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Abstract The stochastic bifurcations in a vibro-
impact Duffing–Van der Pol oscillator, subjected
to white noise excitations, are investigated.
Bifurcations in noisy systems occur either due to
topological changes in the phase space—known as
D-bifurcations—or due to topological changes asso-
ciated with the stochastic attractors—known as P-
bifurcations. In either case, the singularities in the
phase space near the grazing orbits due to impact
lead to inherent difficulties in bifurcation analysis.
Loss of dynamic stability—or D-bifurcations—is ana-
lyzed through computation of the largest Lyapunov
exponent using the Nordmark–Poincare mapping that
enables bypassing the problems associatedwith discon-
tinuities. For P-bifurcation analysis, the steady-state
solution of the Fokker–Planck equation is computed
after applying suitable non-smooth coordinate trans-
formations and mapping the problem into a continu-
ous domain. A quantitative measure for P-bifurcations
has been carried out using a newly developed mea-
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sure based on Shannon entropy. A comparison of the
stability domains obtained from P-bifurcation and D-
bifurcation analyses is presented which reveals that
these bifurcations need not occur in same regimes.
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1 Introduction

Vibro-impact dynamical systems are common in appli-
cations that involve moving parts connected with
motion-limiting stops, such as joints, gears, and sys-
tems with sliding contacts. The dynamics of such
systems are complex because of the nonlinearities
induced on the systemon account of impact [17,18] and
exhibit rich phenomenological behavior, such as graz-
ing bifurcation [7], torus bifurcation [25], and chatter
and sticking [34]. The presence of noise in the exci-
tations leads to further complexities in the dynamical
behavior of these systems. Noise has the potential to
alter the boundaries of the stability regimes, the state-
space characteristics, and their basins of attractions,
especially in multistable systems [1,22]. This has led
to recent focus on analyzing the behavior of vibro-
impact systems under stochastic loadings [6,10,12–
14,31,39].Methods based on stochastic averaging have
been used extensively for these studies; see [11,13,14,
16,33]. However, the applicability of stochastic aver-
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aging methods is limited to small noise intensities,
small values of damping, and coefficient of restitu-
tion being close to unity.MonteCarlo simulation-based
approaches are applicable under more general settings
and have been used for studying vibro-impact sys-
tems in [19], but are computationally expensive. The
method of multiple scales has been adopted in [31] to
obtain the stationary probability density function (pdf)
of the response of vibro-impact systems. The pdf of the
responses of vibro-impact systems have been obtained
from the solution of the corresponding Fokker–Planck
(FP) equation in [39]. Here, the authors use the expo-
nential polynomial closure method for obtaining the
marginal pdf of the response of vibro-impacting sys-
tem.

The focus of this study is to carry out a stochas-
tic bifurcation analysis of a vibro-impact Duffing–Van
der Pol (DVDP) oscillator subjected to white noise
excitations. The analysis is carried out using two dis-
tinct approaches. Changes in the dynamical stability of
the system are examined through the largest Lyapunov
exponent (LLE) associated with the trajectories of the
system. In computing the LLE, the discontinuities in
the equation of motion on account of impact present
difficultieswhich are bypassed byusing theNordmark–
Poincare mapping [7,27]. A change in the sign of LLE
is indicative of dynamical or D-bifurcation. Addition-
ally, topological changes associated with the stochastic
attractors can take place at different parameter regimes
and have a bearing on the attractor space associated
with these systems. These changes are characterized
as phenomenological or P-bifurcations and involves
studying the long-term steady-state pdf of the response
state variables, which could be obtained as solutions of
the FP equation. The difficulties in writing the FP equa-
tion associated with the vibro-impact system whose
governing equations of motion are discontinuous are
addressed by using the Zhuravlev–Ivanov transforma-
tion [9,20,40]. A numerical solution to the FP equation
in the transformed space is obtained using a recently
developed finite element method [23]. Subsequently, a
measure based on the Shannon entropy [24] is used to
quantify the regimes where P-bifurcations take place.

2 Problem statement

The equations of motion for a DVDP vibro-impact
oscillator, with an unilateral zero offset barrier (see Fig.

Fig. 1 Schematic of the vibro-impact systemwith unilateral zero
offset barrier

1 for a schematic), subjected to Gaussian excitation are
of the form

Ẍ − αX − cẊ + β0X
3 − β1X

2 Ẋ + β2X
4 Ẋ

= σW (t), X > 0, (1)

subject to the condition

Ẋ+ = −eẊ−, X = 0, 0 < e ≤ 1. (2)

Here,α and c denote the linear stiffness; damping terms
{βi (t)}2i=0 are system parameter constants that define
the nonlinear stiffness and damping; W (t) is a station-
ary, zero-meanGaussian process;σ represents its inten-
sity; X , Ẋ , and Ẍ are, respectively, the system displace-
ment, velocity, and acceleration; and e is the coefficient
of restitution. This study carries out a stochastic stabil-
ity analysis for this system, when subjected to white
noise excitations and focusses on identifying the sta-
bility regimes in the parameter space.

Equation (2) represents the rebound condition of
instantaneous impact, where Ẋ− = Ẋ(t∗ − 0) is
the velocity just before the instant of impact t∗ and
Ẋ+ = Ẋ(t∗ + 0) indicates the rebound velocity. The
restitution coefficient e ≤ 1 is indicative of the energy
loss upon impact. For a perfectly elastic impact with
zero energy loss, e = 1 and Ẋ+ and Ẋ− have equal
magnitudes but are of opposite signs. Equations (1–2)
represent a set of coupled equations with discontinu-
ity at X = 0. This singularity at the grazing condition
presents analytical as well as computational difficulties
in subsequent stochastic bifurcation analyses. These
difficulties can be bypassed by adopting non-smooth
transformations on the state variables andmodeling the
system in the transformed space. This is discussed in
the following section.

123



Stochastic bifurcations in a vibro-impact Duffing–Van der Pol oscillator 441

3 Non-smooth coordinate transformations

3.1 Zhuravlev transformation

The discontinuity in Eqs. (1–2) can be removed by
invoking the mirror image transformation of state vari-
ables proposed by Zhuravlev [40]. This involves defin-
ing a set of new state variables, given by

X = X1 = |Y | = Y sgn(Y ), Ẋ = X2 = Ẏ sgnY,

Ẍ = Ÿ sgnY. (3)

Here, sgn(·) represents the signum function, such that

sgn(Y ) =
{
1 if Y > 0;
−1 if Y < 0.

(4)

The Zhuravlev transformation maps the domain X > 0
of the original phase plane (X, Ẋ) onto thewhole phase
plane (Y, Ẏ ). When Eq. (3) is introduced in Eqs. (1–2)
and using the property (sgn(Y ))2 = 1, the transformed
equation of motion in the (Y, Ẏ )-phase plane can be
written as

Ÿ − αY − cẎ + β0Y
3 − β1Y

2Ẏ + β2Y
4Ẏ

= σ sgn(Y )W (t), t �= t∗, (5)

Ẏ+ = eẎ−, t = t∗. (6)

Here, Eq. (6) is a constraint equation. Clearly, at t =
t∗, there is a discontinuity in the velocity due to the
impact when e �= 1. The change in the velocity when
Y (t∗) = 0 (at impact) is given by(
Ẏ− − Ẏ+)

δ(t − t∗) = (1 − e)Ẏ δ
(
t − t∗

)
, (7)

provided |Ẏ+| < |Ẏ | < |Ẏ−|. Since Y (t) ≈ Y (t∗) +
Ẏ (t)(t − t∗) in a small time interval after impact and
Y (t∗) = 0, it follows that one can approximate

δ(t − t∗) ≈ |Ẏ (t)|δ(Y ). (8)

Here, the function δ(·)must be interpreted as some dis-
tribution function such that when applied to a smooth
enough function φ(t), one gets

∫ ∞
−∞ φ(s)δ(s − t)ds =

φ(t−) [15,17,29]. In other words, the function δ(·) in
Eq. (8) implies that the velocity is approximated to be
just prior to the impact.Note that the conventional inter-
pretation of δ(·) as a Dirac-delta function implies that
δ(·) takes the value exactly at t = t∗ and would lead
to difficulties as there would be a discontinuous factor
Ẏ |Ẏ | at Y = 0. The transformation in Eq. (8) leads

to modeling the effect of impact as a dissipation term,
given by the approximation

(1 − e)Ẏ δ(t − t∗) ≈ (1 − e)Ẏ |Ẏ |δ(Y ), given that

|Ẏ+| < |Ẏ | < |Ẏ−|. (9)

This transformation enables “ignoring” the impact con-
dition. On account of the discontinuity in the velocity,
the impulsive damping can be interpreted to occur just
before the jump in the velocity and canbe justifiedwhen
(1− e) is small, i.e., when the coefficient of restitution
is close to unity. More discussions on the interpretation
of differential operations with non-smooth functions in
terms of distributions are available in [15,29].

Equations (5–9) can be written together in a single
equation of the form

Ÿ − αY − cẎ + β0Y
3 − β1Y

2Ẏ

+β2Y
4Ẏ + (1 − e)Ẏ |Ẏ |δ(Y )

= σ sgn(Y )W (t), (10)

where the term (1 − e)Ẏ |Ẏ |δ(Y ) represents an addi-
tional damping term due to impact. When the excita-
tionW (t) is a white noise process, the governing equa-
tions of motion represent stochastic differential equa-
tions and need to be expressed in the first-order Ito form
as

dY1 = Y2 dt,

dY2 = (αY1 + cY2 − β0Y
3
1 + β1Y

2
1 Y2 − β2Y

4
1 Y2

− (1 − e)Y2|Y2|δ(Y1))dt
+ σ sgn(Y1)dB(t), (11)

where dB(t) indicates the increments of Brownian
motion.

The mirror image Zhuravlev transformation dis-
cussed above is approximate and valid only when
(1−e) is small [8] and does not completely exclude the
discontinuity in the velocity, except for the case when
e = 1. The effects of the residual velocity jumps due to
impact are incorporated into the governing equations
of motion using the Dirac-delta function. However, the
term (1 − e)Y2|Y2|δ(Y1) takes into account only the
localized as well as the approximate description of the
energy loss at Y = 0. This is reasonably accurate when
e is close to unity, i.e when (1 − e) << 1. Moreover,
for e ≈ 1, the damping associated with the inelastic
impact has a relatively small integral effect due to the
factor (1 − e).
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3.2 Ivanov transformation

In order to avoid the problem of localized approximate
damping associated with the Dirac-delta function in
the Zhuravlev transformation, a modified non-smooth
transformation of the state variables has been devel-
oped by Ivanov [20]. This transformation is applicable
for both elastic and inelastic impacts. Here, the state
variables (X, Ẋ) are mapped into the (s, v) space fol-
lowing the transformation

X = |s| = s sgn(s), Ẋ = R v sgn(s), (12)

where R = R(s v) = 1 − k sgn(s v) and k = 1−e
1+e ∈

[0, 1). The values of s and v are not restricted. This
transformation not only completely excludes the veloc-
ity jump at impact, but also takes into account the
effects of loss of impact energy through damping as
well as the conditions of reflection from the barrier.
For R = 1, the Ivanov transformation can be shown to
be equivalent to the Zhuravlev transformation; hence,
the Ivanov transformation is more generally known as
the Zhuravlev–Ivanov transformation. The Zhuravlev–
Ivanov non-smooth transformation has been used to
study sdof oscillators with inelastic impacts [9]. Here,
the authors have derived the equations of motion as
a pair of exact first-order stochastic differential equa-
tions, and the corresponding transient probability den-
sity functions of the state variables have been estimated
using the path-integral method.

Using a similar approach, Eq. (12) can be written in
the alternative form as

s = X sgn(s), v = R−1 Ẋ sgn(s). (13)

Taking the time derivative of Eq. (13) and substituting
in Eq. (1), the governing equations of motion can be
rewritten in terms of the s and v coordinates as

ds = Rv, dt, (14)

dv =
{
cv + β1s

2v − β2s
4v + R−1

[
αs − β0s

3
]}

dt

+ R−1σ sgn(s)dB(t). (15)

Equations (14–15) describe the dynamics of the DVDP
vibro-impact oscillator on the barrier-free plane (s, v),
whose values are not restricted. Due to the presence
of the signum function, Eq. (15) has a discontinuous
right-hand side. However, the solution of these equa-
tions is continuous function of time and is differen-
tiable, provided that sv �= 0. The advantage of the

Zhuravlev–Ivanov transformation is that all the condi-
tions at impact are satisfied. At the impact line s = 0,
the product sv changes sign—say from negative to
positive—upon crossing the line. This leads to changes
in the corresponding value of R which switches from
(1+e) to (1−e). Therefore, the impact condition holds
good at the boundary at X = 0 and also ensures that the
velocity remains continuous in the transformed space.

3.3 Numerical challenges

Even though the discontinuity due to impact in the state
space can be removed using the non-smooth coordi-
nate transformations, numerical integration of the gov-
erning equations of motion still poses a challenge due
to the presence of discontinuities such as the signum
function and the Dirac-delta function when Zhuravlev
transformation is applied and the signum function only
on application of the Ivanov transformation. To bypass
these difficulties, the signum function is approximated
as [26,37]

sgn(Ẏ ) = 2

π
atan(ΘẎ ), Θ >> 1, (16)

where Θ is a large number denoting the levels of
approximation of the sgn( · ) function. For Θ = 104, a
good approximation is obtained and the discontinuity
of the signum function at zero is avoided; see Fig. 2.
Additionally, the Dirac-delta function is approximated
as a Gaussian probability density function of very low
variance. In the numerical calculations, the variances
are taken to be of the order of 10−3. Note that since
in this study the investigations are limited to impacts
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Fig. 2 Approximation of the signum function using a continu-
ous function with parameter Θ
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with e close to unity, Eq. (10) has been used for the
stochastic stability analyses. However, later a compar-
ison of the probability density function obtained for
the state variables has been provided to illustrate the
differences in accuracy of the results obtained when
Ivanov non-smooth transformation is applied vis-a-vis
the Zhuravlev transformation.

4 Stochastic bifurcation

Bifurcations in dynamical systems are characterized in
terms of dramatic changes in their dynamical behav-
ior leading to topological changes in the phase space.
This involve either the birth or destruction of attractors
and/or changes in their size and shape in the attractors
in the phase space. The stability characteristics of the
attractors are estimated by investigating the long-term
behavior of the trajectories—anexponential divergence
of neighboring trajectories indicates instabilities and is
bestmeasured in terms of theLyapunov exponents (LE)
that describe the long-term behavior of the trajectories
of the state variables in the phase space. Qualitative
changes in the nature of the Lyapunov exponents as the
control parameters are varied are indicative of bifurca-
tions.

The response of stochastically excited nonlinear
dynamical systems is a random process in time, and
the trajectories are accompanied by small fluctuations,
which never die down. Hence, the deterministic inter-
pretation of bifurcations needs modifications for the
stability analysis of such systems. It has been estab-
lished in the literature that the stochastically excited
systems could undergo two distinct forms of bifur-
cations: (a) dynamical or D-bifurcations occur when
there are drastic topological changes associated with
the phase space trajectories, and (b) phenomenologi-
cal or P-bifurcations are observed when the underlying
probabilistic structure of the long-term behavior of the
state variables undergoes topological changes. More
details on D- and P-bifurcations for the vibro-impact
system being studied are discussed in the following
sections.

4.1 D-bifurcation analysis

The presence of noise in a dynamical system implies
that the state space trajectories inherit the time-varying

fluctuations in the system and hence the Lyapunov
exponents associated with the state variable trajecto-
ries can only be interpreted in terms of the long-term
temporal mean. AssumingY0(t) to be a stable solution
for Eq. (10), a small perturbation u to the trajectory of
Y0(t) is governed by the linearized equation

u̇ = J(t)u, (17)

where J ∈ �N×N is the Jacobian calculated about
the reference solution Y0(t). Using the principle of
Oseledec’smultiplicative theorem, theLyapunov expo-
nents are mathematically defined as

λi = lim
t→∞E

[
1

t
log

||u(t)||
||u(0)||

]
, (18)

where {u(t) : t > 0} are the solution trajectories of the
linear differential equations when Eq. (11) is linearized
about a reference solution (Y1(t),Y2(t)) for t ≥ 0, || · ||
is the Euclidean norm, andE[ · ] is the expectation oper-
ator. Computation of the Lyapunov exponents requires
solving for u(t) which are coupled with Eq. (11) and
hence is computationally intensive. This has led to the
development of several numerical algorithms, such as
Wolf’s algorithm [30,38], where the Lyapunov vectors
are approximated using the Gram–Schmidt reortho-
normalization algorithm and Wedig’s algorithm [35]
which uses the principle of Khassminskii’s unit pro-
jection theorem. It has been shown that irrespective of
the algorithm that is used,Wolf’s orWedig’s algorithms
show similar qualitative analysis of the stability of the
system [36]. The largest Lyapunov exponent (LLE) is
indicative of the stability of the dynamical system—a
negative LLE indicates a stable system and a change
in the sign of the LLE reflects a bifurcation. A bifurca-
tion analysis based on the LLE captures the dynamical
changes associated with the system and is known as
D-bifurcation analysis [2–5].

Computing the LLE from Eq. (11) has obvious diffi-
culties due to the presence of the discontinuous signum
function and the inherent numerical issues in estimat-
ing the Jacobian. One can approximate the signum
function using Eq. (16); however, the gradient func-
tion would still be steep and may introduce numeri-
cal errors. To validate the numerical computations, an
alternative method based on discontinuity mapping is
explored. The discontinuity map, coined by Nordmark
[27], is a synthesized Poincare map which is piecewise
smooth and is defined locally near the grazing point at
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which a trajectory interacts with a discontinuity bound-
ary. Nordmark map provides local decomposition of a
Poincaremapping into a sequence of four classes to dis-
tinguish between the contributions from the flow and
those from the impact process.Ageneralmethod, based
on Nordmark mapping, for the computation of the LE
spectrum using Gram–Schmidt orthonormalization for
deterministic non-smooth systems, has been presented
in [21]. For stochastic systems, a general formulation
for estimating the LLE for vibro-impact systems has
been developed in [12] using Nordmark mapping and
Wedig’s algorithm based on Khasminskii’s unit projec-
tion theorem.

For a grazing discontinuity at X1 = 0, this implies
that for X1 > 0, the trajectories are continuous and
consequently, a small perturbation v to the trajectory
X0(t) of Eq. (1) is governed by the linearized equation

v̇ = J1(t)v, X1 > 0, (19)

where J1 is the Jacobian matrix given by

J1 =
{

0 1

α−3β0X2
1+2β1X1X2−4β2X3

1X2 c+β1X2
1−β2X4

1

}
.

(20)

The approximate discrete map, for the perturbation v
at the time of impact, i.e., X1 = 0, can be constructed
using the Nordmark local map [27]

v+
k =

[
DPc

]
X0(t)

v−
k , X1 = 0, (21)

where DPc is a compound map which describes the
impact process through the Jacobian matrix

DPc =
⎧⎨
⎩

−e 0

(1+e)(αX1k+β0X3
1k

+σW (tk ))

X2k
−e

⎫⎬
⎭ . (22)

The resultant discrete map eliminates the necessity for
the Jacobian matrix calculations at the singularity and
simplifies the computations. Subsequently, Wedig’s
algorithm as discussed above can be applied for esti-
mating the LLE and is defined as

λm = lim
t→∞

1

t
log ‖ v(t) ‖

= lim
t→∞

1

t
log

[
‖ v(t) ‖

]
t �=tk

+ lim
n→∞

1

n

n∑
k=1

log
[
‖ DPcS

−
k ‖

]
t=tk

(23)

Here,

Si = vi√
v21 + v22 .

(24)

is obtained by applying Khasminskii’s unit projec-
tion. For more details on the derivation of Nordmark
Poincare mapping, the reader may refer [27].

A comparison of the LLE estimated using Wedig’s
algorithm obtained from Nordmark’s discontinuity
map and when the Zhuravlev transformations are used
is shown in Fig. 3a, b, for three different values of
the restitution coefficient e. The control parameters
were taken to be the damping coefficient c in Fig.
3a and linear stiffness coefficient α in Fig. 3b. It can
be seen that the estimates of LLE are close in either
method, indicating the acceptability of using the Zhu-
ravlev transformed equations with the approximations
for the signum function and the Dirac-delta function.

For the parameter regime −0.15 < c < −0.05
and α = −1, Fig. 3a reveals that the LLE > 0, indi-
cating that the system is dynamically unstable. How-
ever, for the same parameter regimes, an impact-free
system shows either small- or large-amplitude oscilla-
tions about the origin which is a stable fixed point for
the oscillator; see [24]. Putting a barrier at the fixed
point prevents the system from converging into it and
results in the system losing its stability. Increasing e
and thereby reducing energy loss due to impact is seen
to have a destabilizing effect on the system dynamics.
This type of stochastic instability is therefore called
discontinuity-induced instability.

Next, the dynamic stability is investigated with the
linear stiffness coefficient α as the bifurcation para-
meter, when c = −0.08. An inspection of Fig. 3b
reveals that irrespective of restitution coefficient e, at
αc ≈ 0.5, the oscillator undergoes D-bifurcations. For
barrier-free DVDP oscillator at αc ≈ 0.5, the origin
becoming unstable is accompanied by the birth of two
stable fixed points at (±√

α/β0, 0); see [24]. Hence, a
barrier at origin forces the oscillator to move around
one of its fixed point from barrier-free region. Since
this fixed point is sufficiently far from zero offset bar-
rier, the impact does not induce instability in the system
dynamics.

4.2 P-bifurcation analysis

Stochastically excited dynamical systems additionally
undergoP-bifurcations, characterized by changes in the
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Fig. 3 Estimates of LLE with a c and b α as bifurcation parameters

probabilistic structure of the stationary joint probabil-
ity density function (pdf) of the state variables at dif-
ferent parameter regimes. The j-pdf of the state vari-
ables is a statistical measure of the time spent by a
typical solution in a volume element in the phase space
domain and gives an indication of the spatial extent
of the stochastic attractor. P-bifurcations are charac-
terized by dramatic changes in the topology of this
stochastic attractor space. Since the j-pdf is obtained
through a one-point motion and does not explicitly take
into account the system dynamics [32], P-bifurcation
analysis is essentially a static concept and cannot be
related to D-bifurcations. Hence, P-bifurcations is an
additional measure that needs to be investigated in sto-
chastic bifurcation analysis.

P-bifurcation analysis provides a qualitative mea-
sure for topological variation in the probabilistic struc-
ture of stationary j-pdf of the state variables at different
parameter regimes. Under Gaussian white noise exci-
tation, the state vectorY = [Y1 Y2]T fromEq. (10) will
be Markovian in�2, and the time evolution of the joint
pdf p(Y, t |Y0, t0) is governed by the Fokker–Planck
(FP) equation

∂p

∂t
= −Y2

∂p

∂Y1
− ∂

∂Y2

(
αY1 + cY2 − β0Y

3
1

+β1Y
2
1 Y2 − β2Y

4
1 Y2 − (1 − e)Y2|Y2|δ(Y1)p

)
+ σ 2

2

∂2 p

∂Y 2
2

. (25)

Similarly, the FP equation corresponding to Eqs. (14-
15) can be shown to be of the form

∂p

∂t
= −∂(Rv)p

∂s

−
∂
[
cv+β1s2v−β2s4v+R−1(αs−β0s3)

]
p

∂v

+ σ 2

2

∂2[R−2 p]
∂v2

. (26)

A stationary solution for the joint pdf of displace-
ment and velocity is obtained by letting ∂p/∂t = 0
in either Eqs. (25) or (26) and obtaining a solution for
the resultant ordinary differential equation. A numer-
ical solution for the equation is obtained by using a
recently developed finite element-based method [23].
Thenumerical difficulties due to the discontinuity in the
FP equation are bypassed by approximating the signum
function as in Eq. (16). The Dirac-delta function has
been approximated as a Gaussian pdf with mean zero
and variance≈ 10−3. Once the j-pdf in the transformed
plane (Y1,Y2) or (r, s) -space is available as a solution
of the FP equation, the stationary j-pdf in the original
space (X1, X2) is obtained using standard transforma-
tions, where X = |Y | = g(Y ). It can be shown that

pX1,X2(x1, x2) = pY1,Y2(x1, x2) + pY1,Y2(−x1,−x2)

= 2pY1,Y2(x1, x2), (27)

Here, one takes advantage of the symmetry in pY1Y2(·)
about the origin.
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5 Numerical results

For the numerical calculations, the parameters in Eq.
(1) are taken to be β0 = 0.5, α = −1, β1 = β2 = 1.
The damping parameter c, coefficient of restitution
e, and the noise intensity σ are taken to be the con-
trol parameters which are varied. The variation in e is
limited to the range [0.9−1] as for low e values, the
Markovian approximation for the response becomes
less accurate due to the higher impact losses. For the
FE solution of the FP equation, the domain space is dis-
cretized using 400 × 400 quadrilateral elements [23].

To investigate the effect of e on the stability char-
acteristics of the dynamical system, the stationary pdf
is computed for the cases e = 1, 0.99, 0.95, when
σ = 0.1 and c = −0.1. Figure 4a–c shows the j-pdf
for these three cases, while Fig. 5a–c shows the cor-
responding contour plots. Figures 4a and 5a clearly
reveal the bistable character of the pdf when e = 1;
the two stochastic attractors—one representing small-

amplitude oscillations while the other represents large-
amplitude oscillations—are clearly visible in the con-
tour plot. At e = 0.99, the strength of the attractor at the
origin increaseswhile the otherweakens. This is indica-
tive of the increasing damping effect due to the inelas-
ticity introduced due to impact losses, and the system
has less energy for large-amplitude oscillations. Subse-
quently, at e = 0.95, the attractor for large-amplitude
oscillations is destroyed and the system only exhibits
small-amplitude oscillations; see Figs. 4c and 5c. These
changes are also clearly seen in the marginal pdfs of
displacement shown in Fig. 6a–c. These changes in the
topological characteristics associated with the stochas-
tic attractors are indicative of P-bifurcation. Interest-
ingly, an inspection of Fig. 5a shows that the LLE does
not undergo any sign change on varying e from unity
to 0.95, implying that there are no D-bifurcations. This
represents a situation where P-bifurcation is observed
without being accompanied by a corresponding D-
bifurcation.
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Figure 6a–c also shows a comparison of the esti-
mated marginal obtained when using the Zhuravlev
transformation vis-a-vis those obtained using Ivanov
transformation. Additionally, the pdf obtained from
Monte Carlo simulations (MCS) is also presented. In
MCS, the governing equations are numerically inte-
grated, and the corresponding results are treated as the
benchmark. Figure 6a shows the marginal pdf when
e = 1. As can be seen, all the three curves are coinci-
dent. This not only illustrates the accuracy of the FE-
based solutions of the FP equations, but also highlights
that for e = 1, the Zhuravlev and the Ivanov trans-
formations coincide as has already been stated earlier.
The pdf shown in Fig. 6b is for the case e = 0.99
and here too a good agreement between the predictions
obtained by the three methods is observed. Figure 6c
presents the estimated pdfs when e = 0.95. Here, one
can see that the predictions obtained from the solu-
tion of the FP equation obtained from Ivanov transfor-

mation and MCS are coincident. However, there are
slight differences in the predictions obtained from the
solution of the FP equation corresponding to the Zhu-
ravlev transformation. Clearly, the difference seems to
increase with a decrease in e. This is especially true
at the tail regions and is indicative of the loss of accu-
racy, especially if one is interested in reliability calcu-
lations. However, as in this study the focus is on car-
rying out a stability analysis and identifying the stabil-
ity boundaries in different parameter regimes, the Zhu-
ravlev transformation-based analysis is not expected to
lead to significant errors, especially as the range of e is
taken to be limited to close to unity.

Next, considering e = 0.95 and σ = 0.1, the
bifurcation characteristics are investigated when c =
−0.05, −0.07 and −0.11. Figure 7a–c shows the sta-
tionary joint pdf obtained from the solution of the FP
equation,while Fig. 8a–c shows the corresponding con-
tour plots. It can be observed that for c = −0.05, there
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exists only one stochastic attractor—characterized by
large-amplitude oscillations; see Figs. 7a and 8a. At
c = −0.07, the birth of a new attractor at the ori-
gin is observed while the existing attractor weakens;
see Figs. 7b and 8b. On further changing c to −0.11,
it is observed that the attractor associated with the
large-amplitude oscillations is completely destroyed
and only one attractor around the origin exists. Clearly,
a P-bifurcation occurs within this parameter regime.
Qualitatively, the effects of increasing the magnitude
of the damping parameter c is similar to the effect of
reducing e. This is expected as both have the effect of
increasing the damping in the system. An inspection
of Fig. 3a reveals that the LLE remains positive in this
regime, indicating that the phase space trajectories do
not undergo any changes and hence P-bifurcation is not
accompanied by a D-bifurcation.

Figure 9a–c shows the estimates of the marginal
pdf of X obtained from Eqs. (25), (26), and MCS.
The errors in the predictions when using the Zhu-
ravlev transformed equations are clearly discernible in
all three figures.

Next, the effect of the noise intensity on the behav-
ior of the vibro-impact oscillator is examined. Figure
10a–c presents the stationary joint pdf pX1X2(x1, x2)
for the system when c = −0.1, e = 0.99 for three
different values of noise intensity σ = 0.075, 0.1 and
0.25. The corresponding contour plots for the joint pdf
are shown in Fig. 11a–c. Figures. 10a and 11a clearly
show the existence of two stochastic attractors—one
corresponding to large-amplitude oscillations and the
other corresponding to small oscillations about zero.
For σ = 0.075, the attractor around zero is stronger
with, on an average, fewer large-amplitude oscilla-
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tions. However, as σ is increased, the attractors are
observed to increase in size, and on further increase of
the noise intensity, the two attractors are observed to
merge together. The physical implication is that higher
noise intensity implies larger input energy in the exci-
tations which results in the system being pushed out
from one attractor to the other more often.

6 Boundaries of stochastic bifurcation regimes

D-bifurcations are characterized by a sign change in the
LLE and the locus in the parameter space where these
sign changes occur indicating the boundaries for D-
bifurcations. In contrast, P-bifurcation analysis is pri-
marily a qualitative analysis, based on visual inspection
of the structure of the pdf of the response. This makes
it difficult to define the stability boundaries in terms
of P-bifurcations. A quantitative measure based on the

Shannon entropy has been recently proposed in [24]
for identifying P-bifurcations quantitatively.

The Shannon’s entropy of X(t) at time t is defined
as

H(a, t) = −
∫ ∞

−∞
p(a, t) logb p(a, t)da, (28)

where b is an arbitrarily chosen logarithmic base, usu-
ally taken to be Euler’s number. It has been shown in
[28] that under stationary conditions, the entropy flux
is proportional to the negative sum of the Lyapunov
exponents implying that the entropy changes depend
on the phase space contraction and a correction term
that depends on the noise strength σ .

Investigations carried out in [24] reveal that the
Shannon entropy measure computed from the 1-d pdf
obtained for the amplitude process A(t), defined as
A(t) = √

X1(t)2 + X2(t)2, can be used as a mea-
sure to indicate the onset of P-bifurcations. It has been
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Fig. 12 Variation in
Shannon entropy H(a) with
the control parameter; a
σ = 0.1 b e = 0.99; I :
Ivanov transformation, Z :
Zhuravlev transformation
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observed that H(a) < 0 in parameter regimes charac-
terized by a single stochastic attractor, and H(a) > 0
otherwise. For the vibro-impacting oscillator being
studied in this paper, P-bifurcations are characterized
by the onset of bistability with the birth of a new attrac-
tor, a parameter regime when both attractors exist with
one weakening and the other strengthening and even-
tually the destruction of the existing attractor. Figure
12a–b shows the variation in H(a)with c being the con-
trol parameter for different values of e. It is observed
that for a specified e and low values of c, the Shannon
entropy H(a) < 0. As the magnitude of c is gradually
increased, the system exhibits bistable behavior with
the presence of two stochastic attractors. In this regime,
H(a) > 0.On further changes in c, one of the attractors
is destroyed and the system once again reverts back to
a single stochastic attractor, though usually a different
one. In these regimes, H(a) < 0 once again. This is
illustrated by looking at the results corresponding to
e = 0.95 and comparing with the results shown in Fig.
8a–c. The effects of noise intensity parameter, σ , on

Shannon entropy are shown in Fig. 12b. It is clearly
seen that an increase in noise intensity is accompanied
by an increase in the Shannon entropy measure. This
also implies that the associated disorderwith the system
is higher and accounts for the higher Shannon entropy
observed. These results indicate that one can define a
new quantitative measure to indicate P-bifurcations as
when H(a) undergoes a sign change. It is interesting to
note that the Shannon entropy measure computed with
respect to the joint pdf pX1X2(x1, x2) do not reveal
such characteristic features. Interestingly, the differ-
ences in the predictions when using Zhuravlev trans-
formed equations vis-a-vis Ivanov transformed equa-
tions can be clearly seen: It is observed that the differ-
ences increase as e decreases from unity.

Next, a global parametric study is undertaken for
identifying the stability regimes in the α − e parame-
ter space for the noisy DVDP vibro-impact oscillator,
using three different methods. Figure 13a shows the
different regimes identified based on visual inspection
of the joint pdfs computed from the solution of the FP
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equation; this is the traditional P-bifurcation analysis
based on qualitative changes in the structure of the joint
pdf. Figure 13b shows the bifurcation diagramusing the
Shannon entropy definition H(a) based on pA(a). This
is a quantitative approach to P-bifurcation analysis. The
bifurcation diagramshown inFig. 13c is obtained based
on D-bifurcation analysis from the computation of the
LLE. The parameter space in Fig. 13a is mainly sub-
divided into three different zones, the nomenclature
of which is as follows: (i) half limit cycle—the only
attractor is the limit cycle where one obtains large-
amplitude oscillations in the positive half space (due
to impact); (ii) unimodal—only one attractor exists at
the fixed point, characterized by small-amplitude oscil-
lations; and (iii) bistable—both stochastic attractors—
large-amplitude and small-amplitude oscillations exist
simultaneously. It must be emphasized here that the
boundaries of these zones do not have sharp demarca-
tions, and these are based on qualitative analysis based
on visual inspection of the j-pdf. On the other hand,
Fig. 13b is divided into regimes based on the sign of
H(a); H(a) > 0 in the regions marked by the plus
signs. It is observed that there are very close similari-
ties between Fig. 13a, b. The parameter ranges where
H(a) > 0 in Fig. 13b correspond to regimes where the
system exhibits bistability. This indicates the useful-
ness of the Shannon entropy approach in quantifying
P-bifurcations. The demarcation of the regimes in Fig.
13c is based on the sign of LLE. A comparison of the
bifurcation diagrams in Fig. 13c with either Fig. 13a or
b clearly indicates that D- and P-bifurcations need not
occur simultaneously in certain parameter ranges.

7 Concluding remarks

Investigations on the stochastic bifurcations for a
DVDP vibro-impact oscillator subjected to Gaussian
white noise excitation have been carried out. Damping
and stiffness coefficients, noise intensity, and coeffi-
cient of restitution have been taken to be the control
parameters. The presence of impact introduces com-
plexities in the equations of motion which leads to dif-
ficulties in the numerical analysis. The equations of
motion and the constraint equations are recast into a sin-
gle equation by adopting non-smooth transformations,
such as the Zhurvalev transformation and the more
accurate Ivanov transformations. The discontinuities in
the resultant equations of motion that poses numerical

difficulties are bypassed by adopting approximations.
The accuracy of these approximations has been val-
idated by comparing the largest Lyapunov exponent
estimated using Nordmark discontinuity mapping. The
estimated largest Lyapunov exponents have been used
for carrying outD-bifurcation analysis. The locus of the
parameters at which the sign of the LLE changes indi-
cates the dynamical stability boundaries. P-bifurcation
analysis has been carried out by solving for the station-
ary probability density function of the state variables
from the corresponding Fokker–Planck equation using
a finite element-based approach. A newly developed
quantitative measure based on the Shannon entropy
associated with the amplitude process has been used
to identify the onset of P-bifurcations. A global para-
metric study has been carried out to identify the sto-
chastic stability regimes based on visual inspection of
the pdf of the state variables, the sign of the Shan-
non entropy measure, and the sign of the largest Lya-
punov exponent. The Shannon entropy-based approach
is shown to identify the stability boundaries similar to
those identified based on visual qualitative inspections.
Moreover, it was shown thatD- and P-bifurcations need
not occur simultaneously at certain parameter ranges.
The numerical results presented in this paper are only
representative of extensive studies that have been car-
ried out.
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