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Abstract In this paper, a procedure is proposed
to use implicit Runge–Kutta method as the integra-
tion method for the solution of index-3 differential–
algebraic equation which comes from constrained
dynamic problems. The position constraints of a multi-
body system are usually a set of nonlinear algebraic
equations. The iteration of the position constraint equa-
tions is embedded into the iteration of the nonlinear
algebraic equations that come from the implicit Runge–
Kutta method. These two iterations construct a two-
loop structure. By using the coordinate partitioning
technique, the independent coordinates are picked out
from the set of coordinates of the whole system. The
basic unknowns of the proposed method are the inde-
pendent velocities and positions. A symplectic implicit
Runge–Kutta method is used as the integration method
in the two-loop procedure so that the independent
velocities and positions can be obtained. The iteration
of the implicit Runge–Kutta method is the outer loop
in the two-loop procedure. A fixed-point iteration is
brought in the outer loop to avoid the numerical dif-
ferentiation that is used in Newton’s method to get the
Jacobian matrix of the right-hand function. Newton’s
method is used in the inner loop to solve the nonlinear
algebraic equations of the position constraints, and then
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the dependent position coordinates can be obtained.
The dependent velocities may be determined by solv-
ing a set of linear algebraic equations. The variable
step size strategy of the two-loop procedure, which is
based on the estimation of the error and the conver-
gence criterion, is proposed for the practical applica-
tion of this method. Two numerical examples are pre-
sented to demonstrate the efficiency of the proposed
method.

Keywords DAE · State-space-based method · Implicit
integration method · Iteration

1 Introduction

Constrained dynamic systems can be treated as the
combination of two coupled subsystems: a structural
part and the constraints which are acting on the struc-
ture. A set of differential–algebraic equations (DAEs)
contain two parts: a set of ordinary differential equa-
tions (ODEs) and a set of algebraic equations. The
ODEs in the DAEs describe the dynamic behavior of
the structural subsystem, and the algebraic equations in
the DAEs describe the constraints. So DAEs are often
used to describe constrained dynamic systems. Multi-
body systems are a typical class of constrained sys-
tems, and dynamic problems of multibody systems can
be described in a general way by using DAEs as the
mathematical models [1].
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In multibody systems, different bodies are con-
nected by joints, and the motions of the bodies are
restrained by these joints. When the dynamic prob-
lems of multibody systems are modeled, the mathe-
matical models of the joints are a set of algebraic equa-
tions, and these algebraic equations are called posi-
tion constraints. The DAEs of holonomic multibody
systems consist of a set of ODEs which describe the
dynamic behavior of the bodies and the position con-
straints. Besides the position constraints, there exist
velocity constraints and acceleration constraints in
multibody systems. For holonomic systems,the veloc-
ity constraints come from the differentiation of the
position constrains, and the acceleration constraints
are the result of the differentiation of the velocity
constraints. These two sets of equations are both lin-
ear algebraic equations. In most multibody systems,
the algebraic equations of the position constraints are
nonlinear, so the DAEs of multibody system dynam-
ics are usually index-3 [2]. For index-3 DAEs, the
numerical methods which are designed for low index
problems fail, because the constraints may be vio-
lated. Several numerical methods have been proposed
to solve index-3 DAEs. Some methods are intro-
duced in [3], and a comparative study can be found
in [4].

Baumgarte’s stabilizationmethod is themost famous
method for index-3DAEs. In Baumgarte’s stabilization
method, a stabilization term is introduced to control
the violation of the constraints. The position constraint
equations and the velocity constraint equations are not
solved in Baumgarte’s method, so the constraints are
not satisfied exactly in this method.

There are several other methods in which the con-
straint equations are directly solved so that the con-
straints are exactly satisfied.Oneof thesemethods is the
project method. The project method introduces extra
Lagrangemultipliers tomake sure that the velocity con-
straints and the position constraints are satisfied. In this
method, all the generalized coordinates are integrated
at each time step. The extra Lagrange multipliers also
need to be solved in the project method, so this method
is inefficient.

There is anothermethod called the state-space-based
method which can make sure that all the constraints
in multibody systems are satisfied strictly. The ODEs
and the algebraic equations are both solved in the state-
space-basedmethod to get the result. In the state-space-
based method, a technique called coordinate partition-

ing is used to divide the coordinates of the system into
two sets: One is the set of the independent coordinates,
and the other is the set of the dependent coordinates.
Integration methods are used to solve the ODEs, and in
this process, only the independent coordinates are inte-
grated to get the independent velocities and positions.
Then, the independent positions are used in an itera-
tive method to solve the nonlinear algebraic equations
so that the dependent positions can be obtained, and
the dependent velocities can be obtained by solving a
set of linear velocity constraint equations. If the DAEs
are solved by using the state-space-based method, dif-
ferent kinds of numerical methods designed for ODEs
and algebraic equations need to be handled together
to form a resultant algorithm to solve the index-3
DAEs.

Any integration method that works for ODEs can be
used as the integrationmethod in the numerical method
for the index-3 DAEs. If the system is a stiff system, an
implicit integration method is needed. Here arises the
problem of how to use the implicit integration method
in the numerical method, because the implicit integra-
tion method brings an extra set of nonlinear algebraic
equations. This set of nonlinear algebraic equations
should be handled togetherwith the nonlinear algebraic
equations of the position constraints. The two differ-
ent sets of nonlinear algebraic equations both need to
be iterated, so there exist two loops of iteration in the
numerical method for the index-3 DAEs. One loop is
the iteration of the nonlinear algebraic equations that
describe the position constraints of the system, and the
other loop is for the nonlinear algebraic equations that
come from the implicit integration method. These two
loops can be combined to form a bigger loop, and if
the integration method is HHT method, this method is
called the HHT-I3 method [5,6]. In state-space-based
methods, these two loops can be executed separately,
and it means that the dependent velocities and posi-
tions in the loop of the implicit integration method are
treated as knowns. The loop of iterating the nonlinear
position constraint equations and the solving of the lin-
ear velocity constraint equations can be embedded into
the loop of iterating the implicit integration method,
and then, we get a two-loop procedure. There are dif-
ferent two-loop procedures based on different implicit
integration methods.

Different implicit integration methods have been
used in the state-space-based method as integration
methods; for example: implicit Runge–Kutta method
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[7,8],Rosenbrock–Nystromformula [9], backwarddif-
ferentiation formulas [10], and the Newmark method
[11]. The nonlinear equations of implicit integration
methods are usually solved by using Newton’s method.
The Jacobianmatrix of the nonlinear function is needed
in Newton’s method. In most conditions, this matrix
cannot be obtained analytically if the DAEs come
from multibody system dynamics, and consequently,
a numerical differential procedure is needed to get the
Jacobianmatrix. Fisette andVaneghem [11] proposed a
method to simplify the progress of calculating the Jaco-
bian matrix of the implicit integration method. Haug
et al. pointed out that the method used in Ref. [11]
ignored some terms; this iterative method is actually a
quasi-Newton method, and they improved the method
to make sure the iterative method is Newton’s method
[12].

The calculation of the Jacobian matrix of the non-
linear algebraic equations of the implicit integration
method is difficult if the model is complex. Shabana
and Hussein [13,14] proposed a two-loop procedure
with the Newmark method or HHT method as the
integration method, and a fixed-point iterative method
is used to avoid the calculation of the extra Jaco-
bian matrix. The numerical accuracy of the Newmark
method or HHT method is of order 2 or 1. For the
problems of multibody system dynamics, sometimes a
high-order integrationmethod is needed to integrate the
coordinates.

Runge–Kutta methods are a class of integration
methods that are widely used to solve ODEs, and an
implicit Runge–Kutta method can be introduced to
integrate the coordinates in the two-loop procedure.
The accuracy and efficiency of the two-loop procedure
canbe improvedby applying a high-orderRunge–Kutta
method. Under certain circumstances, the Newmark
method is symplectic. Explicit Runge–Kutta meth-
ods cannot be symplectic, while there are symplectic
Runge–Kutta methods which are implicit. We can keep
the integration method symplectic by choosing a sym-
plectic implicit Runge–Kutta method as the integration
method in the two-loop procedure.

In this paper, we use a symplectic implicit Runge–
Kutta method as the integrationmethod in the two-loop
procedure. A fixed-point iterative method is introduced
to solve the nonlinear algebraic equations that come
from the implicit Runge–Kutta method, and the struc-
ture of the two-loop procedure is redesigned because
thenonlinear algebraic equations of the implicitRunge–

Kutta method are different from the nonlinear alge-
braic equations of the Newmark method. As a state-
space-based method, the new two-loop procedure can
make sure that the violation of the constraint equations
is extremely small. It offers advantages over existing
methods because the numerical difference is no more
needed when the implicit Runge–Kutta method is used
and it is stable for long-time simulation. Compared to
the two-loop procedure based on theNewmarkmethod,
this new two-loop procedure is more efficient. Sec-
tion 2 first introduces the DAE of multibody system
dynamics and the two-loop procedure with the New-
markmethod as the integrationmethod. Section 3 intro-
duces a fixed-point iteration for the implicit Runge–
Kutta method and proposes a new two-loop procedure
with the implicit Runge–Kutta method as the integra-
tion method. Two numerical examples are presented in
Sect. 4 to illustrate the specialities of the new two-loop
procedure.

2 DAEs of multibody system dynamics
and state-space-based methods

The form of the DAEs of multibody system dynam-
ics is shown in this section, and the characteristic
of the DAEs is introduced. We discuss the multi-
body systems as examples of constrained dynamic
systems in this paper. The methods discussed in this
paper are especially suited for but not limited to the
dynamic problems of multibody systems. The meth-
ods mentioned here can also be used to solve the
DAEs that come from other constraint dynamic prob-
lems. The basic idea of the state-space-based meth-
ods and the two-loop procedure with the Newmark
method as the integration method are reviewed in this
section.

2.1 DAEs of multibody system dynamics

In this paper, we analyze the dynamics of multibody
systems with holonomic and non-scleronomic con-
straints. The DAEs of this kind of constraint systems
are [1,15]:

{
Mq̈ + CT

q λ = Q

C(q, t) = 0
(1)
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The DAEs (1) have a form of mixed set of the second-
order ODEs (2) and the algebraic equations (3):

Mq̈ + CT
q λ = Q (2)

C(q, t) = 0 (3)

Equation (2) is the set of ODEs that describe the
dynamic behavior of the system; Eq. (3) is the set of
position constraint equations, and in multibody sys-
tems these equations are usually nonlinear. In these
equations, M is the mass matrix, q is the vector of
the system coordinates, λ is the vector of the Lagrange
multipliers, Q is the vector of the generalized force,
C is the vector of the position constraint functions, t
is time, and Cq is the Jacobian matrix of the position
constraint equations, Cq = ∂C/∂q .

The dynamic behavior of the system is governed by
Eqs. (2) and (3) together. We set the number of the
ordinary differential equations in Eq. (2) as nq and the
number of the algebraic equations in Eq. (3) as nc. nq
equals to the number of positions in q, and nc is the
number of the Lagrange multipliers λ.

By differentiating the position constraint equations
with respect to time, we get the velocity constraint
equations:

Cqq̇ = −Ct (4)

where Ct = ∂C/∂t .
By differentiating the velocity constraint equations

with respect to time, we get the acceleration constraint
equations.

Cqq̈ = Qd (5)

where Qd = −((Cqq̇)q q̇ + 2Cqt q̇ + Ctt ).
Most DAEs with the form of Eq. (1) can only be

solved numerically. If the solutions resulted from ODE
(2) satisfy the position constraint equations (3), the
velocity constraint equations (4) and the acceleration
constraint equations (5) will be satisfied automatically.
However, the position constraint equations (3) cannot
be satisfied exactly when the DAEs are solved by using
numericalmethods.The algebraic equations inEqs. (3),
(4), and (5) may be violated when numerical methods
which are constructed for the ODE are used to solve
Eq. (2), and this may lead to the failure of the solution.

2.2 The basic idea of the state-space-based methods

The state-space-based methods are based on the accel-
eration constraint equation, the velocity constraint
equations, and the position constraint equations. So the
result of the state-space-based methods can satisfy the
constraint on position level, velocity level, and accel-
eration level at the same time.

The degree of freedom of a holonomic system is
the number of the coordinates minus the number of
the independent constraints, so the degree of freedom
of a multibody system is less than the number of the
position coordinates that appear in the corresponding
DAE. We set the number the degree of freedom of
the system as nDOF , nDOF = nq − nc. We can use
nDOF independent coordinates to describe the behav-
ior of the system. The dependent coordinates can be
determined by solving the constraint equations. In the
state-space-based methods, we integrate nDOF inde-
pendent accelerations to get the independent veloci-
ties and positions of the next time step, and then use
the velocity constraint equation (4) and the position
constraint equation (3) to get the dependent veloci-
ties andpositions, respectively. Independent anddepen-
dent accelerations can be calculated together by solving
Eq. (6).

{
Mq̈ + CT

q λ = Q

Cqq̈ = Qd
(6)

The results are:

λ =
(
CqM

−1CT
q

)−1 (
CqM

−1Q − Qd

)
(7)

q̈ = M−1Q − M−1CT
q λ

= M−1Q − M−1CT
q

(
CqM

−1CT
q

)−1

(
CqM

−1Q − Qd

)
(8)

If we consider the dynamic equation (2), the posi-
tion constraint equation (3), the velocity constraint
equation (4), and the acceleration constraint equation
(5) together, the unknowns are the acceleration q̈ , the
velocity q̇ , the position q, and the Lagrange multipli-
ers λ. The number of the acceleration q̈ , the veloc-
ity q̇ , and the position q are all nq , and the number
of the Lagrange multipliers λ is nc. The total num-
ber of the unknowns is (3 × nq + nc). In Eqs. (2)–
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(5), there are (nq + 3 × nc) equations. The dif-
ference between the numbers of unknowns and the
equations is (2 × nq − 2 × nc), which equals (2 ×
nDOF ). Here, we need the same number of additional
equations so that the unknowns can be obtained. In
the state-space-based method, the integration method
gives the extra (2 × nDOF ) equations, and thus the
number of the unknowns equals the number of the
equations.

For a holonomic system, nq ordinary differential
equations in Eq. (2) and nc acceleration constraint
equations in Eq. (5) are used together, as Eq. (6),
to get nq accelerations in q̈ and nc Lagrange multi-
pliers in λ; (2 × nq − 2 × nc) algebraic equations
that come from integration method are solved to get
(nq − nc) independent velocities in q̇i and (nq − nc)
independent positions in qi ; nc position constraint
equations in Eq. (3) are solved to get nc dependent
positions in qd ; and nc velocity constraint equations
in Eq. (4) are solved to get nc dependent velocities
in q̇d .

To use the state-space-based methods, first we need
to find the independent coordinates. This procedure
is called coordinate partitioning. Coordinate partition-
ing can be done by decomposing the Jacobian matrix
Cq . LU decomposition, QR decomposition, and sin-
gular value decomposition (SVD) can all be used in
the coordinate partitioning technique, but the results
of QR decomposition and SVD are not the same as
the results of LU decomposition. The results of QR
decomposition and SVD are linear combinations of the
coordinates which can be treated as independent gen-
eralized coordinates, while LU decomposition picks
nDOF original coordinates as the independent coor-
dinates. In this paper, we choose LU decomposition
to get the independent coordinates of the constrained
systems.

After the process of coordinate partitioning,we need
to integrate the independent accelerations to get the
independent velocities and the independent positions.
The methods used to integrate the ODE can also be
used in the state-space-based methods to integrate the
independent coordinates. If the system is a stiff system,
we need to use implicit methods to integrate the inde-
pendent coordinates. Different from explicit methods,
implicit methods cannot get the solution directly. If the
integral methods are implicit methods, there exist extra
algebraic equations to be solved.

2.3 Fixed-point iteration of the Newmark method and
the two-loop procedure based on the Newmark
method

For a dynamic system without constraints, the mathe-
matical model is a set of second-order ODEs:

Mq̈ = Q (9)

The accelerations can be obtained by:

q̈ = M−1Q (10)

when time is fixed,M = M(q̇, q),Q = Q(q̇, q). We
set F = M−1Q, at time tn+1 we have:

q̈n+1 = F(qn+1, q̇n+1) (11)

At time tn , the position qn and the velocity q̇n are
known, and the acceleration q̈n can be calculated by
using Eq. (10). At tn+1, qn+1, q̇n+1, and q̈n+1 are all
unknowns, qn+1 and q̇n+1 in Eq. (11) can be eliminated
by the Newmark method:

{
qn+1 = qn + hq̇n + h2

2 ((1 − 2β)q̈n + 2βq̈n+1)

q̇n+1 = q̇n + h((1 − γ )q̈n + γ q̈n+1)

(12)

Equations (11) and (12) are combined to a single equa-
tion:

q̈n+1 = F(q̈n+1) (13)

Equation (13) is a set of algebraic equations, and
the unknown in Eq. (13) is the acceleration q̈n+1. The
function F = F(q, q̇) is a set of nonlinear functions
of q and q̇ when the equation comes from dynamic
problems of multibody systems, so Eq. (13) is a set of
nonlinear algebraic equations.

In the Newmark method, the position qn+1 and the
velocity q̇n+1 are treated as functions about accelera-
tion q̈n+1: q = q(q̈), q̇ = q̇(q̈). By using the New-
mark method, the second-order ODEs (9) is trans-
formed to the nonlinear algebraic equation (13). Equa-
tion (13) can be solved by using Newton’s method
which needs the Jacobian matrix ∂F/∂ q̈n+1 ; mean-
while, the form of Eq. (13) can also be used as the
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format of the fixed-point iteration directly. Once the
acceleration q̈n+1 is obtained by solving (13), the posi-
tion qn+1 and the velocity q̇n+1 can be calculated by
the Newmark method (12). Thus, the integration in a
time step is done.

Equation (13) is the combination of Eq. (11) and the
Newmark method (12). Besides the format of Eq. (13)
itself, the fixed-point iteration of the nonlinear alge-
braic equation (13) can also be based on Eq. (11) and
the Newmarkmethod (12). The iterative process is sep-
arated into two steps:

Step 1 Use the Newmark method (12) to calculate
the position (qn+1)

k and the velocity (q̇n+1)
k ;

Step 2 Use Eq. (11) to calculate the acceleration
(q̈n+1)

k .

The superscript k represents the kth step. Step 1
together with step 2 forms the kth step in the iteration
of the nonlinear algebraic equation (13). For ODEs (9),
this two-step iterative process is equivalent to the itera-
tive process based on the format of Eq. (13) itself. The
values of the position (qn+1)

k and the velocity (q̇n+1)
k

are calculated during the two-step iterative process,
while these values are not needed in the iteration of
Eq. (13) itself.

Based on the two-step fixed-point iteration of the
Newmark method, the two-loop procedure with the
Newmark method as integration method is constructed
to solve Eq. (6). TheODEs about the independent coor-
dinates are picked out from Eq. (8), and the two-step
fixed-point iterative process of the Newmark method is
used to solve these ODEs. The iteration of the nonlin-
ear algebraic equation (3) and the solving of the linear
algebraic equation (4) are arranged between the two
steps of the two-step process of the Newmark method.
Equation (12) gives the value of independent posi-
tion (qi )kn+1 and the velocity (q̇i )kn+1, and then, the
dependent position (qd)kn+1 and the velocity (q̇d)kn+1
are updated before the acceleration (q̈i )n+1 is calcu-
lated. The outer loop of the two-loop procedure is
the iterative process of the Newmark method, and the
inner loop is based on aNewton–Raphson algorithm for
Eq. (3).

The flow chart for the two-loop procedure using the
Newmark method as the integration method in a time
step is shown as follows:

Theoretically speaking, the coordinate partitioning
process is needed in each time step, but in most con-
ditions, the Jacobian matrix Cq does not change very
much in a short time, so in most cases, the decompo-
sition of Cq will pick out the same independent coor-
dinates in a period of time. Therefore, the coordinate
partitioning can be executed once in a time step or sev-
eral time steps.

Only the value of the acceleration is needed in the
process as the initial value; the initial value of the accel-
eration can be predicted by interpolation or using the
acceleration q̈n of the previous time step. For a given
independent acceleration (q̈i )n+1, the corresponding
independent velocity (q̇i )n+1 and position (qi )n+1 can
be calculated by Eq. (12). The dependent velocity
(q̇d)n+1 and position (qd)n+1 are given by the inner

123



A two-loop procedure based on implicit Runge–Kutta method 269

loop. The accelerationmust be updated at the last of the
outer loop when both the independent and dependent
velocity q̇n+1 and position qn+1 have been obtained.

Variable step size strategy, convergence criteria, and
the choice of the maximum time step size of the two-
loop procedure with the Newmark method have been
proposed in Ref. [14].

Besides the strategy of using the Newmark method
in the two-loop procedure, Shabana also proposed a
different format to use the independent coordinates to
compute the dependent coordinates in Ref. [13].[
Cq

Iin

]
q̇ =

[−Ct

q̇i

]
(14)[

Cq

Iin

]
�q =

[−C
0

]
(15)

where Iin is a Boolean matrix that contains zeros and
ones. By using the matrix Iin , the independent and
dependent coordinates do not need to be realigned. The
details can be found in Ref. [10,13]. Format (14) and
(15) are used in this paper to update the dependent posi-
tion and velocity.

3 Two-loop procedure based on implicit
Runge–Kutta method

In this section, we propose a new two-loop procedure
with an implicit Runge–Kutta method as the integra-
tion method. The fixed-point iterative method for the
implicitRunge–Kuttamethod is introduced inSect. 3.1,
and the whole structure of the new two-loop procedure
is presented in Sect. 3.2. The variable step size strat-
egy, convergence criteria, and the determining of the
maximum time step can be found in Sect. 3.3.

3.1 The fixed-point iterative method for implicit
Runge–Kutta method

Implicit Runge–Kuttamethod is widely used in solving
the stiff ODEs [16]. No explicit Runge–Kutta method
can be symplectic [17], so an advantage of implicit
Runge–Kutta method is that this method may be sym-
plectic. If the integration method is symplectic, the
result will remain numerically stable over a long sim-
ulation time. We choose Sun’s RadauII symplectic
Runge–Kutta method [18] of 3-stage order 5 as the
integration method in this paper. The coefficients of
this Runge–Kutta method can be found in Table 1.

Table 1 Sun’s RadauII symplectic Runge–Kutta method of 3-
stage order 5 [18]

4−√
6

10
16−√

6
72

328−167
√
6

1800
−2+3

√
6

450
4+√

6
10

328+167
√
6

1800
16+√

6
72

−2−3
√
6

450

1 85−10
√
6

180
85+10

√
6

180
1
18

16−√
6

36
16+√

6
36

1
9

Different from the Newmark method, Runge–Kutta
method is designed for the first-order ODE:

dy

dx
= f (x, y) (16)

To use implicit Runge–Kutta method to solve ODE
(9), ODE (9) should first be transformed to Eq. (16) by
setting y = [q̇ q]T .

The general formula of a s-stage implicit Runge–
Kutta method for the first-order ordinary differential
equation (16) is:

Ki = f

⎛
⎝xn + ci h, yn + h

s∑
j=1

ai j K j

⎞
⎠

i = 1, 2, . . . , s (17a)

yn+1 = yn + h
s∑

i=1

bi Ki (17b)

If the right-hand function f (x, y) is a nonlinear func-
tion of x and y, Eq. (17a) is a set of nonlinear algebraic
equations with Ki (i = 1, 2, . . . , s) as unknowns. This
set of nonlinear algebraic equations can be solved by
using Newton’s method, but there needs the extra Jaco-
bian matrix ∂ f/∂Ki . Even though the Jacobian matrix
∂ f/∂Ki may be simplified, the numerical differential
is still necessary [16].

For implicit Runge–Kutta methods, Ki (i = 1, 2,
. . . , s) are functions of yn+1. If we eliminate Ki (i = 1,
2, . . . , s) in Eq. (17b), Eq. (17b) becomes a set of non-
linear algebraic equations with yn+1 as unknowns:

yn+1 = f (yn+1) (18)

Equation (18) is a set of nonlinear algebraic equations
with position qn+1 and velocity q̇n+1 as unknowns. The
benefit of using Eq. (18) instead of Eq. (17a) is that
the dimension of the nonlinear algebraic equation is
reduced from (2 × s × nq) in Eq. (17a) to (2 × nq) in
Eq. (18).
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Here, we propose a fixed-point strategy to solve
Eq. (18). By introducing this fixed-point iterative
method, the Jacobian matrix ∂ f /∂y is no longer
needed. The process of integrating ODE (16) in a time
step is:

1. predict yn+1 by a low-order integral method;
2. predict Ki by using Ki = f (tn + ci h, yn+1);
3. while(.NOT.converged) do
4. for i = 1, 2, . . . , s do
5. calculate Ki by Eq. (17a);
6. end do;
7. calculate yn+1 by using (17b);
8. end do.

This process of using implicit Runge–Kutta method
is just for the set of ODE (9). Step 1 gives the initial
value of the fixed-point iteration, and an explicit one-
step integration method, for example, explicit Euler’s
method, is recommended. The convergence criterion
used in step 3 is based on y = [q̇ q]T : When the
error of y is smaller than a given norm, the iteration is
finished.

The fixed-point iterativemethod for implicit Runge–
Kutta method is different from the fixed-point iteration
method for the Newmark method because the nonlin-
ear algebraic equations of these two implicit integration
methods are different. The unknowns in the nonlinear
algebraic equations of implicit Runge–Kutta method
are a collection of position qn+1 and velocity q̇n+1,
and the acceleration q̈n+1 does not appear in the non-
linear algebraic equation of the implicit Runge–Kutta
method.

The outer loop in the two-loop procedure is based
on the fixed-point iteration of Eq. (18), but the ODEs
solved in the outer loop are the ODEs picked out from
Eq. (8) which correspond to the independent coordi-
nates. The convergence criterion of the outer loop is
based on both the independent and dependent coordi-
nates. The details will be described in Sect. 3.3.

3.2 Structure of the new two-loop procedure

After the coordinate partitioning process, the ODEs
which need to be integrated can be picked out from
Eq. (8):

q̈i = F(t, q̇, q)

= F(t, q̇i , q̇d , qi , qd)
(19)

Here, we set y = [q̇ q]T and yi = [q̇i qi ]T and
yd = [q̇d qd ]T . Then, Eq. (19) becomes a set of first-
order ODEs:

dyi
dt

= f (t, yi , yd) (20)

Equation (20) is translated to a set of algebraic equa-
tionswhen the implicitRunge–Kuttamethod is applied.
Using the fixed-point iteration for implicit Runge–
Kuttamethod introduced in Sect. 3.1 to handle Eq. (20),
we have the nonlinear algebraic equation when time is
fixed:

yi = f (yi , yd) (21)

The construction of the new two-loop procedure
is based on the fixed-point iteration of Eq. (21). The
unknown in Eq. (21) is yi , and yd should be evaluated
when Eq. (21) is being solved. The iteration of the non-
linear algebraic equations of position constraint (3) and
the solving of the linear algebraic equations of velocity
constraint (4) give the value of yd .

After the coordinate partitioning process, Eq. (3)
becomes:

C(qi , qd) = 0 (22)

Equation (4) becomes:

[Cqi Cqd ]
[
q̇i
q̇d

]
= −Ct (23)

where [Cqi Cqd ] is the result of the rearrangement of
the Jacobian matrix Cq and C(qi , qd) is the result of
the rearrangement of the function C(q). In this paper,
we use Eqs. (14) and (15) to avoid the rearrangement
of Cq and C(q).

In Eqs. (22) and (23), yi is known while yd is
unknown. Equation (23) gives an explicit function of
q̇i :q̇d = g1(q̇i ). Equation (22) is an implicit function.
Once yi is given, yd can be obtained by using numerical
methods, so we have qd = g2(qi ). We have a function
of yi :

yd =
[
q̇d
qd

]
=

[
g1(q̇i )
g2(qi )

]
= g(yi ) (24)
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If the solving of Eqs. (3) and (4) is not embedded in the
solving of Eq. (20), yd in Eq. (21) is treated as constant
value in a time step so that Eq. (21) is solvable, and
it means that yi is variable while yd is not variable in
this time step. By embedding the solving of Eqs. (3)
and (4) into the fixed-point iteration, yd in Eq. (20)
and (21) is eliminated by using Eq. (24), and Eq. (21)
becomes

yi = f (yi ) (25)

So in the two-loop procedure, both yi and yd are vari-
able in a time step.

The flow chart of the new two-loop procedure in a
time step is:

The convergence criterion of the new two-loop pro-
cedure is based on both yi and yd , and it should be han-
dled together with the estimate of the local error, the
choice of new size of the time step, and the determining
of the maximum size of the time step. The details are
discussed in Sect. 3.3.

3.3 Variable step size strategy, convergence criteria,
and maximum time step

For practical use of the new two-loop procedure, the
variable step size strategy is needed. The variable step
size strategy is based on the estimation of the local
error of the new two-loop procedure. At the same time,
the convergence criterion is also based on the estima-
tion of the local error. The determination of the local
error and the new time step size of the Runge–Kutta
method can be found in [17]. In this paper, we expand
the method to the new two-loop procedure. The new
two-loop procedure is proposed for the DAEs, so the
dependent velocities and positions which are not the
result of the Runge–Kutta method are also used in the
calculation of the local error and the new step size.

To avoid the confusion caused by the symbols, we
rewrite Eq. (16) as:

dz

dx
= f (x, z)

It is difficult to get the local error of an arbitrary
Runge–Kutta method by analytic method, so we use
Richardson extrapolation to calculate the local error.
The process includes two steps: Use time step h to
integrate one time to get zn+1, and then, use time step
h/2 to integrate twice to get ẑn+1. The convergence is
based on the following condition:

|zn+1, j − ẑn+1, j | ≤ sc j

sc j = Atol j + max(|zn, j |, |zn+1, j |) · Rtol j (26)

In component-wise (26), sc is the desired tolerance pre-
scribed by the user, Atol represents the absolute errors
and Rtol represents the relative errors. We take:

err =
√√√√1

n

n∑
j=1

(
zn+1, j − ẑn+1, j

sc j

)2

(27)
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as the measurement of the errors. If err ≤ 1,
the step size h is accepted and the convergence is
achieved.

By adding yd in zn+1, j and ẑn+1, j , Eqs. (26)
and (27) can be applied to calculate the local error
of the new two-loop procedure. Here, zn+1, j and
ẑn+1, j do not represent the independent coordinate
yi which are given by the Runge–Kutta method, but
include the updated dependent velocities and positions
included in yd : z = [yi , yd ]T . So in the new two-
loop procedure, n in Eq. (27) equals nq rather than
nDOF .

The error can be presented as:

err ≈ c · hq+1 (28)

We hope the optimal time step size hopt may be:

1 ≈ c · hq+1
opt (29)

So we get:

hopt = h · (1/err)1/(q+1) (30)

It is necessary to multiply hopt by a safety factor f ac;
meanwhile, a upper limit factor f acmax and a lower
limit factor f acmin are set to prevent the time step
size from changing too rapidly. So the new step size is
given by:

hnew = h · min( f acmax,max( f acmin,

f ac · (1/err)1/(q+1))) (31)

The convergence criterion mentioned above is used
for the whole two-loop procedure, so a convergence
criterion is needed for the iteration of the nonlinear
algebraic equation (25). The convergence criterion of
the nonlinear algebraic equations is only based on yi :

max
1≤ j≤n

∣∣∣∣ �(yi ) j
max(�(yi ) j , 1)

∣∣∣∣ ≤ εtol

�(yi ) = (yi )
k+1
n+1 − (yi )

k
n+1

(32)

where the superscript k represents the kth iterative
process and εtol is a tolerance set by the user.

As reported inRef. [14], for somedynamic problems
of multibody systems, the two-loop procedure needs a
smaller step size than the step size given by Eq. (31)
to achieve a convergence. Here arises the problem of

estimating the maximum step size. The method of cal-
culating the maximum step size has been given in [14],
but in the actual implementation, it is not convenient
to get the maximum time step by using the analytical
method. We introduce a convergence judging process
to the new two-loop procedure to get the maximum
time step size hmax just as mentioned in Ref. [14]. If
the criterion:

√√√√ n∑
j=1

(
zk+1
n+1, j −zkn+1, j

)2≤
√√√√ n∑

j=1

(
zkn+1, j −zk−1

n+1, j

)2
(33)

is satisfied, the step size h is considered to be smaller
than the maximum step size, otherwise the maximum
step size is reset as hmax = h and the outer loop should
be restarted with a smaller step size than h, for example
h/2. At the beginning of each time step, the maximum
step size is set as hmax = 1. To consider the maxi-
mum step size in each time step, the new step size is
calculated by:

hnew = min(hmax , h · min( f acmax,max( f acmin,

f ac · (1/err)1/(q+1)))) (34)

The convergence criteria of the new two-loop pro-
cedure includes three judging processes, these judging
processes make the specific process of the new two-
loop procedure very complex.

The process of the judgement of convergence is:
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Table 2 Parameters of the four-bar linkage system

m1 L1 m2 L2 m3 L3 L

277.0kg 0.5m 221.6kg 0.4m 110.8kg 0.2m 0.4m

4 Numerical examples

In this section, we exhibit two examples to show the
advantages and disadvantages of the method we pro-
posed.

4.1 Four-bar linkage

Figure 1 is a typical four-bar linkage mechanism. This
kind of mechanism is very common in machinery.
There is a closed chain in the mechanism, so for most
modeling methods, the mathematical model of this
mechanism is a set of DAEs.

Thedynamicmodel of this system is based on a set of
Cartesian coordinates. Each bar has three coordinates,
and the coordinates of each bar are [x y θ ]. The three
differential equations of the i th bar are:

⎧⎪⎨
⎪⎩
mi ẍi = Qx

mi ÿi = Qy

Ji θ̈i = Mz

i = 1, 2, 3

wherem is the mass and J is the moment of the inertia;
Qx and Qy represent the resultant external force; Mz

is the resultant moment of force.
Each bar has constraints on its two ends, and there

are four joints in this systemwhich introduce eight con-
straints. Two constraint equations of point A are:

L1 sin(θ1) + L2 sin(θ2) + L3 cos(θ3) = 0 (35)

L1 cos(θ1) + L2 cos(θ2) + L3 cos(θ3) − L = 0 (36)

The mathematical model for the dynamics of the
system is a set of DAEs with nine ordinary differen-
tial equations and eight algebraic equations. There are
nine coordinates in the equations while the degree of
freedom of the system is 1, and it means that there
are eight dependent coordinates in the inner loop to be
determined by the only independent coordinate.We use
this example to test if the new two-loop procedure can
handle the constraint part of the DAEs.

Fig. 1 Four-bar linkage

The parameters of the systems can be found in
Table 2. The only external force is gravity, so the sys-
tem is conservative. At the beginning of the simulation,
the position of the third bar is horizontal as shown in
Fig. 1. To this conservative system, the conservation
of energy is a criterion, and it means that the vertical
position of the center of the third bar will reach and not
pass the line y = 0.

We use two kinds of the two-loop procedures to
solve the DAE: the two-loop procedure with the New-
mark method, and the new two-loop procedure with
implicit symplectic Runge–Kutta method. For the two-
loop with the Newmarkmethod, the parameters used in
the convergence criteria can be found in Ref. [14] and
the parameters in Eq. (12) are β = 0.5 and γ = 0.5;
for the two-loop procedure with implicit Rung–Kutta
method, the parameters used in the convergence crite-
ria are: Atol = 0.00001, Rtol = 0.00001, f ac = 0.9,
f acmax = 5.0, f acmin = 0.5. The tolerance of the
error of both the inner loop and the outer loop of these
two two-loopprocedures is 10−9. The result of the com-
mercial software ADAMS with solver Gstiff is also
shown to demonstrate the advantages of the new two-
loop procedure. The two two-loop procedures both use
variable step size while the Gstiff solver uses fixed step
size.

Figures 2, 3, 4, and 5 are the results of the y posi-
tion of the center of the third bar. Figure 2 shows the
results of these methods in short time; Figs. 3, 4, and
5 show the results of a long-time (100s) simulation
of these methods. The step size of these two two-loop
procedures is shown in Fig. 6.

When the step size of Gstiff solver is h = 0.02 s
which is smaller than the step size of the two-loop pro-
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Fig. 2 Yposition of the center of the third bar (0–2s), calculated
by different methods

cedure with implicit Runge–Kutta method inmost time
as shown in Fig. 6, the results of Gstiff solver are dif-
ferent from the results obtained by using the two dif-
ferent two-loop procedures. If the step size is small
enough, the Gstiff solver gives reasonable result in the

short-time simulation. We can find that, in short-time
simulation, the results of the two two-loop procedures
and the Gstiff solver with h = 0.01s coincide well.
From the result of long-time simulation, we find that
the curves of the solution of the two two-loop proce-
dures reach and do not pass the line y = 0, while the
Gstiff solver with h = 0.01s gives obviously wrong
result in long-time simulation.

The tolerances of the error of the inner loop errin
and the outer loop errout affects the computation time
and step size of the two two-loop procedures, but the
effect is different when the integration method is dif-
ferent. The computation time of the two-loop proce-
dure with the Newmark method is mainly affected
by the tolerance of the outer loop, and the tolerance
of the inner loop makes little influence on the com-
putation time. For the new two-loop procedure with
implicit Runge–Kutta method, the tolerance of the
inner loop is the main factor that influences the com-
putation time. When the tolerance of the outer loop
is set as 10−3, the two-loop procedure with the New-
mark method cannot give reasonable result in the long-

Fig. 3 Y position of the
center of the third bar
(0–100s), calculated by the
two-loop procedure with the
Newmark method

Fig. 4 Y position of the
center of the third bar
(0–100s), calculated by the
two-loop procedure with
implicit Runge–Kutta
method
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Fig. 5 Y position of the
center of the third bar
(0–100s), calculated by
ADAMS solver Gstiff
(h = 0.01s)

Fig. 6 Change of step size
with time, comparison of
the two-loop procedure with
different integration
methods: the Newmark
method and implicit
Runge–Kutta (IRK) method

time simulation while the new two-loop procedure
with implicit Runge–Kutta method can. The compu-
tation time of different tolerances is shown in Table 3.
When the tolerance of the error of both inner loop and
outer loop of these two two-loop procedures is 10−9,
the computation time of the two-loop procedure with
the Newmark method is 50.93 s and the time of the
two-loop procedurewith implicit Runge–Kuttamethod
is 3.60 s.

Figure 7 shows the violation of Eqs. (35) and (36)
in the new two-loop procedure. The result shows that
the new two-loopprocedure gives resultwith very small
violationof the nonlinear constraints, and the amplitude
does not increase as time increasing.

4.2 Flexible beam modeled by absolute nodal
coordinate formulation (ANCF)

We use absolute nodal coordinate formulation (ANCF)
to model a flexible beam which is connected to a mov-
ing base through a revolute joint, as shown in Fig. 8.
ANCF is a kind of non-incremental finite element
method, and it can model very flexible bodies in multi-
body systems [19].

The element which we use here is the two dimen-
sional shear element, and the coordinates of each
node is

e =
[
rT ,

∂ r
∂x

T

,
∂ r
∂y

T
]T
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Table 3 The computation time of the two two-loop procedures with different tolerance of inner loop and outer loop (Unit: second)

errout

10−3 10−5 10−7 10−9

errin

10−3 1.95 � 1.98 2.71 2.00 12.62 2.08 49.73

10−5 2.12 � 2.23 2.74 2.31 12.36 2.31 49.68

10−7 2.64 � 2.85 3.10 2.85 12.68 2.99 49.66

10−9 3.37 � 3.46 3.09 3.55 13.40 3.60 50.93

Left:the two-loop procedure with IRK

Right:the two-loop procedure with the Newmark method

� :no reasonable result in long time simulation

Fig. 7 Violation of the last
two position constraint
equations, result of the
two-loop procedure with
implicit Runge–Kutta
method

where r is the global positions of the point on the central
line of the beam. The elastic force of the beam is cal-
culated by using the continuum mechanics approach.

Fig. 8 Flexible beam

The Green–Lagrange strain tensor ε can be expressed
in terms of the nodal coordinates. The strain vector can
be written as

ε = [ε11 ε22 2ε12]T

where ε22 is the deformation of the cross section of
the beam, and this deformation is not included in other
beam models.

In the continuum mechanics approach, the elastic
force is computed by:
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Q = −
∫
V

εE
∂ε

∂e
dV

where E is the matrix of the elastic constants of the
material:

E =
⎡
⎣λ + 2μ λ 0

λ λ + 2μ 0
0 0 μ

⎤
⎦

where λ and μ are Lame coefficients. This integral is
calculated by Gauss quadrature formula.

Because in the continuum mechanics approach, the
deformation of the cross section of the beam introduces
high-frequency components and the differential equa-
tions that come from ANCF are very stiff [14]. One
of the features of ANCF is that the computational effi-
ciency of this method is very low. How to improve the
computational efficiency is always the main concern in
the study of ANCF since it has been proposed. Nomat-
ter whether the mathematical model is ODE or DAE,
an implicit integration method is needed. The example
we used here can be found in [20].We use this example
to test if the new two-loop procedure can be applied to
the stiff problem.

The base of the beam is subjected to a knownmotion
which is defined by:

X = X0 sin(ωt)

So the position constraint equations of the left end point
of the beam are:

C =
[
q(1) − X0 sin(ωt)

q(2)

]
= 0

where q(1) and q(2) represent the positions of the left
end point of the beam.

First, we apply the new two-loop procedure to the
very flexible structure example. In this example, the
beam has a square cross section with side dimension of
0.02m. The length of the beam is assumed to be 1m, the
mass density is assumed to be 7200kg/m3, themodulus
of elasticity is assumed to be 2 × 106 N/m2, and the
Poisson ratio is assumed to be 0.3. X0 = −0.02m,
ω = 10.0π . The beam is meshed into four elements
as in Ref. [20]. The result of tip vertical position, the
transverse deformation of the midpoint of the beam,
and the step size are shown from Figs.9, 10, and 11,

Fig. 9 Tip vertical position of the very flexible structure example

Fig. 10 Transverse deformation of the midpoint of the beam of
the very flexible structure example

Fig. 11 Step size of the very flexible structure example

respectively. The total computation time is 56.27 s. The
magnitude order of the step size is 10−3.

Secondly, we apply the new two-loop procedure to
the moderately stiff structure example. In this example,
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Fig. 12 Tip vertical position of the moderately stiff structure
example

Fig. 13 Transverse deformation of the midpoint of the beam of
the moderately stiff structure example

X0 = −0.01, ω = 2.0π , and the modulus of elastic-
ity is assumed to be 2 × 108 N/m2. This example is
much stiffer than the previous example. The result of
the tip vertical position, the transverse deformation of
the midpoint of the beam, and the step size are shown
from Figs. 12, 13, and 14, respectively. The total com-
putation time is 6278.54 s. The magnitude order of the
step size is 10−5.

The correctness of the result of the new two-loop
procedure for this example can be demonstrated by
comparing the result here with the result presented in
Ref. [20]. For the moderately stiff situation, the results
in this paper consist with the results in Ref. [20].For the
very flexible situation, from 0 to 1.2 s, the results in this
paper consist with the results in Ref. [20]. After 1.2 s,

Fig. 14 Step size of the moderately stiff structure example

the results in this paper are different from the results in
Ref. [20], but the results are still reasonable.

For both very flexible and moderately stiff struc-
ture examples, the new two-loop procedure works, but
when the examples become stiffer, the computation
time increases a lot.

5 Conclusion and discussion

The two-loop procedure with implicit symplectic
Runge–Kutta method as integration method can solve
the DAEs of constrained mechanic systems. The fixed-
point iterative strategy applied to the implicit Runge–
Kutta method works, so the extra Jacobian matrix is
no more needed. In the process, only the numerical
result rather than the analytic formulas of the mass
matrix, generalized force array, and the Jacobianmatrix
of position constraint equations are needed. This fact
makes the method good in generality. Meanwhile, the
constraints can be satisfied at position level, velocity
level, and acceleration level at the same time. The vio-
lation of the constraints is controlled at a very low
level. This new two-loop procedure works well over a
long-time simulation. The computation time is reduced
because the order of numerical accuracy of the implicit
Runge–Kutta method is higher than the order of the
Newmark method.

The new two-loop procedure with position and
velocity as basic unknowns is designed for any inte-
gration method that works for the first-order ODE (16),
and the implicit Runge–Kutta method is just a partic-
ular case. Any implicit integration method that gives
nonlinear algebraic equations (21) can be used as the
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integration method in this new two-loop procedure. By
choosing different variables as basic unknowns, there
may be different two-loop procedures. The two-loop
procedures proposed in this paper and Ref. [13] are just
two particular cases. The basic unknowns of the two-
loop procedures can be position or velocity or accel-
eration or the combination of different variables, so
any integration method which can be used to solve the
second-order ODE (10) can be used in the two-loop
procedures as the integration method.

For a particular integration method, there may exist
several different two-loop procedures with different
variables as basic unknowns. The two-loop procedures
with the same integrationmethodbut different variables
as the basic unknown have different structures. The
optimal structure of the two-loop procedure based on
a particular integration method should make it conve-
nient to introduce the fixed-point iterative method and
the variable step size strategy for the integrationmethod
in the outer loop. For example, the Newmark method
can be used in the two-loop procedurewith acceleration
or velocity or position as basic unknown. The optimal
structure of the two-loop procedure with the Newmark
method as integration method is the two-loop proce-
dure proposed in Ref. [13], because it is convenient to
construct the fixed-point iterative method and the vari-
able step size strategy by using acceleration as the basic
unknown.

The idea of applying backward differentiation for-
mulas (BDF) to the two-loop procedure has been men-
tioned in Ref. [14]. Like implicit Runge–Kutta method,
BDF can be used to solve the first-orderODEs (16), and
the nonlinear algebraic equations of BDF have the form
of Eq. (21). So the two-loop procedure based on BDF
with position and velocity as basic unknowns is simi-
lar to the two-loop procedure presented in this paper.
Besides the combination of position and velocity, the
nonlinear algebraic equations of BDF can use other
variables as the basic unknowns. So how to use BDF as
the integration method in the two-loop procedure and
what is the optimal structure of the two-loop proce-
dure based on BDF should be further studied in another
paper.

For non-holonomic systems, besides the holonomic
constraints, there are non-holonomic constraints in the
systems. The non-holonomic constraints constrain the
velocities directly, and the corresponding position con-
straint equations do not exist. The number of the posi-
tion constraint equations is less than the number of the

dependent positions in non-holonomic systems. The set
of velocity constraint equations of the non-holonomic
systems is the combination of the differential of the
holonomic position constraint equations and the non-
holonomic constraint equations. When the two-loop
procedure is applied to non-holonomic systems, the
coordinate partitioning technique is still available to
identify the independent coordinates because the Jaco-
bian matrix Cq still exists. In the two-loop procedure,
the velocity constraints and the position constraints are
handled separately. Once the integration method gives
the independent velocities and positions, the dependent
velocities can be obtained by solving the velocity con-
straint equations. As to the positions, it is impossible
to obtain all the positions by solving the position con-
straint equations. The dependent positions need to be
determined by other methods, for example, integrat-
ing the velocities, so that the two-loop procedure may
work.
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