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Abstract In this paper, we study the solitary wave
solution and numerical simulation for the generalized
Rosenau–Kawahara-RLW equation with generalized
Novikov typenonlinear perturbation,which is an exten-
sion of our recent work He and Pan (Appl Math Com-
put 271:323–336, 2015), He (Nonlinear Dyn 82:1177–
1190, 2015). We first derive the exact solitary wave
solution for the newly proposed perturbed Rosenau–
Kawahara-RLW equation with power law nonlinearity
and then develop a three-level linearly implicit differ-
ence scheme for solving the equation.We prove that the
proposed scheme is energy-conserved, unconditionally
stable and second-order convergent both in time and
space variables. Finally, numerical experiments are car-
ried out to confirm the energy conservation, the conver-
gence rates of the scheme and effectiveness for long-
time simulation.
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1 Introduction

The nonlinear wave is one of the most important sci-
entific research areas. During the past several decades,
many scientists developed differentmathematicalmod-
els to explain the wave behavior, such as the KdV
equation, the RLW equation, the Rosenau equation, the
Camassa–Holm equation, the Novikov equation and
etc. In the following, we give a short review of these
important wave models.

The well-known KdV equation

ut + uxxx + 6uux = 0, (1)

was first introduced by Boussinesq [3] in 1877 and
rediscovered by Diederik Korteweg and Gustav de
Vries [4] in 1895. Since then, there are a lot of studies on
this equation and its variational form.Herewe justmen-
tion some of the recent work. Kudryashov [5] reviewed
the traveling wave solutions for the KdV and the KdV-
Burgers equations proposed byWazzan [6], Biswas [7]
studied the solitary wave solution for KdV equation
with power law nonlinearity and time-dependent coef-
ficients, Wang et al. [8] investigated the solitons, shock
waves for the potential KdV equation, while Ma et
al. [9] studied the solitary wave solution for the gen-
eralized KdV equation. In addition to the theoretical
studies, readers can refer to [10,11] for the numerical
simulations of the KdV equation and the generalized
KdV equation.

The regularized long-wave (RLW) equation (also
known as Benjamin-Bona-Mahony equation)
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ut + ux +
(

u2
)

x
− uxxt = 0, (2)

was first proposed as a model for small-amplitude long
wave of water in a channel by Peregrine [12,13]. The
regularized long-wave (RLW) equation and general-
ized regularized long-wave (GRLW) equation were
well studied both theoretically and numerically in the
literature. Readers can refer to [14–17] for theoretical
studies and [18–24] for numerical studies.

Since thewell-knownKdVequation cannot describe
the wave-wave and wave-wall interactions when study
of compact discrete systems, Rosenau proposed the
following so-called Rosenau equation [25,26] to over-
come the shortcoming of the KdV equation:

ut + uxxxxt + ux + 0.5
(

u2
)

x
= 0. (3)

The existence and uniqueness of the solution for
the Rosenau equation were theoretically proved by
Park [27]. Besides the theoretical analysis, numerical
studies of Eq. (3) also exist in the literature, see [28–32]
and references therein.

By adding the term −uxxt into the Rosenau equa-
tion, one can obtain the following Rosenau-RLW equa-
tion [33–37]:

ut − uxxt + uxxxxt + ux + 0.5
(

u2
)

x
= 0. (4)

The initial boundary value problem for the Rosenau-
RLWequation has beenwell studied numerically in the
past years [33–37]. For example, Pan and Zhang [33,
34] developed three-level linear implicit conservative
schemes for the Rosenau-RLW equation and the gen-
eralized Rosenau-RLW equation, respectively.

For further consideration of the nonlinear wave, the
viscous term uxxx needs to be included in the Rosenau
equation, the resulting equation is usually called the
Rosenau-KdV equation [38–40]:

ut + uxxxxt + uxxx + ux + 0.5
(

u2
)

x
= 0. (5)

For theoretical studies, Saha [38] provided 1-soliton
solution for the generalized Rosenau-KdV equation,
Triki and Biswas [39] investigated the solitary wave
solution and the asymptotic study of the Rosenau-KdV
equation with power law nonlinearity, where the power
law nonlinearity means the last term in the left-hand

side of Eq. (5) is replaced by a general nonlinear term
(u p)x and p is anypositive integer. For numerical inves-
tigations, Hu et al. [40] proposed a second-order con-
servativefinite differencemethod for theRosenau-KdV
equation.

Moreover, the following Kawahara equation

ut + ux + uux + uxxx − uxxxxx = 0, (6)

arose in the theory of shallowwater waves with surface
tension [41]. Equation (6) is called the modified Kawa-
hara equation if the third nonlinear term in the left-hand
side is replaced by u2ux . There is a wide range of lit-
erature on the numerical investigations and theoretical
studies for the usual Kawahara equation and the modi-
fied Kawahara equation. For theoretical aspects, some
periodic and solitary wave solutions for both the Kawa-
hara equation and the modified Kawahara equation are
provided in [42–44]. In addition to the theoretical stud-
ies, readers can refer to [45–47] for the numerical stud-
ies of the Kawahara equation and the modified Kawa-
hara equation.

As one more step consideration of the nonlin-
ear wave, Zuo [48] obtained the Rosenau–Kawahara
equation by adding another viscous term −uxxxxx to
the Rosenau-KdV equation (5) and studied the soli-
tary solution and periodic solution of the Rosenau–
Kawahara equation. The Rosenau–Kawahara equation
is given as follows [48]:

ut + ux + uux + uxxx + uxxxxt − uxxxxx = 0. (7)

For theoretical study, Biswas [49] investigated the soli-
tary solution and the two invariance of the following
generalized Rosenau–Kawahara equation

ut + aux + bumux + cuxxx + λuxxxxt − μuxxxxx = 0,

(8)

where a, b, c, μ, α, λ are real constants, m is a positive
integer, which indicates the power law nonlinearity. For
numerical study, the author [2] developed a three-level
second-order conservative finite difference method for
simulating the above generalized Rosenau–Kawahara
equation (8), while Hu et al. [50] proposed a two-
level nonlinear Crank-Nicolson scheme and another
three-level implicit linear conservative finite differ-
ence scheme for the usual Rosenau–Kawahara equa-
tion, where bothmethods are proved to be second-order
convergent.

By coupling the above Rosenau-RLW equation (4)
and Rosenau-KdV equation (5), one can obtain the fol-
lowing Rosenau-KdV-RLW equation [51–55],
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ut − uxxt + uxxxxt + uxxx + ux + 0.5
(

u2
)

x
= 0. (9)

For numerical investigation, Wongsaijai et al. [51]
proposed a three-level implicit conservative finite dif-
ference method for the above Rosenau-KdV-RLW
equation. Moreover, solitary waves, shock waves, con-
servation laws and the asymptotic behavior of the
Rosenau-KdV-RLW equation with power law nonlin-
earity are theoretically studied by [52–55].

In addition, by coupling the above Kawahara equa-
tion (6) and Rosenau-KdV-RLW equation (9), the
author and coauthor studied the exact solitary solution
and developed a conservative finite difference method
for the following generalized Rosenau–Kawahara-
RLW equation [1],

ut + aux + bumux + cuxxx − αuxxt

+ λuxxxxt − μuxxxxx = 0, (10)

where a, b, c, μ are real constants, α, λ are positive
constants, m is a positive integer, which indicates the
power law nonlinearity.

On the other hand, the following Camassa–Holm
equation was first proposed by Camassa and Holm [56]
for modeling the unidirectional propagation of irrota-
tional water wave over a planar wall

ut + 2κux − uxxt + 3uux = 2ux uxx + uuxxx , (11)

where κ is a constant related to gravity and initial undis-
turbed water depth. The exact traveling wave solu-
tions of the Camassa–Holm equation and modified
Camassa–Holm equation are derived in [57–60].

More recently, the Novikov equation

ut − utxx + 4u2ux = 3uux uxx + u2uxxx , (12)

has been discovered by Vladimir Novikov in a symme-
try classification of nonlocal PDEs with quadratic or
cubic nonlinearity [61]. Like the Camassa–Holm equa-
tion, the Novikov equation was shown to admit peakon
solutions [62]. And readers can refer to [63–68] for
theoretical studies of the Novikov equation.

In this paper, we consider exact solitary wave solu-
tion and numerical simulation for the following gener-
alized Rosenau–Kawahara-RLW equation with gener-
alized Novikov type perturbation

ut + aux + bumux + cuxxx − αuxxt

+ λuxxxxt − μuxxxxx

= s
(
(m + 1)um−1ux uxx + umuxxx

)
,

xl ≤ x ≤ xr , 0 ≤ t ≤ T, (13)

with initial condition

u(0, x) = u0(x), xl ≤ x ≤ xr , (14)

and boundary conditions

u(xl , t) = u(xr , t) = 0, ux (xl , t) = ux (xr , t) = 0,

uxx (xl , t) = uxx (xr , t) = 0, 0 ≤ t ≤ T, (15)

where xl is a large negative number, xr is a large pos-
itive number, a, b, c, μ, s are real constants, α, λ are
positive constants, m is a positive integer, which indi-
cates the power law nonlinearity. Herewe point out that
the newly proposed perturbed Rosenau–Kawahara-
RLW equation with power law nonlinearity (13) com-
bines the generalized Rosenau–Kawahara-RLW equa-
tion (10) and the nonlinear terms (in general form) of
the right-hand side of the Novikov equation (12). We
note that when m = 1, a = 2κ, b = 3, c = 0, α =
1, λ = 0, μ = 0, s = 1, the above perturbed Rosenau–
Kawahara-RLW equation with power law nonlinearity
(13) reduced into the Camassa–Holm equation (11),
and when m = 2, a = 0, b = 4, c = 0, α =
1, λ = 0, μ = 0, s = 1, the above perturbed Rosenau–
Kawahara-RLW equation with power law nonlinearity
(13) reduced into the Novikov equation (12).

In this work, we only discuss the solitary wave solu-
tion of Eq. (13) which will be derived in the next sec-
tion. By solitary wave assumptions, the solitary solu-
tion and its derivatives have the following asymptotic
values: u → 0 as x → ±∞, and ∂nu

∂xn → 0 as
x → ±∞, for n ≥ 1. Thus, the boundary conditions
(15) aremeaningful for the solitary solution of Eq. (13).
In addition, we assume that the wave peak is initially
located at x = 0, and xl , xr , which are large numbers,
are used to assure that the solitary wave peak is always
located inside the domain [xl , xr ] during the time inter-
val [0, T ]. Similar set up are used in [40,51].

When numerically solving differential equations,
the total accuracy of a particular method is affected
not only the order of accuracy of the method, but
also other factors. The conservative property of the
method is another factor that has the same or possibly
even more impact on results. For example, one suc-
cessful and active research is to construct structure-
preserving schemes (or called symplectic schemes) for
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the ODE systems (see [69] and the references therein).
Numerical experiments show that conservative differ-
ence scheme can simulate the conservative lawof initial
value problem better since it could avoid the nonlinear
blow-up [19,34,70–73]. And Li et al. [70] even pointed
out that in some areas, the ability to preserve some
invariant properties of the original differential equa-
tion is a criterion to judge the success of a numerical
simulation.

In the following, wewill show that the initial bound-
ary value problem (13)–(15) satisfies a fundamental
energy conservative property. In addition, the Eq. (13)
is nonlinear due to the third term in the left-hand side
and the two terms in right-hand side. When consider-
ing the finite difference scheme for the Eq. (13), the
usual Crank-Nicolson scheme will lead to a nonlinear
scheme with heavy computation, while other standard
linearized discretizations for the nonlinear term, e.g.,
one step Newton’s method or a second-order extrapo-
lation method, will loss the energy conservative prop-
erty. An ideal scheme should have relative less compu-
tational cost, can preserve energy, be unconditionally
stable and maintain second-order accuracy.

In this paper, a three-level linearly implicit finite dif-
ference method for the initial value problem (13)–(15)
will be presented. The fundamental energy conserva-
tion is preserved by the presented numerical scheme.
The existence and uniqueness of the numerical solution
are also proved. Moreover, numerical analysis shows
that themethod is second-order convergent both in time
and space variables, and the method is unconditionally
stable. Numerical results confirm well with the theo-
retical results.

The rest of the paper is organized as follows: Sect. 2
gives the exact solitary wave solution for the initial
boundary value problem (13)–(15). Section 3 shows
the energy conservation. Section 4 gives the detailed
description of the three-level linearly implicit finite dif-
ference method, the proof for the discrete conservative
property, the existence and uniqueness as well as the
convergence and stability of the numerical solution.
Numerical results are shown in Sect. 5. Conclusions
are provided in the final section.

2 Exact solitary solution

Solitary solutions and other wave solutions are very
important for the nonlinear models arose in many

physics and engineering areas. Besides the references
mentioned in the above section, there are a lot of related
references which used different methods to find the
solitons and other wave solutions for different non-
linear models. For example, [74] discussed the soli-
tary solution for the Gear–Grimshaw model, [75] pro-
vided solitons, cnoidal waves and snoisal waves for
the Whitham–Broer–Kaup system, while [76] gave the
solitons and other solutions to the (3 + 1)-dimensional
extendedKadomtsev–Petviashvili equationwith power
law nonlinearity. In addition, the fractional differen-
tial equations are also studied in the literature [77–79].
Readers can refer to [74–90] for more discussions on
finding solitons and other wave solutions for different
nonlinear models.

The sine-cosine method, as one of the most useful
tools, uses the sine or cosine function as the wave form
function to seek the traveling wave solution of a time-
dependent partial differential equation, which has the
advantage of reducing the nonlinear problem to a sys-
tem of algebraic equations that can be easily solved by
using a symbolic computation system such as Mathe-
matica or Maple [51,83–86].

For Eq. (13), one can obtain the exact solitary solu-
tions by using the sine-cosine method. Firstly, we use
an ansatz method to seek the following traveling wave
solutions [51,83–86]:

u(x, t) = û(ξ), ξ = x − vt, (16)

where v is referred as the wave velocity which is a
constant to be determined later.

Under the transformation of (16), Eq. (13) can be
reduced into:

(a − v)ûξ + bûmûξ + (αv + c)ûξξξ

− (λv + μ)uξξξξξ

= s
(
(m + 1)ûm−1ûξ ûξξ + ûmûξξξ

)
. (17)

Using the sine-cosine method [51,86], we may choose
the solution of above reduced ODE (17) in the form

û(ξ) =
{

A cosη(Bξ), if |ξ | < π
2B ,

0, otherwise,
(18)

or in the form

û(ξ) =
{

A sinη(Bξ), if |ξ | < π
2B ,

0, otherwise,
(19)
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where A, B, η are parameters to be determined. Using
(18), one have

ûξ = −ABη cosη−1(Bξ) sin(Bξ), (20)

ûξξ = AB2η(η − 1) cosη−2(Bξ) − AB2η2 cosη(Bξ),

(21)

ûξξξ = −AB3η(η − 1)(η − 2) cosη−3(Bξ) sin(Bξ)

+ AB3η3 cosη−1(Bξ) sin(Bξ), (22)

and

ûξξξξξ =
(

− AB5η(η − 1)(η − 2)(η

− 3)(η − 4) cosη−5(Bξ)

+ 2AB5η(η − 1)(η − 2)(η2 − 2η

+ 2) cosη−3(Bξ)

− AB5η5 cosη−1(Bξ)

)
sin(Bξ). (23)

Substituting (20)–(23) into (17), one obtain

(λv + μ)AB5η(η − 1)(η − 2)(η − 3)(η

− 4) cosη−5(Bξ) sin(Bξ)

+ ( − (αv + c)AB3η(η − 1)(η − 2)

− 2AB5(λv + μ)η(η − 1)(η − 2)(η2 − 2η

+ 2)
)
cosη−3(Bξ) sin(Bξ)

+ ( − ABη(a − v) + (αv + c)AB3η3

+ (λv + μ)AB5η5
)
cosη−1(Bξ) sin(Bξ)

− bAm+1Bη cos(m+1)η−1(Bξ) sin(Bξ)

= s
(
(m + 2)Am+1B3η3 cos(m+1)η−1(Bξ)

− Am+1B3(m + 1)η2(η − 1) cos(m+1)η−3(Bξ)

− Am+1B3η(η − 1)(η

− 2) cos(m+1)η−3(Bξ)
)
sin(Bξ). (24)

Balancing cosη−5(Bξ) and cos(m+1)η−3(Bξ), one
obtain that η − 5 = (m + 1)η − 3, which gives
η = − 2

m . And setting the each coefficients of cos j (Bξ)

( j = η − 3, η − 1) to be zero and noting that η − 3 =
(m + 1)η − 1, one can obtain a set of equations for
v, A, B as follows:

(λv + μ)AB5η(η − 1)(η − 2)(η − 3)(η − 4)

= −s Am+1B3((m + 1)η2(η − 1) + η(η − 1)(η − 2)
)
,

(25)

− (αv + c)AB3η(η − 1)(η − 2) − bAm+1Bη

− 2AB5(λv + μ)η(η − 1)(η − 2)(η2 − 2η + 2)

= (2 + m)s Am+1B3η3, (26)

− ABη(a − v) + (αv + c)AB3η3

+ (λv + μ)AB5η5 = 0. (27)

(25)–(27) give the following non-zeros solutions:

B2 =
−B0 ±

√
B2
0 − 4A0C0

2A0
, (28)

where

A0 = −32λsc + 32αsμ − 16λmsc + 16αmsμ

− 64αm2sμ − 32αm3sμ + 32λm3sc + 64λscm2,

(29)

B0 = −8λm5sa − 16λm2sa − 8μm5s − 28bm2λc

− 16μm4s − 24bm3λc + 24bm3μα − 4μm3s

+ 28bm2μα − 16λsam − 16μms − 8bmλc

− 4λm3sa + 8bmμα − 16μm2s − 16λsam4, (30)

C0 = 2bm3μ + 6bm5λa + 7bm4λa + 7bm4μ

− 4cm3s − 6αm4sa − 6cm4s − 2αm5sa

− 4αm3sa − 2cm5s + 6bm5μ + 2bm3λa, (31)

and

v = a − cB2η2 − μB4η4

1 + αB2η2 + λB4η4
, (32)

A =
(

(λv + μ)B2(η − 2)(η − 3)(η − 4)

s(2 − (m + 2)η)

) 1
m

. (33)

The results can be classified into the following four
categories.

(1)
−B0+

√
B2
0−4A0C0

2A0
> 0 and

−B0−
√

B2
0−4A0C0

2A0
> 0.

We can obtain two periodic solutions,

u(x, t) = û(ξ) = A cos−
2
m (B (x − vt)) , (34)

where B is given by

√
−B0+

√
B2
0−4A0C0

2A0
or√

−B0−
√

B2
0−4A0C0

2A0
and v, A are given by (32)–(33).
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(2)
−B0+

√
B2
0−4A0C0

2A0
> 0 and

−B0−
√

B2
0−4A0C0

2A0
< 0.

We can obtain a periodic solution

u(x, t) = û(ξ) = A cos−
2
m (B (x − vt)) , (35)

where B is given by

√
−B0+

√
B2
0−4A0C0

2A0
and v, A are

given by (32)–(33).
In addition, we can obtain a solitary solution,

u(x, t) = û(ξ) = Asech
2
m

(
B∗ (x − vt)

)
, (36)

where B∗ is given by B∗ =
√

−−B0−
√

B2
0−4A0C0

2A0
and

v, A are given by (32)–(33).

(3)
−B0+

√
B2
0−4A0C0

2A0
< 0 and

−B0−
√

B2
0−4A0C0

2A0
> 0.

We can obtain a periodic solution

u(x, t) = û(ξ) = A cos−
2
m (B (x − vt)) , (37)

where B is given by

√
−B0−

√
B2
0−4A0C0

2A0
and v, A are

given by (32)–(33).
In addition, we can obtain a solitary solution,

u(x, t) = û(ξ) = Asech
2
m

(
B∗ (x − vt)

)
, (38)

where B∗ is given by B∗ =
√

−−B0+
√

B2
0−4A0C0

2A0
and

v, A are given by (32)–(33).

(4)
−B0+

√
B2
0−4A0C0

2A0
< 0 and

−B0−
√

B2
0−4A0C0

2A0
< 0.

We can obtain two solitary solutions,

u(x, t) = û(ξ) = Asech
2
m

(
B∗ (x − vt)

)
, (39)

where B∗ is given by

√
−−B0+

√
B2
0−4A0C0

2A0
or√

−−B0−
√

B2
0−4A0C0

2A0
and v, A are given by (32)–

(33).
In this paper, we focus on the study of the solitary

wave solution.

3 Conservative property

Equations (13)–(15) satisfy the following energy con-
servative property.

Theorem 1 Suppose u0 ∈ C7
0 [xl , xr ], then the solu-

tion of (13)–(15) satisfies the energy conservation law:

E(t) =
∫ xr

xl

u2(x, t) + αu2
x (x, t) + λu2

xx (x, t)dx

=
∫ xr

xl

u2(x, 0) + αu2
x (x, 0) + λu2

xx (x, 0)dx

= E(0), (40)

for any t ∈ [0, T ], where C7
0 [xl , xr ] is the set of

functions which are seventh-order continuous differen-
tiable in the interval [xl , xr ]and have compact supports
inside (xl , xr ).

Proof Multiplying (13) by 2u and integrating over the
interval [xl , xr ], one get
d

dt

∫ xr

xl

u2dx + a
∫ xr

xl

2uux dx

+ b
∫ xr

xl

2um+1 (u)x dx

+ c
∫ xr

xl

2uuxxx dx − α

∫ xr

xl

2uuxxt dx

+ λ

∫ xr

xl

2uuxxxxt dx − μ

∫ xr

xl

2uuxxxxx dx

= 2s
∫ xr

xl

(
um−1ux uxx + (umuxx )x

)
udx, (41)

where we note that (m + 1)um−1ux uxx + umuxxx =
um−1ux uxx + (umuxx )x .

Using the integration by parts, one can easily obtain

∫ xr

xl

uux dx =
∫ xr

xl

udu = 1

2

(
u2(xr , t)

−u2(xl , t)
)

= 0,
∫ xr

xl

um+1 (u)x dx =
∫ xr

xl

um+1du

= 1

m + 2
um+2

∣∣xr

xl
= 0,

∫ xr

xl

uuxxx dx = uuxx
∣∣xr

xl
−

∫ xr

xl

uxx du
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= −
∫ xr

xl

uxx ux dx

= −
∫ xr

xl

ux dux = −1

2
u2

x

∣∣xr

xl
= 0,

∫ xr

xl

uuxxt dx = uuxt
∣∣xr

xl
− 1

2

d

dt

∫ xr

xl

u2
x dx

= −1

2

d

dt

∫ xr

xl

u2
x dx,

∫ xr

xl

uuxxxxt dx =
∫ xr

xl

uduxxxt

= uuxxxt
∣∣xr

xl
−

∫ xr

xl

ux uxxxt dx

= −ux uxxt
∣∣xr

xl
+ 1

2

d

dt

∫ xr

xl

u2
xx dx

= 1

2

d

dt

∫ xr

xl

u2
xx dx,

∫ xr

xl

uuxxxxx dx = uuxxxx
∣∣xr

xl
−

∫ xr

xl

uxxxx ux dx

= −ux uxxx
∣∣xr

xl
+

∫ xr

xl

uxxx uxx dx = 1

2
u2

xx

∣∣xr

xl
= 0,

∫ xr

xl

(
um−1ux uxx + (umuxx )x

)
udx

=
∫ xr

xl

umux uxx dx −
∫ xr

xl

umux uxx dx = 0,

where the boundary conditions (15) are used.
Thus, only the first, fifth and sixth term in the left-

hand side of (41) are nonzero, all other terms are zero.
This yields,

d

dt

∫ xr

xl

u2 + αu2
x + λu2

xx dx = 0. (42)

Therefore,

E(t) =
∫ xr

xl

u2(x, t) + αu2
x (x, t) + λu2

xx (x, t)dx

=
∫ xr

xl

u2(x, 0) + αu2
x (x, 0) + λu2

xx (x, 0)dx

= E(0), (43)

for any t ∈ [0, T ]. This completes the proof.

4 Numerical method

In this section, we give a complete description of our
numerical method for the problem (13)–(15). We first
describe our solution domain and its grid. The solution
domain is defined as 	 = {(x, t)|xl ≤ x ≤ xr , 0 ≤
t ≤ T }, which is covered by a uniform grid 	h =
{(xi , tn)|xi = xl + ih, tn = nτ, i = 0, · · · , M, n =
0, · · · , N }, with spacing h = xr −xl

M , τ = T
N . We

denote U n
i is the numerical approximation of u(xi , tn)

and Z0
h = {U = (Ui )|U−1 = U0 = U1 = UM−1 =

UM = UM+1 = 0, i = −1, 0, 1, · · · , M −1, M, M +
1}. For convenience, the difference operators, inner
product and norms are defined as follows:

Ū n
i = U n+1

i + U n−1
i

2
, (U n

i )t = U n+1
i − U n−1

i

2τ
,

(U n
i )x = U n

i+1 − U n
i

h
, (U n

i )x̄ = U n
i − U n

i−1

h
,

(U n
i )x̂ = U n

i+1 − U n
i−1

2h
, (U n, V n) = h

M−1∑
j=1

U n
i V n

i ,

‖ U n ‖2= (U n, U n), ‖ U n ‖∞= max
1≤i≤M−1

|U n
i |.

The essential of our scheme is that the third term in
the left-hand side of (13) is rewritten and discretized as

bumux = b

m + 2

(
umux + (um+1)x

)

≈ b

m + 2

[
(U n

i )m(Ū n
i )x̂ + ((U n

i )mŪ n
i )x̂

]
,

and which is a second-order approximation around
(xi = xl + ih, tn = nτ). Moreover, the nonlinear
terms in the right-hand side of (13) are rewritten and
discretized as:

s
(
(m + 1)um−1ux uxx + umuxxx

)

= s
(

um−1ux uxx + (umuxx )x

)

≈ s
(
(U n

i )m−1(Ū n
i )x̂ (U

n
i )x x̄

+
(
(U n

i )m−1Ū n
i (U n

i )x x̄

)
x̂

)
,

which is a second-order approximation around (xi =
xl + ih, tn = nτ ). Other terms in (13) are discretized
by using the standard second-order central difference
method.
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The detailed numerical scheme is as follows:

(U n
i )t + a(Ū n

i )x̂ + b

m + 2

[
(U n

i )m(Ū n
i )x̂

+ ((U n
i )mŪ n

i )x̂
]

+ c(Ū n
i )x x̄ x̂ − α(U n

i )x x̄t + λ(U n
i )xx x̄ x̄ t

− μ(Ū n
i )xx x̄ x̄ x̂

= s
(
(U n

i )m−1(Ū n
i )x̂ (U

n
i )x x̄

+
(
(U n

i )m−1Ū n
i (U n

i )x x̄

)
x̂

)
,

2 ≤ i ≤ M − 2, 1 ≤ n ≤ N − 1. (44)

and

U 0
i = u0(xi ), 0 ≤ i ≤ M, (45)

U j
0 = U j

M = 0, (U j
0 )x̂ = (U j

M )x̂ = 0,

(U j
0 )x x̄ = (U j

M )x x̄ = 0, 0 ≤ j ≤ N . (46)

Obviously, the above conditions (46)will giveU j
1 =

U j
M−1 = 0 on two internal points and U j

−1 = U j
M+1 =

0 on two fictitious points, for any 0 ≤ j ≤ N . Thus,
U j ∈ Z0

h , for any 0 ≤ j ≤ N . And we can see
that (44) is a three-level linear implicit scheme and the
coefficient matrix of linear equation of (44) is banded;
thus, the resulting linear algebra equation in (44) can be
solved efficiently using a linear algebra equation solver,
such as the LU decomposition method.

Since the scheme is a three-level method, to start the
computation, we need to give the method for computa-
tion of U 1. The U 1 is computed through the following
Crank-Nicolson scheme:

U1
i − U0

i

τ
+ a

(
U1

i + U0
i

2

)

x̂

+ b

m + 2

[(
U1

i + U0
i

2

)m

×
(

U1
i + U0

i

2

)

x̂

+
((

U1
i + U0

i

2

)m (
U1

i + U0
i

2

))

x̂

]

+ c

(
U1

i + U0
i

2

)

x x̄ x̂

− α

(
U1

i − U0
i

τ

)

x x̄

+ λ

(
U1

i − U0
i

τ

)

xx x̄ x̄

− μ

(
U1

i + U0
i

2

)

xx x̄ x̄ x̂

= s

⎛
⎝

(
U1

i + U0
i

2

)m−1 (
U1

i + U0
i

2

)

x̂

(
U1

i + U0
i

2

)

x x̄

+
⎛
⎝

(
U1

i + U0
i

2

)m−1 (
U1

i + U0
i

2

)

x x̄

⎞
⎠

x̂

⎞
⎠ . (47)

where it is a nonlinear scheme and is second-order
accurate both in time and space variables.

The following Lemmas are well-known results,
which are essential for existence, uniqueness, conver-
gence, and stability of the numerical solution. In the rest
part of the paper, unless otherwise indicated, C is the
notation referring to a general positive constant, which
may have the difference values in different contexts.

Lemma 1 For any two mesh functions U, V ∈ Z0
h, one

have

(Ux̂ , V ) = −(U, Vx̂ ), (Ux , V ) = −(U, Vx̄ ),

(Uxx̄ , V ) = −(Ux , Vx ),

Furthermore,

(U, Uxxx̄ x̄ ) =‖ Uxx̄ ‖2 .

Lemma 2 For any mesh function U ∈ Z0
h, one have

(Ux̂ , U ) = 0, (Uxx̄ x̂ , U ) = 0, (Uxxx̄ x̄ x̂ , U ) = 0.

Lemma 3 (Discrete Sobolev’s inequality (Lemma 1,
page 110 of [91]) For any mesh function U ∈ Z0

h, one
have

‖ U ‖∞≤ C ‖ Ux ‖ .

4.1 Discrete conservation

Theorem 2 Suppose u0 ∈ C7
0 [xl , xr ], then the solu-

tion of finite difference scheme (44)–(46) satisfies ‖
U n ‖∞≤ C and ‖ U n

x ‖∞≤ C, for any 0 ≤ n ≤ N.
Moreover, the following discrete energy conservative
identity is valid:

En � ‖ U n+1 ‖2 + ‖ U n ‖2
2

+ α
‖ U n+1

x ‖2 + ‖ U n
x ‖2

2

+ λ
‖ U n+1

x x̄ ‖2 + ‖ U n
xx̄ ‖2

2

= ‖ U1 ‖2 + ‖ U0 ‖2
2

+ α
‖ U1

x ‖2 + ‖ U0
x ‖2

2

+ λ
‖ U1

x x̄ ‖2 + ‖ U0
x x̄ ‖2

2
� E0, (48)
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for any 0 ≤ n ≤ N −1, where En is the discrete energy
at time t = (n + 1

2 )τ .

Proof Taking the conditions U j
−1 = U j

0 = U j
1 =

U j
M−1 = U j

M = U j
M+1 = 0 (0 ≤ j ≤ N ) into account,

and after computing the inner product of Eq. (44) with
Ū n , i. e., U n+1+U n−1

2 , we have

‖ U n+1 ‖2 − ‖ U n−1 ‖2
4τ

+ a(Ū n
x̂ , Ū n)

+ b

m + 2

(
(U n)m(Ū n)x̂ + ((U n)mŪ n)x̂ , Ū n)

(49)

+ c(Ū n
x x̄ x̂ , Ū n) − α(U n

xx̄t , Ū n) + λ(U n
xx x̄ x̄ t , Ū n)

− μ(Ū n
xx x̄ x̄ x̂ , Ū n) = s

(
(U n)m−1(Ū n)x̂ (U

n)x x̄ , Ū n)

+ s
((

(U n)m−1Ū n(U n)x x̄
)

x̂ , Ū n)
. (50)

By using lemma 2, we get

(Ū n
x̂ , Ū n) = 0, (Ū n

x x̄ x̂ , Ū n) = 0,

(Ū n
xx x̄ x̄ x̂ , Ū n) = 0. (51)

Moreover,

([(
U n)m (

Ū n)
x̂ + ((

U n)m
Ū n)

x̂

]
, Ū n)

= (
(U n)m(Ū n)x̂ , Ū n) + (

((U n)mŪ n)x̂ , Ū n)

= (
(U n)m(Ū n)x̂ , Ū n) − (

(U n)mŪ n, (Ū n)x̂
)

= 0, (52)

and

(
(U n)m−1(Ū n)x̂ (U

n)x x̄ , Ū n
)

+
((

(U n)m−1Ū n(U n)x x̄

)
x̂
, Ū n

)

=
(
(U n)m−1(Ū n)x̂ (U

n)x x̄ , Ū n
)

−
(
(U n)m−1Ū n(U n)x x̄ , (Ū

n)x̂

)

= 0, (53)

where lemma 1 is used. 
�
In addition,

(U n
xx x̄ x̄ t , Ū n) = ‖ U n+1

x x̄ ‖2 − ‖ U n−1
x x̄ ‖2

4τ
,

(U n
xx̄t , Ū n) = −‖ U n+1

x ‖2 − ‖ U n−1
x ‖2

4τ
, (54)

where boundary conditions (45) and (46) are used.
Thus,

‖ U n+1 ‖2 − ‖ U n−1 ‖2 +α ‖ U n+1
x ‖2 −

α ‖ U n−1
x ‖2 +λ ‖ U n+1

x x̄ ‖2 −λ ‖ U n−1
x x̄ ‖2= 0, (55)

for any 1 ≤ n ≤ N − 1. This is equivalent to

‖ U n+1 ‖2 + ‖ U n ‖2
2

+ α
‖ U n+1

x ‖2 + ‖ U n
x ‖2

2

+ λ
‖ U n+1

x x̄ ‖2 + ‖ U n
xx̄ ‖2

2
=

‖ U n ‖2 + ‖ U n−1 ‖2
2

+ α
‖ U n

x ‖2 + ‖ U n−1
x ‖2

2

+ λ
‖ U n

xx̄ ‖2 + ‖ U n−1
x x̄ ‖2

2
, (56)

for any 1 ≤ n ≤ N − 1. This further yields

En = E0, for any 1 ≤ n ≤ N − 1, (57)

which is actually the energy conservation law (48).

Multiplying (47) both sides by
U1

i +U0
i

2 and using the
similar techniques as above, one can obtain

‖ U 0 ‖2 +α ‖ U 0
x ‖2 +λ ‖ U 0

x x̄ ‖2
=‖ U 1 ‖2 +α ‖ U 1

x ‖2 +λ ‖ U 1
x x̄ ‖2 . (58)

Thus, (57) can be rewritten as

En =‖ U 0 ‖2 +α ‖ U 0
x ‖2 +λ ‖ U 0

x x̄ ‖2 . (59)

Since u0 ∈ C7
0 [xl , xr ] and the initial condition (45)

are used in the numerical method, the right-hand side
of (59) is bounded. By assumptions, α, λ are positive
constants, therefore,

‖ U n
x ‖≤ C, ‖ U n

xx̄ ‖≤ C, for any 0 ≤ n ≤ N .

(60)

By using lemma 3, we have ‖ U n ‖∞≤ C .
In addition, through direct computation, one can ver-

ify that

‖ U n
xx ‖=‖ U n

xx̄ ‖, for any 0 ≤ n ≤ N . (61)
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Thus,

‖ U n
xx ‖≤ C, for any 0 ≤ n ≤ N . (62)

Again by using lemma 3, we have ‖ U n
x ‖∞≤ C .

This completes the proof.

4.2 Existence and uniqueness

Theorem 3 The finite difference scheme (44)–(46) has
a unique solution.

Proof To prove the theorem, we proceed by the math-
ematical induction. Suppose U 1, · · · , U n(1 ≤ n ≤
N − 1) are solved uniquely, we now consider the Eq.
(44) for U n+1. Assume that U n+1,1, U n+1,2 are two
solutions of (44) and let W n+1 = U n+1,1 − U n+1,2,
then it is easy to verify that W n+1 satisfies the follow-
ing equation:

1

2τ
W n+1

i + a

2

(
W n+1

i

)
x̂

+ b

2(m + 2)

[
(U n

i )m
(

W n+1
i

)
x̂

+ ((U n
i )m W n+1

i )x̂
]

+ c

2

(
W n+1

i

)
x x̄ x̂

− α

2τ

(
W n+1

i

)
x x̄

+ λ

2τ
(W n+1

i )xx x̄ x̄

− μ

2
(W n+1

i )xx x̄ x̄ x̂

= s

2

(
(U n

i )m−1
(

W n+1
i

)
x̂
(U n

i )x x̄

+
(
(U n

i )m−1W n+1
i (U n

i )x x̄

)
x̂

)
. (63)


�
Taking the inner product of (63)withW n+1, we have

1

2τ
‖ W n+1 ‖2 + α

2τ
‖ W n+1

x ‖2

+ λ

2τ
‖ W n+1

x x̄ ‖2= 0, (64)

where

(
W n+1

x x̄ , W n+1
)

= −
(

W n+1
x , W n+1

x

)
,

(
W n+1

xx x̄ x̄ , W n+1
)

=‖ W n+1
x x̄ ‖2,

(
W n+1

xx x̄ x̄ x̂ , W n+1
)

= 0,
(

W n+1
x x̄ x̂ , W n+1

)
= 0, (W n+1

x̂ , W n+1) = 0,
([(

U n)m
W n+1

x̂ +
((

U n)m
W n+1

)
x̂

]
, W n+1

)
= 0,

(
(U n)m−1W n+1

x̂ U n
x x̄

+
(
(U n)m−1W n+1U n

xx̄

)
x̂
, W n+1

)

= 0, (65)

are used. The first five identities of (65) are directly
from lemma 1 and 2, and the sixth one can be obtained
as follows:

([(
U n)m

W n+1
x̂

+
((

U n)m
W n+1

)
x̂

]
, W n+1

)

=
((

U n)m
W n+1

x̂ , W n+1
)

+
(((

U n)m
W n+1

)
x̂
, W n+1

)

=
((

U n)m
W n+1

x̂ , W n+1
)

−
((

U n)m
W n+1, W n+1

x̂

)

= 0. (66)

And the last one can be obtained through:

(
(U n)m−1W n+1

x̂ U n
x x̄

+
(
(U n)m−1W n+1(U n)x x̄

)
x̂
, W n+1

)

=
(
(U n)m−1W n+1

x̂ U n
x x̄ , W n+1

)

+
((

(U n)m−1W n+1U n
xx̄

)
x̂
, W n+1

)

=
(
(U n)m−1W n+1

x̂ U n
x x̄ , W n+1

)

−
(
(U n)m−1W n+1U n

xx̄ , W n+1
x̂

)

= 0. (67)

From (64) and the definition of the ‖ · ‖-norm, one
can see that (64) has only a trivial solution. Thus, (44)
determines U n+1 uniquely. This completes the proof.

4.3 Convergence and stability

Let u(x, t) be the solution of problem (13)–(15),U n
i be

the solution of the numerical schemes (44)–(46), and

123



Exact solitary solution and a three-level linearly implicit conservative 489

un
i = u(xi , tn), en

i = un
i −U n

i , then the truncation error
of the scheme (44)–(46) can be obtained as follows:

rn
i = (

en
i

)
t + a(ēn

i )x̂ + b

m + 2

[
(un

i )m(ūn
i )x̂

+ ((
un

i

)m
ūn

i

)
x̂

− (
U n

i

)m (
Ū n

i

)
x̂ − ((

U n
i

)m
Ū n

i

)
x̂

]

+ c
(
ēn

i

)
x x̄ x̂

− α(en
i )x x̄t + λ(en

i )xx x̄ x̄ t

− μ
(
ēn

i

)
xx x̄ x̄ x̂

− s

(
(un

i )m−1(ūn
i )x̂ (u

n
i )x x̄

+ ((un
i )m−1ūn

i (un
i )x x̄ )x̂

− (U n
i )m−1(Ū n

i )x̂ (U
n
i )x x̄

−
(
(U n

i )m−1Ū n
i (U n

i )x x̄

)
x̂

)
, (68)

where ēn = en+1+en−1

2 , 2 ≤ i ≤ M − 2 and 1 ≤ n ≤
N − 1.

Since all terms in (44) are the second-order approxi-
mations of the corresponding terms in left-hand side of
(13) around (xi = xl + ih, tn = nτ), by Taylor expan-
sion, it can be easily obtained that rn

i = O(τ 2 + h2)

if h, τ → 0 and u(x, t) ∈ C7,3(	), where C7,3(	) is
the set of functions which are seventh-order continu-
ous differentiable in space and third-order continuous
differentiable in time. This following lemma is a well-
known result.

Lemma 4 (Discrete Gronwall’s inequality). Suppose
that w(k) and ρ(k) are nonnegative functions while
ρ(k) is a non-decreasing function. If

w(k) ≤ ρ(k) + Cτ

k−1∑
l=0

w(l),∀ k,

then

w(k) ≤ ρ(k)eCτk,∀ k.

Theorem 4 Suppose u0 ∈ C7
0 [xl , xr ], and u(x, t) ∈

C7,3(	), then the numerical solution U n of the finite
difference scheme (44)–(46) converges to the solution
of the problem (13)–(15) in the sense of ‖ · ‖∞, and
the convergence rate is O(τ 2 + h2), i.e.,

‖ un − U n ‖∞≤ C(τ 2 + h2), for any 2 ≤ n ≤ N .

(69)

Proof Taking the inner product of (68) with 2ēn , we
have

‖ en+1 ‖2 − ‖ en−1 ‖2 +α(‖ en+1
x ‖2 − ‖ en−1

x ‖2)
+ λ(‖ en+1

x x̄ ‖2 − ‖ en−1
x x̄ ‖2)

= 2τ
[ (

rn, 2ēn) − a
(
ēn

x̂ , 2ēn)

− c
((

ēn)
x x̄ x̂ , 2ēn) + μ

((
ēn)

xx x̄ x̄ x̂ , 2ēn)

− (
P, 2ēn) − (

Q, 2ēn) + (
R, 2ēn) + (

S, 2ēn) ]
,

(70)

where

P = b

m + 2

[(
un)m (

ūn)
x̂ − (

U n)m (
Ū n)

x̂

]
,

Q = b

m + 2

[((
un)m

ūn)
x̂ − ((

U n)m
Ū n)

x̂

]
,

R = s
(
(un)m−1(ūn)x̂ (u

n)x x̄

−(U n)m−1(Ū n)x̂ (U
n)x x̄

)
,

S = s
(
((un)m−1ūn(un)x x̄ )x̂

−
(
(U n)m−1Ū n(U n)x x̄

)
x̂

)
. (71)


�
By using lemma 2, we obtain

(
ēn

x̂ , 2ēn) = 0,
(
(ēn)x x̄ x̂ , 2ēn) = 0,(

(ēn)xx x̄ x̄ x̂ , 2ēn) = 0. (72)

From the notations introduced at the beginning of
Sect. 3, for any 0 ≤ n ≤ N , we have the following
inequality

‖ en
x̂ ‖2 =

M−1∑
j=1

(
e j+1 − e j−1

2h

)2

h

= 1

4

M−1∑
j=1

(
e j+1 − e j

h
+ e j − e j−1

h

)2

h

≤ 1

2

M−1∑
j=1

[(
e j+1 − e j

h

)2

+
(

e j − e j−1

h

)2
]

h

=‖ en
x ‖2 .
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Thus, for any 0 ≤ n ≤ N , we have

‖ en
x̂ ‖≤‖ en

x ‖ . (73)

In addition, we have

|(P, 2ēn)| =
∣∣∣∣
2bh

m + 2

M−1∑
j=1

[
(un

j )
m(ūn

j )x̂

− (U n
j )

m(Ū n
j )x̂

]
ēn

j

∣∣∣∣

=
∣∣∣∣
2bh

m + b

M−1∑
j=1

[
(un

j )
m(ūn

j )x̂ − (un
j )

m(Ū n
j )x̂

+ (un
j )

m(Ū n
j )x̂ − (U n

j )
m(Ū n

j )x̂
]
ēn

j

∣∣∣∣

=
∣∣∣∣
2bh

m + 2

M−1∑
j=1

(un
j )

m(ēn
j )x̂ ēn

j

+ 2bh

m + 2

M−1∑
j=1

[
m−1∑
k=0

(un
j )

m−1−k(U n
j )

k

]
en

j (Ū
n
j )x̂ ēn

j

∣∣∣∣

≤ Ch
M−1∑
j=1

[
|(ēn

j )x̂ | + |en
j |
]
|ēn

j |

≤ C(‖ en+1
x̂ ‖2 + ‖ en−1

x̂ ‖2 + ‖ en+1 ‖2
+ ‖ en ‖2 + ‖ en−1 ‖2),

≤ C(‖ en+1
x ‖2 + ‖ en−1

x ‖2 + ‖ en+1 ‖2
+ ‖ en ‖2 + ‖ en−1 ‖2), (74)

whereTheorem2,u(x, t) ∈ C7,3(	), Cauchy-Schwarz
inequality and inequality (73) are used.

Similarly, we have

|(Q, 2ēn)| =
∣∣∣∣
2bh

m + 2

M−1∑
j=1

[(
(un

j )
mūn

j

)
x̂

−
(
(U n

j )
mŪ n

j

)
x̂

]
ēn

j

∣∣∣∣

=
∣∣∣∣
2bh

m + 2

M−1∑
j=1

[ (
(un

j )
mūn

j

)
x̂

−
(
(un

j )
mŪ n

j

)
x̂

+
(
(un

j )
mŪ n

j

)
x̂

−
(
(U n

j )
mŪ n

j

)
x̂

]
ēn

j

∣∣∣∣

=
∣∣∣∣ − 2bh

m + 2

M−1∑
j=1

[
(un

j )
mēn

j

+
m−1∑
k=0

(un
j )

m−1−k(U n
j )

kŪ n
j en

j

]
(ēn

j )x̂

∣∣∣∣

≤ Ch
M−1∑
j=1

[
|ēn

j | + |en
j |
]
|(ēn

j )x̂ |

≤ C(‖ en+1
x̂ ‖2 + ‖ en−1

x̂ ‖2 + ‖ en+1 ‖2
+ ‖ en ‖2 + ‖ en−1 ‖2),

≤ C(‖ en+1
x ‖2 + ‖ en−1

x ‖2 + ‖ en+1 ‖2
+ ‖ en ‖2 + ‖ en−1 ‖2), (75)

whereTheorem2,u(x, t) ∈ C7,3(	), Cauchy-Schwarz
inequality and inequality (73) are used again.

|(R, 2ēn)| =
∣∣∣s

(
(un)m−1ūn

x̂ un
x x̄

−(U n)m−1Ū n
x̂ U n

x x̄ , 2ēn
)∣∣∣

= ∣∣s((un)m−1(ūn)x̂ un
x x̄ − (U n)m−1ūn

x̂ un
x x̄

+ (U n)m−1ūn
x̂ un

x x̄ − (U n)m−1Ū n
x̂ un

x x̄

+ (U n)m−1Ū n
x̂ un

x x̄ − (U n)m−1Ū n
x̂ U n

x x̄ , 2ēn)∣∣

=
∣∣∣∣∣s

(
ūn

x̂ un
x x̄

[
m−2∑
k=0

(un)m−2−k(U n)k

]
en, 2ēn

)∣∣∣∣∣

+
∣∣∣s

(
(U n)m−1un

x x̄ ēn
x̂ , 2ēn

)∣∣∣
+

∣∣∣s
(
(U n)m−1Ū n

x̂ en
x x̄ , 2ēn

)∣∣∣
≤ C

(∣∣(en, 2ēn)
∣∣ + ∣∣(ēn

x̂ , 2ēn)
∣∣ + ∣∣(en

x x̄ , 2ēn)
∣∣)

≤ C(‖ en
x x̄ ‖2 + ‖ en+1

x̂ ‖2 + ‖ en−1
x̂ ‖2

+ ‖ en+1 ‖2 + ‖ en ‖2 + ‖ en−1 ‖2),
≤ C(‖ en

x x̄ ‖2 + ‖ en+1
x ‖2 + ‖ en−1

x ‖2
+ ‖ en+1 ‖2 + ‖ en ‖2 + ‖ en−1 ‖2), (76)

where theorem 2, u(x, t) ∈ C7,3(	), Cauchy-Schwarz
inequality and inequality (73) are used.

Similarly, we have

|(S, 2ēn)|
=

∣∣∣s
(
((un)m−1ūnun

x x̄ )x̂ − ((U n)m−1Ū nU n
x x̄ )x̂ , 2ēn

)∣∣∣
=

∣∣∣−s
(
(un)m−1ūnun

x x̄ − (U n)m−1Ū nU n
x x̄ , 2ēn

x̂

)∣∣∣
= ∣∣ − s

(
(un)m−1ūnun

x x̄ − (U n)m−1ūnun
x x̄
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+ (U n)m−1ūnun
x x̄ − (U n)m−1Ū nun

x x̄

+ (U n)m−1Ū nun
x x̄ − (U n)m−1Ū nU n

x x̄ , 2ēn
x̂

)∣∣

=
∣∣∣∣ − s

(
ūnun

x x̄

[
m−2∑
k=0

(un)m−2−k(U n)k

]
en, 2ēn

x̂

)∣∣∣∣

+
∣∣∣∣ − s

(
(U n)m−1un

x x̄ ēn, 2ēn
x̂

)∣∣∣∣

+
∣∣∣∣ − s

(
(U n)m−1Ū nen

x x̄ , 2ēn
x̂

)∣∣∣∣
≤ C

(∣∣(en, 2ēn
x̂ )

∣∣ + ∣∣(ēn, 2ēn
x̂ )

∣∣ + ∣∣(en
x x̄ , 2ēn

x̂ )
∣∣)

≤ C(‖ en
x x̄ ‖2 + ‖ en+1

x̂ ‖2 + ‖ en−1
x̂ ‖2

+ ‖ en+1 ‖2 + ‖ en ‖2 + ‖ en−1 ‖2),
≤ C(‖ en

x x̄ ‖2 + ‖ en+1
x ‖2 + ‖ en−1

x ‖2
+ ‖ en+1 ‖2 + ‖ en ‖2 + ‖ en−1 ‖2), (77)

where theorem 2, u(x, t) ∈ C7,3(	), Cauchy-Schwarz
inequality and inequality (73) are used again.

Furthermore, we have

(rn, 2ēn) ≤ 2 ‖ rn ‖‖ ēn ‖
≤‖ rn ‖2 + ‖ ēn ‖2

≤‖ rn ‖2 +1

2

(
‖ en+1 ‖2 + ‖ en−1 ‖2

)
,

(78)

where Cauchy-Schwarz inequality are used.
Substituting (74)–(78) into (70), we get

‖ en+1 ‖2 − ‖ en−1 ‖2 +α(‖ en+1
x ‖2 − ‖ en−1

x ‖2)
+ λ(‖ en+1

x x̄ ‖2 − ‖ en−1
x x̄ ‖2)

≤ Cτ(‖ en+1 ‖2 + ‖ en ‖2 + ‖ en−1 ‖2
+ ‖ en+1

x ‖2 + ‖ en−1
x ‖2

+ ‖ en
x x̄ ‖2) + 2τ ‖ rn ‖2 . (79)

Since α, λ are positive constants, it is easy to check
that

‖ en+1 ‖2 − ‖ en−1 ‖2 +α(‖ en+1
x ‖2

− ‖ en−1
x ‖2)

+ λ(‖ en+1
x x̄ ‖2 − ‖ en−1

x x̄ ‖2)
≤ Cτ(‖ en+1 ‖2+‖ en ‖2+‖ en−1 ‖2 + ‖ en+1

x ‖2
+ ‖ en−1

x ‖2 + ‖ en
x x̄ ‖2) + 2τ ‖ rn ‖2

≤ C ′τ(‖ en+1 ‖2 +2 ‖ en ‖2 + ‖ en−1 ‖2
+ α ‖ en+1

x ‖2 +α ‖ en−1
x ‖2 +2λ ‖ en

x x̄ ‖2)
+ 2τ ‖ rn ‖2,

where C ′ = max(C
α
, C
2λ , C) and C is the positive con-

stant in the above inequality (79).
Replacing C ′ in the above inequality by the general

positive constant notation C , we have

‖ en+1 ‖2 − ‖ en−1 ‖2 +α(‖ en+1
x ‖2 − ‖ en−1

x ‖2)
+ λ(‖ en+1

x x̄ ‖2 − ‖ en−1
x x̄ ‖2)

≤ Cτ(‖ en+1 ‖2 +2 ‖ en ‖2 + ‖ en−1 ‖2
+ α ‖ en+1

x ‖2 +α ‖ en−1
x ‖2

+ 2λ ‖ en
x x̄ ‖2) + 2τ ‖ rn ‖2

≤ Cτ(‖ en+1 ‖2 +2 ‖ en ‖2 + ‖ en−1 ‖2
+ α ‖ en+1

x ‖2 +2α ‖ en
x ‖2 +α ‖ en−1

x ‖2
+ λ ‖ en+1

x x̄ ‖2 +2λ ‖ en
x x̄ ‖2

+ λ ‖ en−1
x x̄ ‖2) + 2τ ‖ rn ‖2 . (80)

Let

Dn = ‖ en ‖2 +α ‖ en
x ‖2 +λ ‖ en

x x̄ ‖2
+ ‖ en−1 ‖2 +α ‖ en−1

x ‖2 +λ ‖ en−1
x x̄ ‖2,

then (80) can be rewritten as follows:

(Dn+1 − Dn) ≤ Cτ(Dn+1 + Dn) + 2τ ‖ rn ‖2,

which is equivalent to

(1 − Cτ)(Dn+1 − Dn) ≤ 2Cτ Dn + 2τ ‖ rn ‖2 .

(81)

If τ , which is sufficiently small, satisfies τ < 1
3C

(C is the positive constant in the inequality (81)), then
1 − Cτ > 0 and (81) gives

Dn+1 − Dn ≤ 2C

1 − Cτ
τ Dn + 2τ

1 − Cτ
‖ rn ‖2

≤ 3Cτ Dn + 3τ ‖ rn ‖2,
≤ C ′′ (τ Dn + τ ‖ rn ‖2

)
,
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where C ′′ = max(3C, 3) and we have used 2
1−Cτ

< 3

since τ < 1
3C .

Replacing C ′′ in the above inequality by the general
positive constant notation C , we have

Dn+1 − Dn ≤ Cτ Dn + Cτ ‖ rn ‖2 . (82)

Summing (82) from 1 to n − 1, we get

Dn ≤ D1 + Cτ

n−1∑
l=1

Dl + Cτ

n−1∑
l=1

‖ rl ‖2, (83)

where

τ

n−1∑
l=1

‖ rl ‖2≤ nτ max
1≤l≤n−1

‖ rl ‖2≤ T · O(τ + h2)2.

(84)

Since e0i = 0 and the Crank-Nicolson scheme (47)
is used to compute U 1, we have D1 = O(τ 2 + h2) fol-
lowed by a simple analysis for the scheme (47). There-
fore

Dn ≤ O(τ 2 + h2)2 + Cτ

n−1∑
l=1

Dl . (85)

Using lemma 4, we obtain

Dn ≤ O(τ 2 + h2)2. (86)

Thus,

‖ en ‖≤ O(τ 2 + h2), ‖ en
x ‖≤ O(τ 2 + h2). (87)

By using lemma 3, we have

‖ en ‖∞≤ O(τ 2 + h2), (88)

i.e.,

‖ un − U n ‖∞≤ C
(
τ 2 + h2

)
. (89)

This completes the proof.

Theorem 5 Suppose u0 ∈ C7
0 [xl , xr ], then the solu-

tion U n of the finite difference scheme (44)–(46) is
unconditionally stable with the ‖ · ‖∞ norm.

The proof of this theorem is similar as the above theo-
rem.

5 Numerical results

Example 1 We present the numerical results for the
case m = 2, a = 1, b = 0.5, c = 2, α =
1, λ = 1, μ = 1, s = 1. From Sect. 2, we find that
−B0+

√
B2
0−4A0C0

2A0
> 0 and

−B0−
√

B2
0−4A0C0

2A0
< 0, where

A0, B0, C0 are given by (29)–(31). The exact solitary
solution is given by

u(x, t) = Asech
(
B∗ (x − vt)

)
, (90)

where B∗ is given by B∗ =
√

−−B0−
√

B2
0−4A0C0

2A0
and

v, A are given by (32)–(33). And in the numerical com-
putation, we set the initial condition as

u(x, 0) = Asech
(
B∗x

)
, (91)

Wefirst carry out the numerical convergence studies.
For the spatial convergence, we set τ = 0.005 as the
fixed time step and use 5 different spatial meshes: h =
5
6 ,

5
12 ,

5
24 ,

5
48 ,

5
96 , where τ is sufficient small such that

the temporal error is negligible comparing to the spatial
error (Here the time step is τ = 0.005, while the small-
est spatial size is h = 5

96 , thus h2 >> τ 2, therefore, the
dominant errors are the spatial errors). The final time
T is set to be 10, and xl = −200, xr = 300. Table 1
gives the errors between numerical solutions and exact
solutions. We can see that the error decreases when the
spatial mesh is refined and the convergence rate is two.
Thus, the method is second-order convergent in space
variable, which is consistent with theoretical results in
the above section. For the temporal convergence, we

Table 1 Spatial mesh refinement analysis with τ = 0.005, T =
10 for example 1

h ‖ e ‖ Rate ‖ e ‖∞ Rate

5
6 4.0842e−1 – 1.6677e−1 –
5
12 1.0231e−1 1.9972 4.1704e−2 1.9996
5
24 2.5566e−2 2.0006 1.0459e−2 1.9955
5
48 6.3936e−3 1.9995 2.6158e−3 1.9994
5
96 1.6017e−3 1.9970 6.5318e−4 2.0017
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Table 2 Temporal mesh refinement analysis with h = 5
600 , T =

10 for example 1

τ ‖ e ‖ Rate ‖ e ‖∞ Rate

0.4 1.3113e−1 – 4.3393e−2 –

0.2 3.0883e−2 2.0862 1.1164e−2 1.9586

0.1 7.6751e−3 2.0085 2.8125e−3 1.9889

0.05 1.9222e−3 1.9974 7.1222e−4 1.9815

0.025 4.8937e−4 1.9738 1.8831e−4 1.9192

Table 3 Invariant of En for example 1

t En

0.05 22.181773545566625

9.95 22.181773545514599

19.95 22.181773545331456

29.95 22.181773545062391

39.95 22.181773545022267

49.95 22.181773545165676

59.95 22.181773545343304

69.95 22.181773545341471

79.95 22.181773545221287

89.95 22.181773545114552

99.95 22.181773545071007

set h = 5
600 as the fixed spatial mesh and use 4 differ-

ent temporal meshes: τ = 0.4, 0.2, 0.1, 0.05, 0.025,
where h is sufficient small such that the spatial error
is negligible comparing to the temporal error (Here the
smallest time step is τ = 0.05, while the spatial size
is h = 5

600 , thus h2 << τ 2, therefore, the dominant
errors are the temporal errors). The final time T is set
to be 10, and xl = −200, xr = 300. Table 2 gives
the errors between numerical solutions and exact solu-
tions. Again, we can see that the error decreases when
the temporal mesh is refined, and the convergence rate
is also two. Thus, the method is second-order conver-
gent in time variable, which is again consistent with
theoretical results in the above section.

In order to show that the numerical scheme has the
energy conservative property (48), we carry out another
computation, where T = 100, xl = −200, xr =
300, h = 0.1, τ = 0.1 are used. Table 3 gives the
quantities of En at several time stages, while Fig. 1
shows the evolution of the discrete energy. We can see
that En is conserved exactly (up to 9 decimals) during
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Fig. 1 The evolution of discrete energy
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Fig. 2 Numerical solutions and the corresponding errors in the
‖ · ‖∞ norm at different time stages. a Numerical solutions, b
errors in the ‖ · ‖∞ norm

the time evolution of the solitary wave. In addition, we
provide the numerical solutions and the corresponding
errors with the ‖ · ‖∞ norm at several different time
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Table 4 ‖ en ‖∞ in terms of h2 + τ 2 for example 1

t ‖en‖∞
h2+τ 2

0 0

10 0.242429083509577

20 0.402418437508523

30 0.563465660651219

40 0.726484665789240

50 0.890700493508134

60 1.055521916909152

70 1.220579934302535

80 1.385630980392516

90 1.550492540761816

100 1.715876886865785

Table 5 Spatial mesh refinement analysis with τ = 0.005, T =
10 for example 2

h ‖ e ‖ Rate ‖ e ‖∞ Rate

5
6 5.4070e−2 – 1.9987e−2 –
5
12 1.3512e−2 2.0006 5.0000e−3 1.9991
5
24 3.3779e−3 2.0000 1.2532e−3 1.9963
5
48 8.4531e−4 1.9986 3.1339e−4 1.9996
5
96 2.1224e−4 1.9938 7.8499e−5 1.9972

stages in Fig. 2 and Table 4, one can easily see that the
errors are maintained in the order of τ 2 + h2 during
the evolution of the solitary wave. Therefore, numer-
ical solutions are very accurate approximations of the
exact solutions.

Example 2 We present the numerical results for the
case m = 4, a = 1, b = 0.5, c = 2, α =
1, λ = 1, μ = 1, s = 1. From Sect. 2, we find that
−B0+

√
B2
0−4A0C0

2A0
> 0 and

−B0−
√

B2
0−4A0C0

2A0
< 0, where

A0, B0, C0 are given by (29)–(31). The exact solitary
solution is given by

u(x, t) = Asech
1
2
(
B∗ (x − vt)

)
, (92)

where B∗ is given by B∗ =
√

−−B0−
√

B2
0−4A0C0

2A0
and

v, A are given by (32)–(33). And in the numerical com-
putation, we set the initial condition as

u(x, 0) = Asech
1
2
(
B∗x

)
, (93)

Table 6 Temporal mesh refinement analysis with h = 5
600 , T =

10 for example 2

τ ‖ e ‖ Rate ‖ e ‖∞ Rate

0.4 1.2833e−2 – 4.8348e−3 –

0.2 3.2372e−3 1.9871 1.2262e−3 1.9792

0.1 8.1417e−4 1.9913 3.0895e−4 1.9888

0.05 2.0622e−4 1.9812 7.8528e−5 1.9761

0.025 5.4766e−5 1.9128 2.0845e−5 1.9135

Table 7 Invariant of En for example 2

t En

0.05 12.986344169444443

9.95 12.986344169374810

19.95 12.986344169425742

29.95 12.986344169517015

39.95 12.986344169446639

49.95 12.986344169543726

59.95 12.986344169537357

69.95 12.986344169417407

79.95 12.986344169519533

89.95 12.986344169505305

99.95 12.986344169519905
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Fig. 3 The evolution of discrete energy

Again, we carry out the spatial and temporal conver-
gence. Tables 5 and 6 give the errors between numerical
solutions and exact solutions for spatial and temporal
convergence, respectively. Once again, we can see that
themethod is second-order convergent both in time and
space variables.
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Table 8 ‖ en ‖∞ in terms of h2 + τ 2 for example 2

t ‖en‖∞
h2+τ 2

0 0

10 0.027057275195946

20 0.050254656408832

30 0.076695634910046

40 0.107403783461307

50 0.142871895192914

60 0.183665752456308

70 0.230130905449388

80 0.282783295121008

90 0.342914817530365

100 0.410145031191306
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||e
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Fig. 4 Numerical solutions and the corresponding errors in the
‖ · ‖∞ norm at different time stages. a Numerical solutions, b
errors in the ‖ · ‖∞ norm

Additionally, Table 7 and Fig. 3 provide the several
quantities and the evolution of En , while Table 8 and
Fig. 4 give the numerical solutions and the correspond-

ing errors with the ‖ · ‖∞ norm at several different time
stages, where T = 100, xl = −200, xr = 300, h =
0.1, τ = 0.1. Once again, we can see that En is con-
served exactly and the errors aremaintained in the order
of τ 2 + h2 during the evolution of the solitary wave.
Thus, the method can be well used to study the solitary
wave at long time.

6 Conclusions

In this paper, exact solitary solutions are derived
through the sine-cosine method for the generalized
Rosenau–Kawahara-RLW equation with generalized
Novikov type nonlinear perturbation. Moreover, a
three-level linearly implicit finite differencemethod for
the initial boundary value problem of the above per-
turbed Rosenau–Kawahara-RLW equation with power
law nonlinearity is developed. The fundamental energy
conservative property is preserved by the current
numerical scheme. The existence and uniqueness of the
numerical solution are proved. The method is shown to
be second-order convergent both in time and space vari-
ables, and themethod is unconditionally stable.Numer-
ical results confirm well with the theoretical results.
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