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Abstract This paper investigates the problem of
modified function projective synchronization of two
different chaotic systems in the presence of parametric
uncertainties and external disturbances. A new robust
adaptive control is proposed, which is able to attenu-
ate all random uncertainties of the drive and response
systems. Moreover, there is no need to know the norm-
bounds of all random uncertainties, and the compen-
sator gains can be automatically adapted to suitable
constants. Numerical examples are provided to show
the effectiveness of the proposed method.
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1 Introduction

Chaos synchronization is a hot subject in the field
of nonlinear science [1–4], which refers to a process
wherein two (or many) chaotic systems adjust a given
property of their motion to a common behavior due
to a coupling or to a forcing. Since Pecora and Car-
roll presented a successful method to synchronize two
identical chaotic systems in 1990 [5], chaos synchro-
nization has been investigated greatly due to its poten-
tial applications in physical systems, biological net-
works, secure communications, etc. Up to now, var-
ious types of synchronization phenomena have been
revealed to investigate chaos synchronization, includ-
ing complete synchronization [5], phase synchroniza-
tion [6], generalized synchronization [7], lag synchro-
nization [8], anti-synchronization [9], projective syn-
chronization [10], function projective synchronization
[11], etc.

Recently, a new type of synchronization, termed as
modified function projective synchronization (MFPS),
has been extensively investigated in [12–21], in which
the drive and response systems could be synchronized
to a desired scaling function matrix. The novelty fea-
ture of this synchronization phenomenon is that the
scaling functions can be arbitrarily designed to dif-
ferent state variables by means of control, while the
unpredictability of the scaling functions can addition-
ally enhance the security of communications. It is easy
to see that MFPS is the more general definition of syn-
chronization, which encompasses complete synchro-
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nization, anti-synchronization, projective synchroniza-
tion, and function projective synchronization. In [12],
the authors gave aMFPSschemeof twocoupledLorenz
systems and a secure communication scheme by using
MFPS.On the basis of the active control scheme, a gen-
eral method of MFPS with time delay has been inves-
tigated in [13]. Ref. [14] investigated adaptive MFPS
of hyper-chaotic systems with unknown parameters.
MFPS in drive–response dynamical networks has been
investigated by adaptive open-plus-closed-loop control
method in [15]. Ref. [16] investigated two different
hyper-chaotic secure communication schemes by using
generalized function projective synchronization. More
general forms of MFPS have been extensively investi-
gated in [17–21].

Most of the researches mentioned above have con-
centrated on the chaotic systems without consider-
ing disturbances.However, disturbances are regrettably
unavoidable in the practical situations. Ref. [22] dealed
with the MFPS problem of different hyper-chaotic sys-
tems subject to external disturbances. Ref. [23] inves-
tigated MFPS in network with unknown parameters
and mismatch parameters. In [22,23], the results pre-
sented are only applicable to the case when the dis-
turbance bound is known. However, in general, it is
difficult to have the full information about the distur-
bance in practice. Thus, designing control system to
attenuate disturbance with unknown bound is impor-
tant and useful in practical applications. The work
in [24–27] studied the problems of robust and adap-
tive control for both linear and nonlinear systems with
unknown bounded disturbances, while a novel control
design method is proposed which can make the under-
lying system more adaptive and robust to parameter
changes and system uncertainties. In [24–27], the sys-
tem model is divided into two parts, i.e., the linear part
and the uncertain term, and assumes that the uncertain
term can be linearly parameterized. Obviously, most
of the chaotic systems do not belong to this class of
dynamical systems. Therefore, synchronization of two
chaotic systems with unknown bounded disturbances
is becoming an important issue. In [28,29], authors
proposed a robust adaptive sliding mode controller to
realize complete synchronization between two differ-
ent chaotic systems with unknown bounded uncertain-
ties and external disturbances. But proposed method
in [28,29] is only applicable to complete synchroniza-
tion. Thus, how to achieve MFPS of chaotic systems
with unknown bounded disturbances is still an open

and challenging problem. In this paper, a new robust
adaptive control law of MFPS is proposed for two dif-
ferent chaotic systems with parametric uncertainties
and external disturbances, in which the norm-bounds
of all random uncertainties are not necessarily to be
known, and the compensator gains canbe automatically
adjusted to suitable constants. To the best of authors’
knowledge, the above issue has not been fully investi-
gated yet.

The organization of this paper is as follows: In
Sect. 2, some preliminaries are given. In Sect. 3, the
MFPS scheme of a class of chaotic systems with para-
metric uncertainties and external disturbances is given.
In Sect. 4, we will choose two groups of examples to
show the effectiveness of the proposed method. The
conclusion is finally drawn in Sect. 5.

2 Model description and preliminaries

Consider a class of chaotic systems with paramet-
ric uncertainties and external disturbances, which is
described by

ẋ = f (x) + F(x)(l1 + d1) + d2, (1)

where x ∈ Rn is the state vector, f : Rn → Rn is a
continuous vector function, F : Rn → Rn×m is a func-
tion matrix, l1 ∈ Rm is the parameter vector, d1 ∈ Rm

and d2 ∈ Rn are the vectors of parametric uncertainty
and external disturbance, respectively. Eq. (1) is con-
sidered as the drive system, and the controlled response
system is given by

ẏ = g( y) + G( y)(l2 + d3) + d4 + u, (2)

where y ∈ Rn is the state vector of the response sys-
tem, g : Rn → Rn is a continuous vector function,
G : Rn → Rn×m is a function matrix, l2 ∈ Rm is the
parameter vector, d3 ∈ Rm and d4 ∈ Rn are the vec-
tors of parametric uncertainty and external disturbance,
respectively. u ∈ Rn is the vector controller.

From a practical point of view, all of paramet-
ric uncertainties and external disturbances di (i =
1, 2, 3, 4) are assumed to be bounded.

Assumption 1 All of parametric uncertainties and
external disturbances di (i = 1, 2, 3, 4) are norm
bounded, that is

‖di‖ ≤ d∗
i , i = 1, 2, 3, 4, (3)

where d∗
i ∈ R+ (i = 1, 2, 3, 4) are the upper bound

of the norm of di (i = 1, 2, 3, 4).
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We define the error vector

e = �(t)x − y, (4)

where �(t) is an n-order diagonal matrix, i.e., �(t) =
diag(α1(t), α2(t), . . . , αn(t)). The scaling functions
αi (t) (i = 1, 2, . . . , n) are continuously differentiable,
bounded, and αi (t) �= 0 for all t .

Definition 1 (MFPS) For the drive system (1) and the
response system (2), it is said that the system (1) and
the system (2) are modified function projective syn-
chronization, if there exists a scaling function matrix
�(t) such that lim

t→∞ ‖e(t)‖ = 0.

Our objective in this paper is to design a controller
u for system (2) under Assumption 1, such that the
controlled response system (2) could be MFPS to the
drive system (1), i.e., limt→∞‖e‖ = 0.

3 Controller design

In this section, we investigate the problem of MFPS
with unknown bounded parametric uncertainties and
external disturbances.

Theorem 1 For given synchronization scaling func-
tion matrix �(t) and any initial conditions x(0), y(0),
if the Assumption 1 is held, theMFPS between the drive
system (1) and the response system (2) will occur via
the control law as below

u = u1 + u2, (5)

u1 = �(t) f (x) − g( y) + �(t)F(x)l1
− G( y)l2 + �̇(t)x, (6)

u2 = d̂1�(t)F(x)sgn(FT (x)�(t)e)

+ d̂2�(t)sgn(�(t)e) + d̂3G( y)sgn(GT ( y)e)

+ d̂4sgn(e) + k1e, (7)
˙̂d1 = k2eT�(t)F(x)sgn(FT (x)�(t)e), (8)
˙̂d2 = k3eT�(t)sgn(�(t)e), (9)
˙̂d3 = k4eTG( y)sgn(GT ( y)e), (10)
˙̂d4 = k5eT sgn(e), (11)

where e = �(t)x − y, k1, k2, k3, k4, k5 are arbi-
trary positive constants and sgn(·) denotes the sign
function. In Eq. (5), u1 is the nonlinear controller, u2
is the compensator to be designed to compensate the
uncertainties, where the gains of compensator can be
automatically adapted to suitable constants.

Proof The time derivative of Eq. (4) is

ė = �(t)ẋ − ẏ + �̇(t)x. (12)

Substituting (1), (2) into (12), we have

ė = �(t)( f (x) + F(x)(l1 + d1) + d2)

− g( y) − G( y)(l2 + d3) − d4 − u + �̇(t)x.

(13)

Substituting (5), (6) and (7) into (13), we have

ė = �(t)F(x)d1 + �(t)d2 − G( y)d3(t) − d4
− d̂1�(t)F(x)sgn(FT (x)�(t)e)

− d̂2�(t)sgn(�(t)e) − d̂3G( y)sgn(GT ( y)e)

− d̂4sgn(e) − k1e. (14)

Construct the Lyapunov function

V = 1

2
eT e + 1

2k2
(d̂1 − d∗

1 )2 + 1

2k3
(d̂2 − d∗

2 )2

+ 1

2k4
(d̂3 − d∗

3 )2 + 1

2k5
(d̂4 − d∗

4 )2. (15)

With the choice of Eq. (8), (9), (10), and (11), the time
derivative of V along the trajectories of Eq. (14) is

V̇ = eT ė + 1

k2
(d̂1 − d∗

1 )
˙̂d1 + 1

k3
(d̂2 − d∗

2 )
˙̂d2

+ 1

k4
(d̂3 − d∗

3 )
˙̂d3 + 1

k5
(d̂4 − d∗

4 )
˙̂d4

= eT [�(t)F(x)d1 + �(t)d2 − G( y)d3 − d4
− d̂1�(t)F(x)sgn(FT (x)�(t)e)

− d̂2�(t)sgn(�(t)e) − d̂3G( y)sgn(GT ( y)e)

− d̂4sgn(e) − k1e]
+ (d̂1 − d∗

1 )eT�(t)F(x)sgn(FT (x)�(t)e)

+ (d̂2 − d∗
2 )eT�(t)sgn(�(t)e)

+ (d̂3 − d∗
3 )eT G( y)sgn(GT ( y)e)

+ (d̂4 − d∗
4 )eT sgn(e)

= eT�(t)F(x)d1 + eT�(t)d2
− eT G( y)d3 − eT d4 − k1e

T e

− d∗
1 e

T�(t)F(x)sgn(FT (x)�(t)e)

− d∗
2 e

T�(t)sgn(�(t)e)

− d∗
3 e

T G( y)sgn(GT ( y)e)

− d∗
4 e

T sgn(e)

≤ ‖d1‖‖eT�(t)F(x)‖ + ‖d2‖‖eT�(t)‖
+‖d3‖‖eT G( y)‖ + ‖d4‖‖eT ‖
− d∗

1‖eT�(t)F(x)‖ − d∗
2‖eT�(t)‖

− d∗
3‖eT G( y)‖ − d∗

4‖eT ‖ − k1e
T e
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= (‖d1‖ − d∗
1 )‖eT�(t)F(x)‖ + (‖d2‖ − d∗

2 )‖eT�(t)‖
(‖d3‖ − d∗

3 )‖eT G( y)‖ + (‖d4‖ − d∗
4 )‖eT ‖ − k1e

T e

≤ −k1e
T e. (16)

According to theLyapunov stability theorem, e, d̂1−
d∗
1 , d̂2−d∗

2 , d̂3−d∗
3 , and d̂4−d∗

4 are bounded. Because
chaos systems are bounded, Assumption 1 is held, ė is
bounded, i.e., ė ∈ L∞. According to Eq. (16), we have∫ ∞

0
eT e ≤ − 1

k1

∫ ∞

0
V̇ = 1

k1
(V (0) − V (∞))<∞.

(17)

So, e ∈ L2. According to Barbalat’s Lemma, e → 0
with t → ∞. The MFPS is achieved under the certain
chosen controller u inEq. (5). This completes the proof.

	

Remark 1 It is easy to see that norm-boundeds of all
parametric uncertainties and external disturbances have
no effect on V̇ . Thus, proposed scheme can achieve
synchronization when the bounds of parametric uncer-
tainties and external disturbances are unknown.

Remark 2 In [28,29], a robust adaptive sliding mode
controller was proposed to realize complete synchro-
nization between two different chaotic systems with
unknown bounded uncertainties and external distur-
bances. But the approach in [28,29] cannot be directly
applied toMFPS. Thus, how to achieveMFPS between
two different chaotic systems with unknown bounds of
parametric uncertainties and external disturbances is
essential and significant in both theory and applica-
tions.

If g = f , G = F, and l1 = l2 = l , then the drive
system (1) and the response system (2) are two identical
chaotic systems with different parametric uncertainties
and external disturbances, which are described as fol-
lows

ẋ = f (x) + F(x)(l + d1) + d2, (18)

ẏ = f ( y) + F( y)(l + d3) + d4 + u, (19)

where d1, d3 are the parametric uncertainties of the
drive system and the response system, respectively. d2,
d4 are the external disturbances of the drive system and
the response system, respectively.

Corollary 1 For given synchronization scaling func-
tion matrix �(t) and any initial conditions x(0), y(0),
if the Assumption 1 is held, theMFPS between the drive

system (18) and the response system (19)will occur via
the control law as below

u = u1 + u2, (20)

u1 = f̃ + F̃l + �̇(t)x, (21)

u2 = d̂1�(t)F(x)sgn(FT (x)�(t)e)

+ d̂2�(t)sgn(�(t)e) + d̂3F( y)sgn(FT ( y)e)

+ d̂4sgn(e) + k1e, (22)
˙̂d1 = k2eT�(t)F(x)sgn(FT (x)�(t)e), (23)
˙̂d2 = k3eT�(t)sgn(�(t)e), (24)
˙̂d3 = k4eT F( y)sgn(FT ( y)e), (25)
˙̂d4 = k5eT sgn(e), (26)

where f̃ = �(t) f (x)− f ( y), F̃ = �(t)F(x)−F( y),
e = �(t)x− y, k1, k2, k3, k4, k5 are arbitrary positive
constants and sgn(·) denotes the sign function.
Proof The time derivative of Eq. (4) is

ė = �(t)ẋ − ẏ + �̇(t)x. (27)

Substituting (18), (19) into (27), we have

ė = �(t)( f (x) + F(x)(l + d1) + d2)

− f ( y) − F( y)(l + d3) − d4 − u + �̇(t)x. (28)

Substituting (20), (21), and (22) into (28), we have

ė = �(t)F(x)d1 + �(t)d2 − F( y)d3 − d4
− d̂1�(t)F(x)sgn(FT (x)�(t)e)

− d̂2�(t)sgn(�(t)e) − d̂3F( y)sgn(FT ( y)e)

− d̂4sgn(e) − k1e. (29)

Construct the Lyapunov function

V = 1

2
eT e + 1

2k2
(d̂1 − d∗

1 )2 + 1

2k3
(d̂2 − d∗

2 )2

+ 1

2k4
(d̂3 − d∗

3 )2 + 1

2k5
(d̂4 − d∗

4 )2. (30)

With the choice of Eq. (23), (24), (25), and (26),
the time derivative of V along the trajectories of
Eq. (29) is

V̇ = eT ė + 1

k2
(d̂1 − d∗

1 )
˙̂d1 + 1

k3
(d̂2 − d∗

2 )
˙̂d2

+ 1

k4
(d̂3 − d∗

3 )
˙̂d3 + 1

k5
(d̂3 − d∗

3 )
˙̂d4

= eT [�(t)F(x)d1 + �(t)d2 − F( y)d3 − d4
− d̂1�(t)F(x)sgn(FT (x)�(t)e)

− d̂2�(t)sgn(�(t)e) − d̂3F( y)sgn(FT ( y)e)
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− d̂4sgn(e) − k1e]
+ (d̂1 − d∗

1 )eT�(t)F(x)sgn(FT (x)�(t)e)

+ (d̂2 − d∗
2 )eT�(t)sgn(�(t)e)

+ (d̂3 − d∗
3 )eT F( y)sgn(FT ( y)e)

+ (d̂4 − d∗
4 )eT sgn(e)

= eT�(t)F(x)d1 + eT�(t)d2
− eT F( y)d3 − eT d4 − k1e

T e

− d∗
1 e

T�(t)F(x)sgn(FT (x)�(t)e)

− d∗
2 e

T�(t)sgn(�(t)e)

− d∗
3 e

T F( y)sgn(FT ( y)e)

− d∗
4 e

T sgn(e)

≤ ‖d1‖‖eT�(t)F(x)‖ + ‖d2‖‖eT�(t)‖
+‖d3‖‖eT F( y)‖ + ‖d4‖‖eT ‖
− d∗

1‖eT�(t)F(x)‖ − d∗
2‖eT�(t)‖

− d∗
3‖eT F( y)‖ − d∗

4‖eT ‖ − k1e
T e

= (‖d1‖ − d∗
1 )‖eT�(t)F(x)‖ + (‖d2‖ − d∗

2 )‖eT�(t)‖
(‖d3‖ − d∗

3 )‖eT F( y)‖ + (‖d4‖ − d∗
4 )‖eT ‖ − k1e

T e

≤ −k1e
T e. (31)

According to theLyapunov stability theorem, e, d̂1−
d∗
1 , d̂2−d∗

2 , d̂3−d∗
3 , and d̂4−d∗

4 are bounded. Because
chaos systems are bounded, Assumption 1 is held, ė is
bounded, i.e., ė ∈ L∞. According to Eq. (31), we have∫ ∞

0
eT e ≤ − 1

k1

∫ ∞

0
V̇

= 1

k1
(V (0) − V (∞)) < ∞. (32)

So, e ∈ L2. According to Barbalat theorem, e → 0
with t → ∞. The MFPS is achieved under the certain
chosen controller u in Eq. (20). This completes the
proof. 	


4 Illustrative examples

In this section, two groups of examples are provided to
verify the effectiveness of the proposed schemes,which
are chaotic Lorenz and Chen systems and two identical
hyper-chaotic Lorenz systems.

4.1 MFPS of Lorenz and Chen systems

In this subsection, we will take chaotic Lorenz and
Chen systems as example to verify the effectiveness
of the proposed scheme in Theorem 1.

The Lorenz system is described as follows⎧⎪⎨
⎪⎩
ẋ1 = a(x2 − x1),

ẋ2 = (b − x3)x1 − x2,

ẋ3 = x1x2 − cx3,

(33)

where x1, x2, and x3 are state variables, a, b, and c
are system parameters. When three real parameters
a = 10, b = 28, c = 8/3, the system (33) shows
chaotic behavior. Considering parametric uncertainties
and external disturbances, rewriting Eq. (33) in the
forms of Eq. (1), we can obtain the drive system as
follows⎡
⎣ ẋ1
ẋ2
ẋ3

⎤
⎦ =

⎡
⎣ 0

−x1x3 − x2
x1x2

⎤
⎦

+
⎡
⎣ x2 − x1 0 0

0 x1 0
0 0 −x3

⎤
⎦

⎡
⎣a
b
c

⎤
⎦

+
⎡
⎣ x2 − x1 0 0

0 x1 0
0 0 −x3

⎤
⎦

⎡
⎣ d11
d12
d13

⎤
⎦

+
⎡
⎣ d21
d22
d23

⎤
⎦ . (34)

The Chen system is described as follows⎧⎪⎨
⎪⎩

ẏ1 = d(y2 − y1),

ẏ2 = −y1y3 + ( f − d)y1 + f y2,

ẏ3 = y1y2 − ey3,

(35)

where y1, y2, and y3 are state variables, d, e, and f are
system parameters. When three real parameters d =
35, e = 3, f = 28, the system (35) shows chaotic
behavior. The controlled Chen system with parametric
uncertainties and external disturbances as the response
system is described as⎡
⎣ ẏ1
ẏ2
ẏ3

⎤
⎦ =

⎡
⎣ 0

−y1y3
y1y2

⎤
⎦

+
⎡
⎣ y2 − y1 0 0

−y1 0 y1 + y2
0 −y3 0

⎤
⎦

⎡
⎣ d
e
f

⎤
⎦

+
⎡
⎣ y2 − y1 0 0

−y1 0 y1 + y2
0 −y3 0

⎤
⎦

⎡
⎣ d31
d32
d33

⎤
⎦

+
⎡
⎣ d41
d42
d43

⎤
⎦ +

⎡
⎣ u1
u2
u3

⎤
⎦ . (36)
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In the simulation, the parametric uncertainties and
external disturbances of the drive system and the
response system are, respectively, set as follows:⎡
⎣ d11
d12
d13

⎤
⎦ =

⎡
⎣ sin(π t/6)

cos(π t/6)
0.1 cos(π t/6)

⎤
⎦ ,

⎡
⎣ d21
d22
d23

⎤
⎦ =

⎡
⎢⎣

sin(t)
exp(t)

1+exp(t)
− sin(t)

⎤
⎥⎦ ,

⎡
⎣ d31
d32
d33

⎤
⎦ =

⎡
⎣ cos(π t/6)
0.1 sin(π t/6)
sin(π t/6)

⎤
⎦ ,

⎡
⎣ d41
d42
d43

⎤
⎦ =

⎡
⎢⎣

cos(t)
− exp(t)

1+exp(t)
− cos(t)

⎤
⎥⎦ .

It can be seen that the maximum norms of all
parametric uncertainties and external disturbances are
bounded.

We take the initial states as x(0) = [9 6 18]T , y(0)
= [−6 − 8 9]T . We take d̂1(0) = 1, d̂2(0) =
2, d̂3(0) = 3, and d̂4(0) = 4. The scaling functions
take α1(t) = 1 + 0.5 sin(π t/6), α2(t) = exp(t)/(1 +
exp(t)), and α3(t) = −1 − 0.5 sin(π t/6). The con-
troller u can be designed by Theorem 1, where k1 =
1, k2 = 1/50, k3 = 1/50, k4 = 1/50, and k5 = 1/50.
The simulation results are presented in Fig. 1, 2, and
3. Figure 1 displays the synchronized attractors in R3.
The time evolution of the MFPS errors is depicted in
Fig. 2, which displays e → 0 with t → ∞. Thus,
the required synchronization has been achieved with

−40
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−100
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50
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z

Fig. 1 Synchronized attractors in R3
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Fig. 2 Synchronization errors of chaotic Lorenz and Chen sys-
tems
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d 2
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0
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8

d 3
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Time

d 4

Fig. 3 Time evolution of the compensator gains

our designed control law (5). Figure 3 displays the
time evolution of the compensator gains d̂1, d̂2, d̂3,
and d̂4.

4.2 MFPS of two hyper-chaotic Lorenz systems

Because hyper-chaotic systems have more complex
behavior than chaotic systems, which are more suit-
able for secure communication, we consider the exam-
ple of two identical hyper-chaotic Lorenz systems with
parametric uncertainties and external disturbances.

Hyper-chaotic Lorenz system is defined below
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⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ẋ1 = a(x2 − x1) + cx4,

ẋ2 = x1(d − x3) − x2,

ẋ3 = x1x2 − bx3,

ẋ4 = −x1 − ax4,

(37)

where x1, x2, x3, and x4 are state variables. When the
four real parameters a = 1, b = 0.7, c = 1.5, and
d = 26, the system (37) shows chaotic behavior.

Considering parametric uncertainties and external
disturbances, rewriting Eq. (37) in the forms of Eq. (18)
and Eq. (19), we can obtain the drive system and the
response system as follows⎡
⎢⎢⎣
ẋ1
ẋ2
ẋ3
ẋ4

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0
−x1x3 − x2

x1x2
−x1

⎤
⎥⎥⎦

+

⎡
⎢⎢⎣
x2 − x1 0 x4 0

0 0 0 x1
0 −x3 0 0

−x4 0 0 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣
a1
b1
c1
d1

⎤
⎥⎥⎦

+

⎡
⎢⎢⎣
x2 − x1 0 x4 0

0 0 0 x1
0 −x3 0 0

−x4 0 0 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣
d11
d12
d13
d14

⎤
⎥⎥⎦

+

⎡
⎢⎢⎣
d21
d22
d23
d24

⎤
⎥⎥⎦ , (38)

⎡
⎢⎢⎣
ẏ1
ẏ2
ẏ3
ẏ4

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0
−y1y3 − y2

y1y2
−y1

⎤
⎥⎥⎦

+

⎡
⎢⎢⎣
y2 − y1 0 y4 0

0 0 0 y1
0 −y3 0 0

−y4 0 0 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣
a2
b2
c2
d2

⎤
⎥⎥⎦

+

⎡
⎢⎢⎣
y2 − y1 0 y4 0

0 0 0 y1
0 −y3 0 0

−y4 0 0 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣
d31
d32
d33
d34

⎤
⎥⎥⎦ +

⎡
⎢⎢⎣
d41
d42
d43
d44

⎤
⎥⎥⎦

+

⎡
⎢⎢⎣
u1
u2
u3
u4

⎤
⎥⎥⎦ . (39)

In the simulation, the parametric uncertainties and
external disturbances of the drive system and the
response system are, respectively, set as follows:

⎡
⎢⎢⎣
d11
d12
d13
d14

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
0.1 sin(t)
0.1 cos(t)
cos(t)
sin(t)

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣
d21
d22
d23
d24

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

sin(t)
cos(t)

0.1 cos(t)
0.1 sin(t)

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣
d31
d32
d33
d34

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
0.1 cos(t)
0.1 sin(t)
sin(t)
cos(t)

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣
d41
d42
d43
d44

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

cos(t)
sin(t)

0.1 sin(t)
0.1 cos(t)

⎤
⎥⎥⎦ .

It is easy to see the maximum norms of parametric
uncertainties and external disturbances are bounded,
which do not need to know in numerical simulation.

We take the initial states as x(0) = [−15 6 −
10 2]T , y(0) = [8 − 3 15 − 6]T . We take d̂1(0) = 1,
d̂2(0) = 2, d̂3(0) = 3, and d̂4(0) = 4. The scal-
ing functions take α1(t) = 1 − 0.5 sin(t), α2(t) =
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0
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Fig. 4 Synchronization errors of two hyper-chaotic Lorenz sys-
tems
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Fig. 5 Time evolution of the compensator gains
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sin(t) + 2, α3(t) = 1, and α4(t) = sin(t) + 3. The
controller u can be designed by Corrolary 1, where
k1 = 1, k2 = 1/20, k3 = 1/5, k4 = 1/20, and
k5 = 1. Figure 4 displays the MFPS error e → 0
with t → ∞, which implies that the required synchro-
nization has been achieved with our designed control
law (20). Figure 5 displays the time evolution of the
compensator gains d̂1, d̂2, d̂3, and d̂4.

5 Conclusion

In this paper, a new MFPS scheme is proposed for a
class of chaotic systems with parametric uncertain-
ties and external disturbances. There is no need to
know exactly bounds of parametric uncertainties and
external disturbances, and the gains of the compen-
sators can be automatically adapted to suitable con-
stants. The proposed scheme can also be used in var-
ious types of synchronization. Numerical simulations
are provided to show the effectiveness of the theoretical
results obtained.
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