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Abstract Under investigation in this paper is the
higher-order nonlinear Schrödinger and Maxwell–
Bloch system which describes the wave propagation
in an erbium-doped nonlinear fiber with higher-order
effects including the fourth-order dispersion and quin-
tic non-Kerr nonlinearity. The breather and rogue wave
(RW) solutions are shown that they can be converted
into various soliton solutions including the multi-peak
soliton, periodic wave, antidark soliton,M-shaped soli-
ton, and W-shaped soliton. In addition, under different
values of higher-order effect, the locus of the eigenval-
ues on the complex plane which converts breathers or
RWs into solitons is calculated.
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1 Introduction

Optical solitons have attracted considerable interest of
scientists around the world during the past decades [1].
In optical fibers, there are two different types of soli-
tons. One is described by the nonlinear Schrödinger
(NLS) equation [2,3], the mechanism of which is
based on the balance between the second-order dis-
persion and Kerr nonlinearity. This type of soliton
is called the NLS soliton. The other type of loss-
less pulse propagation is the self-induced transparency
(SIT) soliton in the two-level resonance medium,
the dynamic response of which is governed by the
Maxwell–Bloch (MB) system [4,5]. When erbium is
doped with the core of the optical fibers, the NLS
soliton can exist with the SIT soliton. The propaga-
tion of such pulse can be modeled by the NLS–MB
system [6–10]. However, in an optical-fiber transmis-
sion system, one always needs to increase the inten-
sity of the incident light field to produce ultrashort
optical pulses [11–17]. Thus, such higher-order effects
as the higher-order dispersion, higher-order nonlinear-
ity, self-steepening, and self-frequency shift should be
included [11–17].

In this paper, wewill work on the higher-orderNLS–
MB system as follows [18–22],

Ez = i (Ett + 2 |E |2 E) + i τ (Etttt + 8 |E |2 Ett

+ 2 E2 E∗
t t + 6 E∗ E2

t + 4 |Et |2 E
+ 6 |E |4 E) + 2 p,
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pt = 2iωp + 2 Eη,

ηt = −(Ep∗ + E∗ p), (1.1)

where the subscripts z, t are partial derivatives with
respect to the distance and time, and the asterisk sym-
bol stands for the complex conjugate. E denotes the
normalized slowly varying amplitude of the complex
field envelope, p = v1v

∗
2 represents as the polarization,

and η = |v1|2 − |v2|2 means the population inversion
with v1 and v2 being the wave functions of the two
energy levels of the resonant atoms, ω is the frequency,
and τ is a small dimensionless real parameter.

Various solutions of System (1.1) have been dis-
cussed. For example, based on the Lax pair and Dar-
boux transformation (DT), the multi-soliton solutions
of System (1.1) have been presented in Ref. [18]. The
breather, rogue wave (RW), and hybrid solutions of
System (1.1) have been obtained by means of the gen-
eralized DT in Refs. [19–22]. Solitons, breathers, and
RWs are different types of nonlinear localized waves
and are central objects in diverse nonlinear physi-
cal systems [23–37]. The hybrid solutions, which are
expressed in the formof themixed rational–exponential
functions, describe the nonlinear superposition of the
RW and breather [38]. Recently, Liu et al. [39] have
shown that the breathers can be converted into dif-
ferent types of nonlinear waves in the coupled NLS–
MB system, including the multi-peak soliton, periodic
wave, antidark soliton, and W-shaped soliton. These
conversions occur under a special condition in which
the soliton and a periodic wave in the breather have the
same velocity [39]. In addition, the similar transitions
have also been reported in some higher-order nonlin-
ear equation of evolutions.Akhmediev et al. have found
that the breather solutions of the Hirota [40] equation
and fifth-orderNLS [41] equation can be converted into
soliton solutions on the constant background, which
does not exist in the standard NLS equation. Liu et
al. have revealed that the transition between the soli-
ton and RW occurs as a result of the attenuation of MI
growth rate to vanishing in the zero-frequency pertur-
bation region [42,43].

It is natural to ask: Can the transition between the
breather (or RW) and soliton occur in the higher-order
coupled system, e.g., System (1.1)? In this paper, we
show that System (1.1) does have such transition when
the eigenvalues are located at the special locus on
the complex plane. Further, we demonstrate that the
breather can be converted into the multi-peak soliton,

periodic wave, antidark soliton, and M-shaped soliton
while the RW can be transformed into the W-shaped
soliton.

The outline of this paper will be as follows: The
breather-to-soliton conversion and several types of
transformed nonlinear waves will be studied in Sect. 2.
The RW-to-soliton conversion will be discussed in
Sect. 3. Finally, our conclusions will be addressed in
Sect. 4.

2 Breather-to-soliton conversions

In this section, we present different types of nonlin-
ear wave solutions on constant background for Sys-
tem (1.1). We omit the discussions of the components
p and η because the types of them have the similar
characteristics as E . Based on the lax pair and DT [18–
22] of System (1.1), the first-order symmetric breather
solution reads as

E [1]
B = d

(
1 + 8 n

G[1]
B + i H [1]

B

D[1]
B

)
ei ρ,

p[1]
B = 1

2

((
E [1]
B

)
z
− i

((
E [1]
B

)
t t

+ 2 |E [1]
B |2 E [1]

B

)

− i τ

((
E [1]
B

)
t t t t

+ 8
∣∣∣E [1]

B

∣∣∣2 (
E [1]
B

)
t t

+ 2
(
E [1]
B

)2 (
E [1]
B

)∗
t t

+ 6
(
E [1]
B

)∗ (
E [1]
B

)2
t

+ 4
∣∣∣(E [1]

B

)
t

∣∣∣2 E [1]
B + 6 |E [1]

B |4 E [1]
B

))
,

η
[1]
B =

−2 iω
(
p[1]
B

)[1] +
(
p[1]
B

)[1]
t

2 E [1]
B

.

(2.1)

where

G[1]
B = 2 k1 k2 n cos(t hR + z �B)

+2 n cosh(t h I + z �A)

− k1 k2 hR sin(t hR + z �B)

+hI sinh(t h I + z �A),

H [1]
B = k1 k2 (b + 2m) cos(t hR + z �B)

+ (b + 2m) cosh(t h I + z �A)

+ k1 k2 hI sin(t hR + z �B)

+hR sinh(t h I + z �A),
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Fig. 1 First-order breather solution of the NLS–MB system (E, p, η) with d = 1, b = 2, k1 = −k2 = 1, ω = 1
2 , τ = 1

2 and
λ1 = λ∗

2 = −1.2 + i

D[1]
B = k1 k2 (|h|2 − χ) cos(t hR + z �B)

− (|h|2 + χ) cosh(t h I + z �A)

− k1 k2 ΓA sin(t hR + z �B)

−ΓB sinh(t h I + z �A),

with

ρ = a z + b t, λ = m + i n,

a = (b4 − 12 b2 d2 + 6 d4) τ − (b2 − 2 d2)

+ 4

2ω − b
,

χ = 4m2 + 4 n2 + 4m b + b2 + 4 d2,

ΓA = 2 b hI + 4m hI − 4 n hR,

ΓB = 2 b hR + 4m hR + 4 n hI ,

�A = 2(κR hI + κI hR),

�B = 2(κR hR − κI h I ),

κ = 1

2
(−b + 2 λ + (b3 − 6 b d2 + (4 d2 − 2 b2) λ

+4 b λ2 − 8 λ3) τ ) − 1

(b − 2ω)(λ + ω)

= κR + i κI ,

h = 2

√
d2 +

(
λ + b

2

)2

= hR + i hI .

Solution (2.1) includes the hyperbolic functions sinh
(t h I + z �A)( or cosh(t h I + z �A)) and the trigono-
metric functions sin(t hR+z �B)(or cos(t hR+z �B)),
where κR + κI hR

hI
and κR − κI h I

hR
are the correspond-

ing velocities. In this case, the hyperbolic functions
and trigonometric functions, respectively, characterize
the localization and the periodicity of the transverse
distribution t of those waves. The nonlinear structure
described by Solution (2.1) can be seen as a nonlinear
combination of a soliton with the velocity κR + κI hR

hI

and a periodic wave with the velocity κR − κI h I
hR

.
Next, we will display various nonlinear wave struc-
tures depending on the values of velocity difference,

namely
κI (h2R+h2I )

hRhI
.

If the velocity difference is not equal to zero, i.e.,

κI (
h2R+h2I
hRhI

) �= 0 (or kI �= 0), Solution (2.1) charac-
terizes the localized waves with breathing behavior
on a plane-wave background (i.e., the breathers and
RWs). Further, if m = − b

2 , we have the Akhmediev
breathers with |n| < |d|, the Kuznetsov–Ma solitons
with |n| > |d|, and the Peregrine solitonwith |n| = |d|.
Such solutions have been derived in Refs. [19–22] (also
see Fig. 1).

Instead, if κI = 0, the wave described by Solu-
tion (2.1) is composed of a soliton and a periodic wave,
where each has the same velocity κR . It should be noted
that the case κI = 0 is equivalent to

�A

hI
= �B

hR
, (2.2)

i.e.,

τ = Θ1

Θ2
, (2.3)

where

Θ1 = (b − 2ω)
(
(m + ω)2 + n2

)
+ 1,

Θ2 = (b − 2ω)
(
(m + ω)2 + n2

)
(
b2 − 4bm − 2(d2 − 6m2 + 2n2)

)
.

Equation (2.2) [i.e., Eq. (2.3)] implies the extrema
of trigonometric and hyperbolic functions in Solu-
tion (2.1) is located along the same straight lines in the
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Fig. 2 Solutions of Eq. (2.3) on a complex plane of λ1 = m + n i. d = 1, b = 2, ω = 1
2 . a τ = 6, b τ = 3.8, c τ = 3, d τ = 1, e

τ = 0.01, f τ = −1

(z, t)-plane, which leads to the transformation of the
breather into a continuous soliton. Choosing different
values of τ in Eq. (2.3), we display the locus of the real
and imaginary parts of the eigenvalues on the complex
plane in Fig. 2. It is found that the higher-order effect
τ can alter the shape of the locus. By decreasing the
value of τ , we find that the quantity of branches of the
locus is reduced from three to two.

When the six parameters m, n, ω, τ, b, and d sat-
isfy Eq. (2.3), Expressions (2.1) describe the soliton
on constant background, as shown in Fig. 3. This type
of multi-peak structure is because of the mixture of
a soliton and a periodic wave. The similar multi-peak
structures have been observed analytically in the NLS–
MB equations [39] and numerically in the AC-driven
damped NLS system [44,45]. Further, to exhibit the
effect of the real part (m) of the eigenvalue on the peak
number, we plot Fig. 4 where the soliton has signifi-
cantly less peaks than the one in Fig. 3. On the other
hand, due to the different choices of the value of the
eigenvalue, Fig. 5 shows the soliton with two main
peaks, which is referred to as the M-shaped soliton in
this paper. Note that the multi-peak solitons in Figs. 3,
4, and 5 are the localized structures along the t axis.
However, changing the values of the real and imagi-
nary parts of eigenvalue, we display another type of
solution that shows a type of nonlocal structure, i.e., the
periodic wave (see Fig. 6). Therefore, it is concluded

that the structure (peak number and localization) of the
multi-peak soliton can be controlled by the real and
imaginary parts of eigenvalue, namely m and n.

In order to better understand this multi-peak struc-
ture of System (1.1), we will extract separately the soli-
ton and periodic wave from the mixed solution (2.1).
Specifically, the soliton exists in isolation when hR

vanishes, while the periodic wave independently exists
whenhI vanishes.Correspondingly, the analytic expres-
sions read, for the antidark soliton,

E [1]
S = d

(
1 + 8 n

G[1]
S + i H [1]

S

D[1]
S

)
ei ρ (2.4)

with

G[1]
S = 2 n cos(2 z κI h I )+2 n cosh(t h I +2 z κR hI )

+ hI sinh(t h I + 2 z κR hI ),

H [1]
S = (b+2m) cos(2 z κI h I )+(b+2m) cosh(t h I

+ 2 z κR hI ) − hI sin(2 z κI h I ),

D[1]
S =

(
h2I −χ

)
cos(2 z κI h I )−

(
h2I +χ

)
cosh(t h I

+ 2 z κR hI )+ (2 b hI +4m hI ) sin(2 z κI h I )

− 4 n hI sinh(t h I + 2 z κR hI ),

and for the periodic wave,

E [1]
P = d

(
1 + 8 n

G[1]
P + i H [1]

P

D[1]
P

)
ei ρ (2.5)
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Fig. 3 A breather transformed into a multi-peak soliton with d = 1, b = 2, k1 = −k2 = 1, ω = 1
2 and λ1 = λ∗

2 = 9.6 + i. b is the
contour plot of a. c is the cross-sectional view of (a) at z = 0

Fig. 4 A breather transformed into a multi-peak soliton with d = 1, b = 2, k1 = −k2 = 1, ω = 1
2 and λ1 = λ∗

2 = 2.5 + i. b is the
contour plot of a. c is the cross-sectional view of (a) at z = 0

Fig. 5 A breather transformed into a M-shaped soliton with d = 1, b = 2, k1 = −k2 = 1, ω = 1
2 and λ1 = λ∗

2 = 0.9 + 0.8 i. b is the
contour plot of a. c is the cross-sectional view of (a) at z = 0

with

G[1]
P = −2 n cos(t hR + 2 z κR hR)

+2 n cosh(2 z κI hR)

+hR sin(t hR + 2 z κR hR),

H [1]
P = − (b + 2m) cos(t hR + 2 z κR hR)

+(b + 2m) cosh(2 z κI hR)

+hR sinh(2 z κI hR),

D[1]
P = −(h2R − χ) cos(t hR + 2 z κR hR)

− (h2R + χ) cosh(2 z κI hR)

−4 n hR sin(t hR + 2 z κR hR)

−(2 b hR + 4m hR) sinh(2 z κI hR).

Figure 7 describes a soliton on the constant back-
ground, which propagates along t direction. This kind
of soliton is called the antidark soliton firstly reported
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Fig. 6 A breather transformed into a multi-peak soliton (equal-amplitude) with d = 1, b = 2, k1 = −k2 = 1, ω = 1
2 and λ1 = λ∗

2 =
−1 − 0.1 i. b is the contour plot of a. c is the cross-sectional view of (a) at z = 0

Fig. 7 A breather transformed into an antidark soliton with d = 1, b = 2, k1 = k2 = 1, ω = 1
2 and λ1 = λ∗

2 = − 1
2 b + 1.5 i. b is the

contour plot of a. c is the cross-sectional view of (a) at z = 0

Fig. 8 A breather transformed into period wave with d = 1, b = 2, k1 = −k2 = 1, ω = 1
2 and λ1 = λ∗

2 = − 1
2 b + 0.8 i. b is the

contour plot of a. c is the cross-sectional view of (a) at z = 0

in the scalar NLS system with the third-order disper-
sion [46,47]. Futher, as d is approaching to zero, this
soliton will turn into a standard bright soliton. Figure 8
is plotted for the periodic waves propagating in t direc-
tion with the period P = π

hR
.

3 RW-to-soliton conversion

In this section, we investigate the transition of first-
order localized wave |E1(t, z)|2 from the RW to the
W-shaped traveling wave. Taking λ → − b

2 + i d in
Solution (2.1), we obtain the first-order RW which is
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Fig. 9 First-order
asymmetric RW solution
with d = 1, b = 2, k1 =
−k2 = 1, ω = 1

2 , τ = 1
2

and λ1 = λ∗
2 = − 1

2 b + i d

Fig. 10 An asymmetric RW transformed into a W-shaped soliton with d = 1, b = 0, k1 = −k2 = 1, ω = 1
2 and λ0 = − 1

2 b + i d. b
is the contour plot of a.c is the cross-sectional view of (a) at z = 0

asymmetric with respect to z-axis in Fig. 9. Further,
to convert the asymmetric RW into a soliton, the para-
meters ω, τ and b have to satisfy Eq. (2.3). Unlike the
cases in Sect. 3, such transition is only controlled by
three free parameters due to the fixed values of the real
(m = − b

2 ) and imaginary (n = d) parts of the eigen-
value. In addition, Expression (3.1) has the forms of
rational functions. Note that the rational solutions of
the modified NLS equation have been found that they
can describe various soliton states including a paired
bright–bright soliton, single soliton, a paired bright-
gray soliton, a paired bright-black soliton, which is
induced by self-steepening and self-phase modulation
through tuning the values of the corresponding free
parameters [48,49]. Hereby, we display that the ratio-
nal solution of System (1.1) characterizes theW-shaped
soliton which is shown in Fig. 10. Different from the
wave in Figs. 3 and 4, the soliton in Fig. 10 has only one
(two), infinitely stretched, peak (valleys) without oscil-
latory tails. It is worth noting that theW-shaped soliton
can be also converted by the periodic wave in Fig. 8
when the period is infinite (hR → 0). In other words,

there are two orders to obtain the W-shaped soliton:
one is the breather→ RW → W-shaped soliton and
the other is the breather→periodic wave→W-shaped
soliton.

E [1]
W = d

(
1 − Υ1

Υ2

)
eΥ3 (3.1)

with

Υ1 = 4d(−8ω3(4b3dz + 6bd3z − 3(b − d)

× (b + d)(dt + 1)) + 12bω2(4b3dz + 6bd3z

−3(b − d)(b + d)(dt + 1)) − 3(b5 + 3b3d2

−4bd4)(dt + 1) + 2bdz((11b3 + 30)d2

+2b2(b3 − 5) + 12bd4) − 2ω(2dz((17b3 + 6)d2

+6b2(b3 − 1) + 12bd4) − 3(3b4 + b2d2

−4d4)(dt + 1)))(4b6z − 3b5(t + 8ωz)

+2b4(11d2z + 3ω(3t + 8ωz))

−b3(d2(9t + 68ωz) + 4ω2(9t + 8ωz) + 20z)

+6b2(4d4z + d2ω(t + 12ωz) + 4ω(tω2 + z))

+12bd2(d2(t − 4ωz) + 3tω2 − 4ω3z + 5z)

−24d2ω(t (d2 + ω2) + z)),

123



396 L. Wang et al.

Υ2 = 32d2z2b12 − 24dzb11 − 48d2t zb11

+ 18d2t2b10 + 352d4z2b10 + 18dtb10 + 9b10

−320d2z2b9 − 204d3zb9

−408d4t zb9 + 54d2b8 + 108d4t2b8 + 1352d6z2b8

+108d3tb8 + 120dzb8 + 240d2t zb8 − 800d4z2b7

−444d5zb7 − 888d6t zb7 + 9d4b6 + 18d6t2b6

+ 2112d8z2b6 + 800d2z2b6

+ 18d5tb6 + 3360d6z2b5 + 96d7zb5

+192d8t zb5−216d6b4−432d8t2b4+1152d10z2b4

−4800d4z2b4−432d7tb4−1560d5zb4−3120d6t zb4

+5760d8z2b3+576d9zb3+1152d10t zb3+144d8b2

+288d10t2b2 + 7200d6z2b2 + 288d9tb2

+1440d7zb2 + 2880d8t zb2 − 192(9(b − d)2

(2dt (dt + 1) + 1)(b + d)2 + 8b2d2(2b2 + 3d2)2z2

−12d(2b5 + d2b3 − 3d4b)(2dt + 1)z)ω5b

−32(9(b − d)2(5b2 + 8d2)(2dt (dt + 1) + 1)

(b + d)2 − 12(b − d)d(24bd4 + (31b3 + 12)d2

+b2(10b3 − 7))(2dt + 1)z(b + d)

+8bd2(2b2 + 3d2)(24bd4+(31b3+24)d2

+2b2(5b3 − 7))z2)ω3b

−4(9(b − d)2(b2 + 4d2)(3b2 + 4d2)

(2dt (dt + 1) + 1)(b + d)2 − 12(b − d)d

(48bd6 + 8(10b3 + 9)d4 + b2(41b3 + 16)d2

+6b4(b3 − 3))(2dt + 1)z(b + d)

+8d2(12bd4 + (11b3 + 30)d2 + 2b2(b3 − 5))

× (12bd4 + (17b3 + 6)d2 + 6b2(b3 − 1))z2)ωb

+64(9(b − d)2(2dt (dt + 1) + 1)(b + d)2

+ 8b2d2(2b2 + 3d2)2z2 − 12d(2b5 + d2b3

−3d4b)(2dt + 1)z)ω6 + 16(9(b − d)2(15b2

+8d2)(2dt (dt + 1) + 1)(b + d)2 − 12(b − d)d

(24bd4 + (61b3 + 6)d2 + 6b2(5b3 − 1))

(2dt + 1)z(b + d) + 8bd2(2b2 + 3d2)(24bd4

+(61b3 + 12)d2 + 6b2(5b3 − 2))z2)ω4

+4(9(b − d)2(15b4 + 48d2b2

+16d4)(2dt (dt + 1) + 1)(b + d)2

−12(b − d)d(48bd6 + 8(22b3 + 3)d4 +
3b2(47b3 + 28)d2

+6b4(5b3 − 8))(2dt + 1)z(b + d)

+8d2(144b2d8 + 48b(13b3 + 3)d6

+(775b6 + 600b3 + 36)d4

+12b2(31b6 + 4b3 − 6)d2

+12b4(5b6 − 16b3 + 3))z2)ω2,

Υ3 = i(z(−b2 + ((b4 − 12b2d2 + 6d4)

×((b − 2ω)((b − 2ω)2 + 4d2) + 4))/

(6(b − d)(b + d)(b − 2ω)((b − 2ω)2 + 4d2))

−4/(b − 2ω) + 2d2) + bt).

4 Conclusions

In this article, we have shown that the first-order
breather solution of System (1.1) can be converted into
several types of novel solitons including the W-shaped
soliton (multi-peak), M-shaped soliton, periodic wave
and antidark soliton. The transition condition (2.3),
depending on the parametersm, n, ω, τ and b, has been
analytically presented. Additionally, we have exhibited
that the first-order RW solution of System (1.1) can be
converted into the W-shaped soliton with single peak
and two valleys when the ω, τ , and b satisfy the condi-
tion (2.3). It will be interesting to study the interactions
among different kinds of nonlinear waves.Wewill give
the details in another paper.
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