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Abstract Themain purpose of this paper is to develop
a simple-model moving wheel/rail contact element, so
that the sticking, sliding, and separation modes of the
wheel/rail contact can be appropriately simulated. In
the proposed finite element, the wheel and rail are sim-
ulated using the cubic-spline contact element, and a
power function normal stiffness and a constant horizon-
tal stiffness are connected to the cubic-spline contact
stiffness. The three-dimensional (3D) contact finite ele-
ment analysis for a realistic wheel and rail was used to
accurately model the wheel/rail contact stiffness. The
validated examples show that the proposed nonlinear
moving wheel element can simulate the complicated
sliding, sticking, and separation contact problems with
good accuracy. The complicated contactmodes, includ-
ing the multiple contact situation between wheel flange
and rail side, can also be simulated accurately. More-
over, the computer memory and CPU time required to
achieve this are much less than needed with the 3D
finite element contact model.

Keywords Contact · Cubic spline · Derailment ·
Finite element analysis · Moving contact element ·
Rail · Wheel

S. H. Ju (B)
Department of Civil Engineering, National Cheng-Kung
University, Tainan City, Taiwan, ROC
e-mail: juju@mail.ncku.edu.tw

1 Introduction

Safety and comfort are the most important require-
ments for rapid transit trains, so accurate simulation of
the three-dimensional (3D) wheel/rail dynamic behav-
ior of a moving train is necessary. One can use a large
finite element mesh with solid and contact elements
to model rails and wheels, but it is difficult to simu-
late a whole moving train problem due to computa-
tional complexity, and thus the CPU time needed to the
calculations. Therefore, a number of alternative meth-
ods have been proposed in the literature to simplify
modeling of the wheel and rail contact behavior. One
approach is to set a constant stiffness between thewheel
and rail and to perform the analysis without consid-
ering the separation mode [1–9]. The Lagrange mul-
tiplier method or the interface compatibility scheme
can also be used to simplify the modeling [10–19].
However, while these two methods are suitable to sim-
ulate the vibrations induced by moving trains, they
may not be appropriate for examining train derail-
ment problems. Several researchers have recently per-
formed nonlinear analyses of train derailments [20–
29], and the literature review will focus on these refer-
ences. Seo et al. [20] modeled the nonlinear behav-
ior of the pantograph/catenary systems, while a 3D
multibody railroad vehicle model was developed to
demonstrate the use of their formulation. Tanabe et
al. [21] developed a numerical method to solve the
dynamic interaction of a high-speed train and rail-
way structure during an earthquake using the theory
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of multibody dynamics, and a mechanical model for
contact dynamics between the wheel and rail was pre-
sented. Dinh et al. [22] developed a formulation of
3D dynamic interactions between a bridge and a high-
speed train, while contact loss is allowed. The vertical
contact is represented byfinite tensionless stiffness, and
the lateral contact is idealized by finite contact stiff-
ness and creepage damping. Nishimura et al. [23] stud-
ied the vehicle safety in terms of the dynamic stabil-
ity during earthquakes, and the rail vehicles involved
severe vehicle body motions, wheel lifts, and derail-
ing behaviors. Li et al. [24] developed a numerical
method for analyzing coupled railway vehicle–bridge
systems of nonlinear features, and established a bridge
model with the flexible vehicle effect with the wheel–
rail contact including wheel jumps. Ju [25] developed
a nonlinear moving wheel element based on a point
contact scheme to simulate moving train problems,
where the element stiffness is set to a power func-
tion directly fitted from the finite element result of the
wheel and rail contact analysis. Pombo and Ambrosio
[26] studied the dynamic behavior of the railway vehi-
cles, and a multibody formulation was used to build
the vehicle model with a wheel–rail contact formula-
tion including normal and tangential forces. Antolin et
al. [27] modeled nonlinear wheel–rail contact forces
for analyzing the dynamic interaction between high-
speed trains and bridges, while nonlinear contact mod-
els including Hertz’s and Kalker’s nonlinear theories
were considered. Kouroussis and Verlinden [28] per-
formed the numerical analysis of train/track/foundation
dynamics, and the proposed model was emphasized
by presenting free-field ground vibration responses
generated by a high-speed train obtained by a revis-
ited two-step prediction model. Montenegro et al.
[29] proposed a wheel–rail contact formulation to
analyze the train–structure interaction using a finite
element contact method, and the contact location is
calculated with an online contact search algorithm.
Hertzian contact theory or nonlinear creep theory is
often used in these nonlinear wheel/rail dynamic mod-
els, but few of them included the frictional sliding
mode of the wheel and rail contact. Moreover, due to
the difficulty of simulating multiple contact behaviors
between the wheel and rail, these are rarely considered
in the simple finite element models proposed in the
literature.

This study develops a moving wheel/rail contact
element, including sliding, sticking, and separation

modes, where normal and tangent stiffness are con-
nected to the element and directly fitted from the finite
element results of the wheel and rail contact analysis.
Moreover, multiple contact regions can be considered
in this element.

2 Stiffness matrix of the moving wheel/rail contact
element

2.1 Stiffness matrix of three-node contact element

In this study, a frictional contact system is developed
to simulate the wheel/rail behavior with sliding, stick-
ing, and separation modes. Figure 1 shows the system,
where three springs (k1, k2, and k3) at the wheel cen-
ter are used to simulate the nonlinear behavior of the
wheel and rail, and cubic spline contact elements are
used to calculate the contact locations of the wheel and
rail. This section will illustrate the cubic-spline contact
element of the wheel and rail.

The cubic-spline contact element is based on the
contact scheme on the local 1–2 coordinates, where
the 1–2 axes are obtained from the initial input and are
then calculated according to the direction-3 rotation at
point-C, as shown in Fig. 1. The rail is modeled using
a number of slave nodes controlled by master node
C, which means that the displacements of the slave
nodes are calculated from the direction-3 rotation and
direction-1–2 displacements of master node C, accord-
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Fig. 1 Movingwheel contact element (C andB aremaster nodes,
and nodes along the contact surfaces of the rail and wheel are
slave nodes)
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ing to the rigid-body theory. Similarly, the wheel is
modeled using a number of slave nodes controlled by
the master B. The slave nodes of the rail and wheel
are mainly input along the possible contact region, and
thus the regions along the rail bottom and wheel cen-
ter are not required. According to an earlier work [30],
the sticking, sliding, and separation stiffness matrices
at one point are as follows:

KC =
[
k 0
0 k

]
for sticking mode, (1)

KC =
[
0 0
0 0

]
for separation mode, (2)

KC =
[
0 μk
0 k

]
for sliding mode. (3)

where k is the penalty constant.μ is the frictional coef-
ficient with the positive or negative sign, while μ is
positive for �U < 0 and negative for �U > 0, and
�U is the difference in the relative tangential displace-
ment between the current and previous time steps. The
frictional force at the wheel and rail contact region is
three-dimensional, while the longitudinal direction one
is dependent on the engine force, braking force, wind
force, train speed and so on, so it is extremely diffi-
cult to accurately calculate. The alternative is to set an
appropriate frictional coefficient in the lateral direction,
and this frictional coefficient eliminates the fraction in
the longitudinal direction. The frictional force due to
the rotating wheel can be further complicated, when
contact occurs between the wheel flange and rail side.
At this condition, the frictional force is mostly in the
longitudinal direction, and a zero frictional coefficient
can be set along this region, such as region from points
a to b shown in Fig. 1. The stiffness matrix of the slid-
ing mode is unsymmetrical. An alternative approach is
to use the following symmetric matrix:

KC = k

[
μ2 μ

μ 1

]
(4)

Equation (4), an approximate sliding stiffness matrix,
obeys theMohr–Coulomb friction theory. In the nonlin-
ear finite element analysis, the balance between internal
and external nodal forceswill be achieved at the conver-
gent state, while the incremental displacement between
two iterations are near zero, so that both Eqs. (3) and
(4) obtain similar results.Next, the local stiffnessmatri-
ces shown in Eqs. (1)–(3) in the contact coordinates are

transformed into the 1–2 coordinates with the transfor-
mation matrix T.

K1−2 = TTKC T (5)

where

T =
[

cos θ sin θ

−sin θ cos θ

]
=

[
c s

−s c

]
(6)

cos θ and sin θ are the components of the tangent direc-
tion at the current contact node in the 1–2 coordinates,
and this tangent direction is always continuous along
these cubic splines generated from the wheel nodes.

The two-node stiffness matrix is similar to the four-
degree-of-freedom truss element, as follows:

K4 =
[

K1−2 −K1−2

−K1−2 K1−2

]
(7)

The above four-by-four matrix is then transformed
to the stiffness matrix of the two master nodes, B
and C, in Fig. 1, with two translations (directions 1
and 2) and a rotation (direction 3) degree of free-
dom at each master node. The six degrees of freedom
are point-B 1-direction translation, point-B 2-direction
translation, point-C 1-direction translation, point-C 2-
direction translation, point-C 3-direction rotation, and
point-B 3-direction rotation, respectively. The stiffness
matrix is as follows:

KBC = TT
4×6K4T4×6

where

T4×6 =

⎡
⎢⎢⎣
1 0 0 0 0 −�YBD
0 1 0 0 0 �XBD

0 0 1 0 −�YCD 0
0 0 0 1 �XCD 0

⎤
⎥⎥⎦ (8)

The current wheel position equals the initial wheel
position plus the duration multiplied by the train speed.
The two target nodes between which the wheel node is
located can then be found. If the two target nodes and
the wheel node are nodes I, J and B, respectively, the
above six-degree-of-freedom stiffness matrix is trans-
formed to an 18-by-18 global stiffness matrix of points
B, I, and J with three global translation and three global
rotation degrees of freedom at each node. The stiffness
matrix is as follows:

KBIJ = TT
6×18 KBC T6×18 (9)
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where

TT
6×18 =

⎡
⎢⎢⎢⎢⎢⎢⎣

u1 u2 0 0 0 0
0 0 0 0 0 u3
0 0 N1u1 N1u2 0 0
0 0 −N2u2 N2u1 Snu3 0
0 0 N3u1 N3u2 0 0
0 0 −N4u2 N4u1 (1 − Sn)u3 0

⎤
⎥⎥⎥⎥⎥⎥⎦

in which u1, u2, and u3 are the unit vectors of directions
1, 2, and 3, Sn is the ratio of length J–C over length I–J,
as shown in Fig. 1, and N1 to N4 are the cubicHermitian
interpolation functions of a beam element with the two
end nodes I and J.

2.2 Simulation of wheel/rail contact behavior using a
two-node stiffness matrix

The vertical stiffness between the wheel and rail can
be determined using the Hertz contact theory, such as
a smooth sphere with the radius of R in contact with
a smooth flat surface under a normal contact load f2,
with the stiffness as follows [16]:

kr = 3

2

(
16RE2∗

9

)1/3

f 1/32 (10)

where E∗ is a material constant dependent on Young’s
modulus and Poisson’s ratio for the sphere and plate.
Hertz contact theory is generally used for regular disks
or plates and may produce errors for actual rails and
wheels. For this reason, Ju [25] used the following
equation to model the stiffness between the wheel and
rail.

kr = a + b f c2 (11)

where a, b, and c are constant, and a = 3×104 KN/m,
b = 2.94 × 105 KN/m, c = 0.241104 for UIC-60-kg
rail and the wheel of the SKS-700 train [25].

It is clear that Eq. (11) can be used to model the
Hertz contact stiffness. Ju [25] then evaluated a, b, and
c, by fitting the results of a contact finite element analy-
sis between the rail and wheel, in which 3D solid ele-
ments and contact elements are used to find the stiff-
ness between the rail and wheel with good accuracy.
The advantage is that this calculation only needs to be
performed once, and one can then use the realistic stiff-
ness to undertake the dynamic analyses of moving train

problems. For the horizontal stiffness, the horizontal
stiffness can be set to a constant, because the major
displacement comes from the linear deformation of the
wheel and rail in the horizontal direction, and the non-
linear contact deformation is relatively small. Tomodel
the above stiffness, three springs (k1, k2, and k3) in the
local 1, 2, and 3 directions at the wheel center are used
to simulate the nonlinear behavior of thewheel and rail,
as shown in Fig. 1. The two end nodes of the springs
can be set to the same coordinates at the wheel center.
One can set another three rotation springs to model the
rotation stiffness of the wheel and rail. If the rotations
are assumed to be rigid, the two nodes are simply set to
the same rotation degrees of freedom. One can easily
connect this proposed element to other types of ele-
ments, in which the target rail nodes, such as I, C, and
J, as shown in Fig. 1, can be modeled using 3D beam
elements, and node-A having six degrees of freedom
can be connected to any structural element, including
rigid links to a master node.

3 Evaluation of normal and frictional forces on the
contact surface

Figure 2 shows an active segment of the node-to-cubic-
spline contact element during two time steps and two
iterations, where node 2 is the contact node at the rail,
nodes 1 and 3 on the wheel are the two edge nodes of
the active segment of the cubic spline, and the active
segment means that the contact node (node 2) touches
the cubic spline within this segment. Node C is the

1

2n+1

Cn+1

3
2n20

D0

Other
segments Current contact

segment

Other
segments

Dn+1
u (Tangent direction)

v (Normal direction)

Fig. 2 Contact conditions between two force steps and two iter-
ations. 1 and 3 = The two edge nodes of the active segment of
the cubic spline, 20 = node 2 at last time step at the convergent
state, 2n = node 2 at this time step and last iteration (iteration
n), 2n+1 = node 2 at this time step and this iteration (iteration n,
+1), Cn+1 = contact node on the cubic spline at this time step
and this iteration, D0 = contact node on line 1–3 at last time step
at the convergent state, Dn+1 = contact node on line 1–3 at this
time step and this iteration, u = tangent direction at contact node
Cn+1, v = normal direction at contact node Cn+1
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contact node on the cubic spline, in which line 2-C is
normal to the cubic spline. Node D is the intersection
point of line 1–3 and line 2-C. All of the nodes in the
figure have been updated by adding the displacement
of the last iteration. The coordinates of nodes Cn+1

and Dn+1 are unknown and thus need be calculated
in the current iteration, and one may solve the cubic
and line equations using the Newton–Raphson method
to obtain them. From Fig. 2, the tangent displacement
(�U ) between the present force step and last force step
is approximated to:

ΔU = (S0 − Sn)L1−3 (12)

where Li− j means the length between points i and j,

S0 = LD0−3

L1−3
, Sn = LDn+1−3

L1−3
, μ is positive for �U < 0

and negative for �U > 0 . The total normal displace-
ment (V ) approximates to:

V = Cn+12n+1 · (−v) (13)

where Cn+12n+1 means vector Cn+12n+1, and · means
vector dot. The normal and frictional forces at the con-
tact node are computed as follows:

(1) for sticking

Fn = k|V | and Fs = k|U | + (u1 · u)Fs1 (14)

where k is the penalty constant, Fs1 is the frictional
force of the previous time step, and u1 is the tangent
direction at the current node in the previous time
step.

(2) for sliding

Fn = k|V | and Fs = μFn (15)

It is then necessary to check whether the results
are the sticking, sliding, or separating mode. Equa-
tion (13) is first used to check the separating mode.
If V of Eq. (13) is smaller than zero, then node 2
has separated from the target surface (Fig. 2), and
thus the penalty constant and internal forces of the
contact element are set to zero. To check for the
sticking and sliding modes, the sticking mode is
first assumed, and thus if Fs < μFn it is sticking
mode, while if Fs ≥ μFn it is sliding mode.

4 Accuracy study

4.1 A wheel and rail contact problem with a constant
horizontal force

The accuracy of the proposed wheel/rail contact ele-
ment is studied using dynamic analyses, as shown in
Fig. 3, which includes a SKS-700 train wheel with s
0.858-m diameter and a 0.555-m UIC-60-kg rail fixed
at the two rail ends. A horizontal Kelvin spring-damper
with the stiffness of KH (1200 kN/m) and damping of
CH (40kNs/m) is connected between the wheel center
master node and a horizontal constant force of 20kN.
A vertical Kelvin spring-damper with the stiffness of
KV (1200 kN/m) and damping of CV (40 kN-s/m) is
then connected between the wheel center master node
and a lumped mass M (6.25 t), where the wheel mass
is m = 0.283 t. The above spring and damper con-
stants are obtained from those of the vertical primary
suspension for SKS-700 train. The vertical force F(t)
applied to the locationof the lumpedmass is a sine func-
tion with the mean value of −10 kN, the amplitude of
61.25kN, and the frequency of 10 Hz. In this study, the
derailment coefficient (Q/P) defined in Eq. (16) is cal-
culated to study the accuracy of the proposed method.

(Q/P) = Q2m/P2m (16)

where Q2m and P2m are the average horizontal and
vertical forces of the contact forces on the wheel and
rail during the wheel movement distance of 2m.

Both complex and simple models were generated,
where the complex model uses eight-node solid and
contact elements to simulate the wheel and rail, and
the simple model uses the proposed contact element to
simulate the wheel and 20 two-node beam elements to
simulate the rail. For the complex model, the finite ele-
ment mesh is shown in Fig. 3, where eight-node brick
isoparametric elements and Hermit contact elements
with the penalty constant of 106 kN/m and the coeffi-
cient of the friction of 0.5 are used, and a fine mesh is
generated near the contact region in order to obtain a
precise finite element contact analysis. It is noted that a
large penalty constant was used to avoid the inaccuracy
of the finite element analysis, while the error deforma-
tion from the penalty method is smaller than 1/1000
of the deformation at the wheel center. A master node
is set at the center of the wheel to control the slave
nodes along the inner circle of the wheel. Both mod-
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Fig. 3 The wheel/rail contact example in Sect. 4 and the finite element mesh of the complex model

els use the Newton–Raphsonmethod and the Newmark
direct integration to solve this problem. The time step
length is 0.0005s, and 520 time steps are simulated.
Figure 4a shows the contact forces between the wheel
and rail changing with time, while Fig. 4b shows the
derailment coefficient using Eq. (16) assuming a train
speed of 300 km/h [Q and P are averaged during a 2-m
(or 0.024s) movement], and Fig. 5 shows the contact
regions of the wheel and rail from the simple model
at 0, 0.01, and 0.2 s of the finite element analyses. The
three figures indicate:

(1) Both the normal and horizontal contact forces of
the complex and simple methods have similar finite
element results. The derailment coefficients calcu-
lated from the complex and simplemethods are thus
also similar. This example shows that the proposed
method can be used to simulate the multiple con-
tact situation, as shown in Fig. 5, where the contacts
betweenwheel flange and rail side canbe accurately
analyzed.Moreover, the sliding and stickingmodes
of the contact were well-simulated using the simple
model.

(2) It is almost impossible to use the 3D solid and con-
tact model to analyze practical moving train prob-

lems, because the finite element model requires a
very fine mesh between wheels and rails, as shown
in Fig. 3. In contrast, the proposed simple method
does not have these drawbacks. The numbers of
degrees of freedom for the complex and simple
models are 1,046,708 and 116, respectively, for the
highly nonlinear frictional contact analyses, and the
computer time needed for the two models is 38h
and 32s, respectively, for 550 time steps using an
3.5-GHz-intel-i7 computer. This indicates that the
simple model is significantly more efficient, since
it requires much less computer time and memory,
while the accuracy is not significantly lower.

4.2 A wheel and rail contact problem with a sine
wave horizontal force

The previous example with a constant horizontal force
on the wheel causes a steady state sticking mode of
the contact behavior between the wheel flange and rail
side. This section uses the same model as shown in
Fig. 3, but only changes the constant horizontal force
to a sine wave horizontal force, so that the contact

123



A frictional contact finite element for wheel/rail dynamic simulations 371

Fig. 4 Vertical (P) and
horizontal (Q) contact
forces and derailment
coefficient (Q/P averaged
between 0.024s) from the
finite element analyses in
Sect. 4.1. a Contact forces
(Q and P) between wheel
and rail. b Derailment
coefficient (Q/P)
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Fig. 5 Positions of the wheel and rail contact region from the simple model analysis in Sect. 4.1

between the wheel and rail shows complicated cyclic
behavior, including sliding, sticking, and separation
modes. The horizontal sine wave force has the ampli-
tude of 10.4125kN and the frequency of 10Hz. Fig-

ure 6a shows the contact forces between the wheel and
rail changing with time, while Fig. 6b shows the derail-
ment coefficient using equation (16) assuming a train
speed of 300 km/h (Q and P are averaged during a 2-m
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Fig. 6 Vertical (P) and
horizontal (Q) contact
forces and derailment
coefficient (Q/P) averaged
between 0.024s from the
finite element analyses in
Sect. 4.2 (regions A and B
are during the separation
mode of the wheel and rail).
a Contact forces (Q and P)
between wheel and rail. b
Derailment coefficient
(Q/P)
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Fig. 7 Positions of the wheel and rail contact region from the simple model analysis in Sect. 4.2

(or 0.024s) movement), and Fig. 7 shows the contact
regions of the wheel and rail from the simple model
at 0, 0.027, and 0.267s of the finite element analy-

ses. The three figures indicate a similar conclusion to
that reported for the previous example, in that both the
normal and horizontal contact forces of the complex
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Fig. 8 Derailment coefficients averaged between 0.024s chang-
ing with time from the finite element analyses in Sect. 4.2 with
torsion at the beam center

and simple methods have similar finite element results.
Additionally, the separation time and interval of the
wheel and rail, as shown in the A and B regions of
the figures, are also similar using both methods. The
proposed simple method can thus be used to simulate
the sliding, sticking, and separationmodes of the wheel
and rail contact problems and achieve results with good
accuracy.

A more complicated simulation was performed
using the same model as above. An additional torsion
(183.25sin(10π t) kN) in the X direction is applied to
the beam center, and the wheel system moves from
X = 0 with an X-direction speed of 0.5m/s. The com-
plex finite element analysis was omitted due to the fine
mesh required for all the beam and wheel. Figure 8
shows the derailment coefficient averaged from0.024 s,
and Fig. 9 shows the contact regions of the wheel and
rail from the simple analysis. The two figures indicate

that the proposed method can be used to simulate sig-
nificantly complicated wheel and rail contact problems
using a simple finite element model.

5 Conclusions

This study developed a nonlinear moving wheel/rail
contact element with the sticking, sliding, and sepa-
ration modes, where the wheel and rail are simulated
using the cubic-spline contact element connected with
a power function normal stiffness and a constant hori-
zontal stiffness,whichwere computed from the3Dcon-
tact finite element analysis for the realistic wheel and
rail using a fine mesh. The validated examples in this
paper show that the proposed nonlinear moving wheel
element can simulate the complicated sliding, sticking,
and separation contact problems with good accuracy
compared with the 3D contact finite element analy-
sis. Moreover, the derailment coefficients calculated
from the proposed method are also accurate, not only
for the complicated contact modes, but also for mul-
tiple contact situations, such as the contacts between
wheel flange and rail side. This proposed element can
be easily connected to other types of elements, such as
spring-damper elements, lumped mass, plate elements,
and rigid links, and a whole flexible or rigid-body train
finite element model then can be generated without too
many degrees of freedom. The major advantage of the
proposed method is that the much less computer mem-
ory and CPU time required than with the 3D finite ele-
ment contact model, but the accuracy of the resulting
analysis accuracy is similar.

Time=0.03 s Time=0.319 s Time=0.347 s

Time=0.415 s Time=0.475 s
Time=0.540 s

Fig. 9 Positions of the wheel and rail contact region from the simple model analysis in Sect. 4.2 with torsion at the beam center
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