is an extension of the H-ESG algorithms.
Compared with the over-parameterization-based least-
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squares identification algorithm, the H-ESG and H-MI-
ESG algorithms have high computational efficiency.
The simulation results show the effectiveness of the
proposed algorithms.
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cation - Key-term separation

1 Introduction

The parameter estimation theory and identification
technique have been studied for decades [1-3] and
have many applications in the field of networked con-
trol [4,5], signal processing and filtering [6,7], system
modeling [8—10] and so on. In general, existing parame-
ter identification methods can be roughly divided into
two categories: the recursive algorithms [11-13] which
compute the parameter estimates by using new infor-
mation at each step as time increases and the iterative
algorithms [14—16] which use a batch of data to update
the parameter estimates. For example, Hu et al. [17]
proposed two recursive extended least-squares para-
meter estimation algorithms for Wiener nonlinear sys-
tems with moving average noises by means of the over-
parameterization principle; Voros [18] presented a least
squares-based iterative algorithm for three-block mod-
els with nonlinear static, linear dynamic and nonlinear
dynamic blocks; Chen and Ding developed a hierar-
chical least-squares identification algorithm for Ham-
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merstein nonlinear controlled autoregressive systems
by using the hierarchical identification principle [19].

Finding an appropriate and simple model for a
nonlinear system is a complex problem in the area
of control. The typical nonlinear systems include the
Wiener nonlinear system and the Hammerstein non-
linear system, which consist of a linear time-invariant
block following (followed by) a memoryless nonlinear
block [20-22] and the identification problems of non-
linear systems are vibrant [23-25]. A large amount of
work has been published in this research field [26-28].
Recently, Wang [29] presented a filtering and auxiliary
model-based recursive least-squares algorithm and a
filtering and auxiliary model-based least-squares iter-
ative identification algorithm for Hammerstein non-
linear systems; Zhang [30] derived a recursive least-
squares identification algorithm based on the bias com-
pensation technique for multi-input single-output sys-
tems with colored noises; Ding et al. [31] proposed
a recursive least-squares algorithm for estimating the
parameters of the nonlinear systems based on the model
decomposition.

The over-parameterization algorithms are common
and useful for the identification of nonlinear sys-
tems [32-34]. In [34], Ding and Chen transformed
the nonlinear system into a pseudo-linear regres-
sive identification model by the over-parameterization
method and proposed an iterative least-squares algo-
rithm and a recursive least-squares algorithm for
Hammerstein nonlinear ARMAX systems. However,
the drawback is that there exist redundant parame-
ters and the over-parameterization-based least- squares
algorithms have heavy computational cost. Motivated
by the over-parameterization algorithms, this paper
develops a multi-innovation algorithm using the key-
term separation principle for Hammerstein multi-input
multi-output output-error moving average (H-MIMO-
OEMA) systems, i.e.,

y() = A" @B @) + D(@)v(1),

AGR) =T+ A1z7" + Az ™2
+o o Ap 2 € R A= [a])]
E Rmxm’

B(z) :== Bo+ Bz~ ' + Byz
+ooo+ Bz e R™ By =[b];]
c Rmxm’

D) :=1+Dz"" + Dyz?
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+oo+ Dyyz ™ e R™M Dy = [d))]
c Rmxm’ (1)

where @(t) = [it1(t), 2 (), ..., iy ()]T € R™ is the
output vector of the nonlinear part, y(t) € R™ is the
output vector, v(r) € R is an additive noise with zero
mean, u; () is a linear combination with unknown coef-
ficients ¢;; of a known basis (f1, f2,..., fu.), 1.,
ui(t) = cin f1(ui(t)) + cio f2(u; (1))
+"'+Cincfnp(ui(t))' 2)

u; (t) is the ith element of the system input vector u (),
A(z), B(z) and D(z) are polynomial matrices in the
unit backward shift operator 7Lz y() =y —1).
Assume that the orders n,, np, n. and ny are known
and y(#) =0, u(t) =0and v(r) = 0 forr < 0.

Recently, Shen and Ding [35] considered the iden-
tification problem of Hammerstein multi-input multi-
output output-error (H-MIMO-OE) systems with white
noise. Based on the work in [35], this paper extends
the method in [35] from H-MIMO-OE systems to H-
MIMO-OEMA systems with moving average noise,
presents the multi-innovation extended stochastic gra-
dient algorithm for H-MIMO-OEMA systems and ana-
lyzes the performance of the involved algorithm for dif-
ferent innovation length p. The main contributions of
in this paper lie in the following.

e For H-MIMO-OEMA systems, this paper derives a
hierarchical extended stochastic gradient (H-ESG)
algorithm. In order to improve convergence rates,
a hierarchical multi-innovation extended stochas-
tic gradient (H-MI-ESG) algorithm is presented by
increasing the innovation length.

e Different form the over-parameterization identifi-
cation methods, the parameter vector/matrix in the
proposed algorithm does not involve the products
of the parameters between the linear parts and the
nonlinear parts and has no redundant parameters to
be estimated.

The rest of this paper is organized as follows. Sec-
tion 2 introduces the identification problems for H-
MIMO-OEMA systems using the key-term separation
principle. Sections 3 and 4 discuss the hierarchical
extended stochastic gradient identification algorithm
and the hierarchical multi-innovation extended sto-
chastic gradient algorithm for the H-MIMO-OEMA
systems. Section 5 gives an illustrative example to show
the effectiveness of the proposed algorithm. Finally, we
offer some concluding remarks in Sect. 6.
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2 Problem formulation

Let I represent an identity matrix of appropriate sizes;
the norm of a matrix X is defined by || X 12 := tr[XXT].
Define the parameter vector # and the information
matrix ¥ (¢) of the nonlinear part as

0 :=l[ci1,c12, ..., Cln., €21,€225 - - -,
T mne
C2n(.v~-~»leacm2»~-~»cmnv] e R™e,

W (t) := blockdiag[ f (u1(¢)), f(ux(t)), ...,
S (1))] € RO,

According to Eq. (2), the output vector u(¢) of the non-
linear part can be expressed as

ut) =wne.

Define an inner vector or the true output vector

x(1) = A" (B u(t)
= - A@)]x (1) + B(x)u()
= [I — A(2))x(t) + Bow"(1)6
+B YTt — DO+ -+ By, ¥t —np)8. (3)
According to Eq. (3), it is clear that there exist the
products of parameters bf ; and ¢;;. Therefore, to obtain
unique parameter estimates, we take u(¢) as a key term,

fix By = I and define the system parameter matrices
#, and ¢ as

173 =[A1,A2,...,A,,,B1,B, ...
c Rmx(mn,,-i—mn;,)

’ Bnb]

?' == [#].D\.D;..... Dy,
e R™"M y:=n, +np + ny,

and the information vectors ¢ (¢) and ¢(¢) as

¢, ) :=[—xTt—1),—x"1t-2),...,
—xTt—ny),a ¢t -1, 0"t -2),...,
l_lT(t _ nb)]T c R(mna—i-mnh)’

d(1) = [, (), v ¢t — D, vt —2),...,
vt —ny))" e R™.

Then, Egs. (1) and (3) can be rewritten as

x(t) = 3] (1) + (), (4)
y(@) = x(t) +[D(z) — ITv(t) + v(¢)

=0T() + ¥ ()0 + v(r). )

Compared with the over-parameterization identifica-
tion models in [34], the identification model in (4)—
(5) does not involve the products of the parameters
and avoids the redundant parameters to be estimated.
Next, we investigate the hierarchical extended stochas-
tic gradient identification algorithm and the hierarchi-
cal multi-innovation stochastic gradient algorithm for
the H-MIMO-OEMA system.

3 The hierarchical extended stochastic gradient
identification algorithm

According to Eq. (5), define two fictitious output vec-
tors,

(1) == y(t) — ¥ (1) e R™,

£,(1) = y(1) =9 ¢p() € R",

and obtain two subsystems:

Si: &1() =9Td(1) +v(0),
Syt &) =¥ (8 + ().

Notice that the associate parameters between two sub-
systems are c;; in ¢(t) and 6. Define two cost functions:

1
@) = 1§ (1) - ?Tp())?,

1
10) = S 11E:(1) - v (9>

The difficulty is that ¢(¢) contains the unknown vec-
tors x(t — i), u(t — i) and v(¢ — i), and the output
vectors & (¢) and &,(¢) contain the unknown parame-
ter matrix/vector ¢ and 6, respectively. The solution
is to apply the hierarchical identification principle and
to replace the unknown vectors x(t — i), u(t — i) and
v(¢t — i) with their corresponding estimates X (t — i),
zit(t —1i) an(} ¥(t —i), and define the information vectors

¢, (1) and ¢(7) as

¢, (1) =[-2Tt—1), =Tt —-2),..., 2T — na).
att — D, u" @t —2),...,
l:lT(l‘ _ nh)]T c R(mna+mnb)’ (6)
S =1y (1), 3T — 1), 97t —2). ...
3Tt —n))" e R™, 7

Using the estimate é(t) of @, the estimate l:l(l) of u(r)
and &, (¢) of &;(¢) can be computed by
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u(t) = w08, ®)
E\)=y(n) —¥T (8@ —1), ©
W (1) = blockdiag[ f (u1 (1)), f(u2(t)), ..., fum(®)],
(10)
(1) == [¢11(1), E12(D), ... ., C1n (1), E21(0),
(), ..., Con (1), ...,
Cm1 (), Ema(0), .y En (O]T € R™< (1)

lfeplacing o, (1), () and #; in (4) with their estimates
o, (1), u(r) and (1), the estimate X (r) of x(¢) can be
computed by

2(0) = D (OB, (1) + (), (12)

D1 (6) == [A1(1), Aa(0). ... A, (1), B1(0). Ba(0). ...

ﬁnb (t)] c Rmx(mnu—i-mnb) (13)

Replacmg 7, ¢(t) and u(¢) in (5) with their estlmates
ﬂ(t) ¢(t) and u(t) the estimate v(¢) of v(¢) and §2(t)
of &,(¢) can be computed by

(1) = (1) — B (D) — (1), (14)
E,() = y() — D (D). (15)
3 (1) == 19, (). D1(1). Dr (o). ...,

D, (1)] € R™mn, (16)

Using the negative gradient search and minimizing the
cost functions J (#) and J,(#), we can obtain the ESG
algorithm:

$(1)

) =91t —1)+ Te?(r), (17)
e = £, = (t — D), (18)
ri(t) =rit — 1) + @12 r1(0) =1, (19)
0 =0¢—1)+ %ez(t) (20)
er(t) = E,(t) — W ()0t — 1), Q1)
ra(t) = ra@t — 1) + WO, r2(0) = 1. (22)

Here, e () € R™ and e(¢) € R™ represent innovation
vectors and each element of e (¢) and e;(¢) is a scalar
innovation at the current time. Equations (6)—(22) form
the hierarchical extended stochastic gradient (H-ESG)
identification algorithm for the H-MIMO-OEMA sys-
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tem. The steps of computing the estimates 1§(t) and
0(¢) by the H-ESG algorithm are as follows.

1. Lett = 1, settheinitial Valuesﬁ(O) = Liux(mn)/ PO,
0(0) = Lyn,/po, £(0) = 0, u(0) = 0, 9(0) = 0
for t < 0 (po is a large number, e.g., po = 10°).

2. Collect the input—output data u; (¢) and y;(¢), and
form lII(t) using (10).

3. Form ¢ (t) using (6) and ¢(t) using (7).

4. Compute §1 (1), e1(t) and r1(¢) using (9), (18) and
(19), and update 1§(t) using (17).

5. Compute éz(t), e1(t) and ry(t) using (15), (21) and
(22), and update 8(¢) using (20).

6. Compute u(t) using (8), x(¢) using (12) and ()
using (14).

7. Increase ¢ by 1 and go to Step 2.

4 The hierarchical multi-innovation extended
stochastic gradient algorithm

The H-ESG algorithm only uses the current data and
thus has slow convergence rates. In order to enhance
the convergence rate, we derive an H-MI-ESG algo-
rithm with computational efficiency and high accuracy
for subsystems S; and S, by expanding the single-
innovation vectors eq(¢) and e;(t) to an innovation
matrix E1(p, t) and an innovation vector E»(p, t) as

El(pv t)
] £ 0 —&I(r)ﬁ(r —1)
Et—1)—¢ -1 —1)

Elt—p+D—¢ G—prDdc—1
e RP*m 23)
EZ([” t)

R OEE ROUGESY
EXt—1)—PTE—1)0@ - 1)

Et—p+1)—WT(t—p+ Db —1)
e R, 24)

where p represents the innovation length.

Define the information matrices @ (p, t) and 2 (p, t)
and the stacking output matrix/vector Y {(p,t) and
Ya(p,t) as
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&(p,1) :=[¢®), ¢ =1, ...,
¢ — p+ D] e R™*P,
R(p.t):=[¥M),¥Et—-1),...,

U(i—p+1D]e R(mﬂc)X(th)’
Yi(p.t) =1[§;(),§;¢t—1),...,
£t —p+ DT e RV,
Yop.t) == [E5(). E;(t = 1), ...,
Ec—p+ DT erR™, (25)

The similar difficulties arise that @ (p, ¢) contains the
unknown vectors ¢(¢), Y1(p, t) and Y, (p, t) contain
the unknown fictitious output vectors &, (¢) and &,(¢),
respectively. Our approach is to replace the unmeasur-
able inner vectors ¢(t —i), &, (t —i) and &, (t — i) with
their estimates (i(t —1i), él(t —1) and §2(t — 1), and
define

d(p.1)=[p(1). ¢ —1),...,

(1 — p+ 1] e RMm*P, (26)
Vi(p, 1) = [&,(1), &t — 1), ...,

E\t—p+ DT e RPM, 7)
Popn) =1, (0. 6yt — 1), ...,

Bt —p+ DT eR™. (28)

Referring to [36] and according to the ESG algorithm
in (17)—(22) and Eqs. (23) and (24), the MI-ESG algo-
rithm with the innovation length p can be expressed
as

. &

by =9 -0+ 22 o0, (29)
r1(t)

Ei(p.0)=Yi(p.10) — & (p.0)d(t — 1), (30)

@) =1 — 1)+ 1§D 1(0) = 1, G1)

b= — 1)+ 2P g o), (32)
ra(t)

Ex(p,1) =Ya(p,1) — 2 (p,0)0(t — 1), (33)

ra(t) = ra(t — 1) + W@ r2(0) = 1. (34)

Equations (6)—(16) and (25)—(34) form the hierar-
chical multi-innovation extended stochastic gradient
(H-MI-ESG) algorithm for computing 1§(t) and é(t).
The procedures of computing ﬁ(t) and é(t) in the H-
MI-ESG algorithm are listed in the following.

< Start: set p and t =1 >
l
Initialize: 9(0), 19(0), z(0),
u(0) and ©(0)
!
Collect u;(¢), yi(t) and form
b,(t) and ¢(t)
l

), £2(t) and compute &, (t)

|

Form Y1 (p,t), compute E1(p,t),

Form ¥ (t

71(t) and update 9(t)

|

Compute é2(t), form Yo (p,t)

Compute E2(p,t), r2(t), update 0(1t)

l
Compute u(t), &(t) and v(t)
l
t:=t+1

Fig. 1 The flowchart of computing the estimates 9(t) and f}(z)

1. Lett = 1, settheinitial values 3(0) = Lyx(un)/ Po>
0(0) = L, /po. £(0) = 0, u(0) = 0, 9(0) = 0
for t < 0 (po is a large number, e.g., po = 10%).

2. Collect the 1nput—0utput data u; (t) and y; (¢), form
¢S () using (6), ¢(t) using (7), ¢(p t) using (26),
¥ (t) using (10) and £2(p, ) using (25).

3. Compute él(t) using (9) and form )71(p, t) using
27), compute E(p,t)andri(¢) using (30)and (31)
and update 17(t) using (29).

4. Compute §2(t) using (15) and form Y2(p, t) using
(28), compute E>(p,t) and rp(¢) using (33) and
(34) and update é(t) using (32).

5. Compute u(r) using (8), x(¢) using (12) and ()
using (14).

6. Increase t by 1 and go to Step 2.

The flowchart of computing the parameter estimates
8(r) and # () in the H-MI-ESG algorithm is shown in
Fig. 1.

Moreover, in order to improve the convergence rate
of the H-MI-ESG algorithm further, we can introduce a
forgetting factor X, so Egs. (31) and (34) can be rewrit-
ten as

@ Springer
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Table 1 The H-ESG
estimates and errors

t 100 200 500 1000 2000 3000

a;p = 049 0.75689 0.74095 0.54226 0.39886 0.40113 0.44236
app = —0.10 0.60103 0.40076 0.20331  —0.09078  —0.17821  —0.19922
by = 1.26 0.13204 0.16089 0.36970 0.62481 0.88656 1.06500
bip = 279 0.75857 0.83806 0.99856 1.25881 1.61487 1.89961
dip =-020 -0.38137 —0.30757 —0.23716  —0.36615  —0.55190  —0.63334
dp= 0 0.20664 0.25457 0.29324 0.22774 0.12794 0.08468
ar; = 0.35 —0.06956  —0.06460  —0.06821 —0.06261 0.04465 0.10561
ap =-0.80 —0.77384  —0.80396  —0.84364  —0.80959  —0.76893  —0.77005
by = 0.79 0.10562 0.12125 0.17475 0.24985 0.31651 0.41977
by = 1.65 0.70220 0.73071 0.80188 0.92645 1.11623 1.26803
dyp= 0 —-0.32212 —-0.26530  —0.26066  —0.38093  —0.50538  —0.56851
dyp = 0.39 0.58827 0.61927 0.61617 0.58524 0.53519 0.50028
cip =—2.21 —0.79593  —0.83266  —1.65541  —1.94048  —2.24349  -2.27225
crp = 1.21 1.23283 1.13020 1.19911 1.32668 1.30840 1.23642
1 = 0.76 0.76993 0.74787 0.58549 0.65408 0.75194 0.76214
c»n = 129 0.80176 0.97154 1.17119 1.27766 1.27115 1.29565
8 (%) 66.52201 63.22889 51.32285 42.68745 33.75840 27.65244

r) =t = D+ 19O, 1O =1,0<r<1,
r(t) = Ara(t — 1) + WO, r20) = 1.

As p = 1, the H-MI-ESG algorithm reduces to the
H-ESG algorithm in (6)—-(22).

5 Example

Consider the following H-MIMO-OEMA system,
y(@) =x(@1) + D(2)v (1),
x(1) = A" @B@a),

BAG) Ml(t):|
1) = ) 1) = )
¥ _yz(l)} “ [uz(t)
[ 01 (1)
1) = ,
v _vz(l)]
AR =T+ Az
[ 14049270 —0.10z7! ]
1 035z 1-080z7! |
B(x)=1+Bz"!
[ r+1267! 27927 ]
L 079zt 14165270 |
D) =1+Dz"!
[ 1-020z7" 0]
| 0 140397 |
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() = |:ﬁl(t):| _ [Cufl(ul(t)) +612f2(u1(t))}
i (1) 21 f1(u2 (1)) + c22 f2(ua(t))

_ [—2-21f1 (u1()) + 1~21f2(u1(l))}
0.76 f1 (u2(1)) + 1.29 fo(u2(1)) |’

where fi(u; (1)) = uj (1) and fo(ui (1)) = u;(r), the
parameter matrix ¥ and the parameter vector 6 are

#T =[Ay, By, Di]

1049 -0.101.26 2.79 -0.20 0O
~10.35-0.80 0.79 1.65 00.39 |’

0 = [c11, c12, c21, et =[—2.21,1.21,0.76, 1.29]".

The input vector u(¢) is taken as an uncorrelated per-
sistent excitation signal vector with zero mean and
unit variances, and v(¢) as a white noise vector with
zero mean and variances 012 = 0.102 for v;(¢) and
022 = 0.10% for vy(r). Taking the forgetting factor
A = 0.99 and applying the H-MI-ESG algorithm to
estimate parameters of the example system, the para-
meter estimates, and the estimation errors § are shown
in Tables 1, 2 with the innovation lengths p = 1 and
p = 5 and the estimation errors versus ¢ are shown in
Fig. 2, where

x 100 %.

. .:\/||&(r)—ﬂ||2+||é(t>—0||2
| 1212+ 1012
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Table 2 The H-MI-ESG

estimates and errors with ! 100 200 500 1000 2000 3000

p=5 a;; = 049 0.58128 0.58212 0.60026 0.56062 0.52877 0.50158
app =-0.10 —0.16805 —0.20361  —0.21335  —0.16956  —0.14479  —0.11458
bjp = 1.26 1.17078 1.21495 1.28530 1.34248 1.30293 1.27752
b= 2.79 1.63001 1.81132 2.09725 2.38318 2.63660 2.72962
dip =-020 —0.18453  —0.17924  —0.19600 —0.19846  —0.20386  —0.20539
dip= 0 —0.05823  —0.02891 —0.04360  —0.03664 —0.03719  —0.03654

ar; = 0.35 0.18292 0.21538 0.32481 0.36189 0.36833 0.35382
ap =-080 —0.69112  —0.77752 —-0.82646  —0.82416  —0.82149  —0.81047
by = 0.79 0.34002 0.45868 0.62851 0.77082 0.80391 0.79665
by = 1.65 0.92404 1.04696 1.23779 1.42435 1.56753 1.61981
dy= 0 —0.03413  —0.03751  —0.08532  —0.09519  —0.09608  —0.09527
dyp = 0.39 0.38200 0.41466 0.37503 0.37589 0.37721 0.37929
—2.21 —2.06742  —2.21027  —2.26588  —2.17296  —2.19095  —2.22214

C11

crp = 1.21 1.45748 1.21311 1.36462 1.21656 1.19714 1.21918
1 = 0.76 0.88035 0.87460 0.67676 0.72887 0.74178 0.76564
c»n = 129 1.08758 1.37270 1.33729 1.34249 1.26327 1.29522
8 (%) 31.80743 25.76417 18.23396 10.53547 4.66747 2.68456

Fig. 2 The H-MI-ESG
estimation errors § versus ¢

%=
O 1 1 1 1 1 1
0 500 1000 1500 2000 2500 3000 3500
t

The computational efficiency of the H-MI-ESG algo- parameter estimates given by the H-MI-ESG algo-
rithm is shown in Table 3. rithm can converge to their true values with the

From Tables 1, 2 and Fig. 2, we can draw the fol- increasing of ¢.

lowing conclusions.

From Table 3, it is clear that although a larger p
e The H-MI-ESG algorithm has faster convergence leads to a model with high accuracy, the price we have
rates than the H-ESG algorithm. to pay is a large computational effort. Moreover, the
e The H-MI-ESG estimation errors become smaller proposed algorithm can reduce computational load by
with the innovation length p increasing, and the decomposing a large-scale system into two subsystems
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Table 3 The computational efficiency of the H-MI-ESG algorithm

Computational sequences

Number of multiplications

Number of additions

D) =D — 1)+ &1 (p,0)/r1(t) € ROM*™ mn mn

£1(p.1) = ®(p.OE(p,1) € R m*np m*n(p — 1)
Ei(p.)=Yi(p.t) —®(p, ¥t —1) e RP*™  m2np m2np

E - =yt —i)—WT@—i)@—1) eR" mnep mnep

0() =00 —1)+&(p.1)/ra(t) e R mn, mne

$o(p, 1) == R(p, ) Ex(p, 1) € R™e mnep mne(p — 1)
Ex(p.t)=Yao(p.) — 2 (p.0)BGt — 1) eR™  mn.p mnep

E() =y - (b)) e R m2np mnp
n0=r—1+¢0|* R mn mn

@) =mnt—-—1D)+|TO|?eR m2n, (ne — Dm? +m+1
Sum Bm3n + 3mn¢)p + (m? +m)(n + ne) Bm3n + 3mne)p + (ne — DHm? +

Total flops

n+1Dm—+1

6m?*n + 6mne)p + (n + 2ne — Hm? + 2n +ne + Hm + 1

and avoid the complexity of identifying the products
of parameters in contrast to the over-parameterization
methods.

6 Conclusions

This paper uses the key term separation principle to
study identification problems of the H-MIMO-OEMA
system and proposes a hierarchical multi-innovation
stochastic gradient algorithm with a forgetting fac-
tor. By expanding the single-innovation vectors, the
proposed H-MI-ESG algorithm has higher estimation
accuracy than the H-ESG algorithm. And separating
a proper key term from the nonlinear system, we can
obtain a pseudo-linear model which avoids the redun-
dant parameters. So the proposed algorithm has high
computational efficiency. However, this algorithm can-
not be used to identify the nonlinear systems with
unknown time delay. The proposed algorithm in this
paper can be extended to study identification algo-
rithms for other linear and nonlinear systems with col-
ored noises [37-39].
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