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Abstract By following the pseudoinverse-type for-
mulation, a corresponding quadratic program (QP)-
based rough manipulability-maximizing (RoMM)
scheme is obtained. In consideration of the draw-
backs of the RoMM scheme, a novel QP-based refined
manipulability-maximizing (ReMM) scheme is pro-
posed and investigated in this paper for coordinated
motion planning and control of a physically constrained
wheeled mobile redundant manipulator (WMRM).
Such a scheme treats themobile platformand the redun-
dant manipulator as a combined robotic system, show-
ing an interesting trend of combining motion planning
and reactive control methodologically and systemati-
cally. In addition, physical limits of mobile manipu-
lators are incorporated into the scheme formulation,
which enables the proposed ReMM scheme to keep
all the resolved variables within their physical limits.
Besides, the proposed ReMM scheme is finally refor-
mulated as a unifiedQP. For testing the ReMMscheme,
the WMRM composed of a two-wheel-drive mobile
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platform and a six-degrees-of-freedom manipulator is
presented and investigated, togetherwith its kinematics
analysis. Comparative simulations performed on such
aWMRM substantiate the efficacy, accuracy and supe-
riority of the proposed ReMM scheme, as compared to
the RoMM scheme.

Keywords Manipulability maximizing · Coordinated
motion planning and control · Wheeled mobile
redundant manipulators · Quadratic program

1 Introduction

Recently, robotic researchers have focused on solv-
ing a variety of tasks requiring sophisticated motion in
complex environments (e.g., working in hazardous or
rough-and-tumble environments and exploring unpre-
dictable regions) [1–11]. For a robot manipulator, it
is said to be redundant when more degrees-of-freedom
(DOF) are available than theminimum number of DOF
required to perform a given end-effector primary task
[9,12,13].As compared to nonredundantmanipulators,
redundant manipulators have wider operational space
and extra DOF to meet a number of functional con-
straints. Among such redundant manipulators, fixed-
base redundant manipulators are the most frequently
encountered ones, which have long been investigated
[9,12–16]. For example, with joint physical limits con-
sidered, the repetitive motion planning and control
on redundant robot manipulators with push-rod-type
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joints was studied in [12]. For eliminating the prob-
lem of uncompensated dynamics and model uncertain-
ties introduced by the velocity estimator or observer, a
robust controller with only joint position feedback was
proposed in [14]. Farmanbordar and Hoseini presented
a neural network-based adaptive output-feedback con-
trol method for flexible link manipulators [15]. Based
on the torque-velocity relationship, a manipulability-
based approach was presented in [16], where the force
effect was taken into consideration. Tanaka et al. [17]
proposed a scheme for human force manipulability
(HFM) based on the use of isometric joint torque prop-
erties to simulate the spatial characteristics of human
operation forces at an end-point of a limb with feasible
magnitudes for a specified limb posture.

Due to the in-depth research in robotics, mobile
robots (including mobile manipulators) have attracted
increasing attention [18–28], owing to their combi-
nation of mobility and dexterity. For example, the
semiglobal stabilization problem for nonholonomic
wheeled mobile robots based on dynamic feedback
with inputs saturation was considered in [22], where a
continuous, bounded and time-varying controller was
proposed. In [24] and [25], repeatable inverse kine-
matics algorithms for mobile manipulators were pre-
sented. The modeling of nonholonomic mobile manip-
ulatorswas investigated in [27],where the standard def-
inition of manipulability was generalized to the case
of mobile manipulators. In general, a mobile robot
manipulator can be built from a robot manipulator
mounted on a mobile platform [27]. The mobile robot
manipulator can combine the advantages of the robot
manipulator and the mobile platform and reduce their
drawbacks [27]. If the manipulator equipped on the
mobile platform is redundant, such a mobile manipula-
tor would possess both the superiorities of the mobile
platform and those of the redundant manipulator. Thus,
the mobile redundant manipulator, which can achieve
coordinated movements of the mobile platform and
the redundant manipulator, is superior to the fixed-
base one. In this paper, a wheeled mobile redundant
manipulator (WMRM) composed of a two-wheel-drive
mobile platform and a six-DOF manipulator is pre-
sented and investigated, together with its kinematics
analysis.

Generally speaking, for mobile redundant manipu-
lators, one fundamental issue in controlling and coor-
dinating locomotion andmanipulation is to design suit-
able redundancy-resolution approaches (such that the

coordinated motion planning and control of mobile
redundant manipulators can be achieved). In the past
few decades, many efforts have been contributed to
themotion planning ofmobile redundantmanipulators,
and subsequently lots of schemes have been proposed
and investigated for mobile redundant manipulators
[24–31]. In other words, the studies on motion plan-
ning ofmobile (redundant)manipulators have achieved
quite great development. Note that the basic research
methodology is tofind anoptimal solution to the robotic
kinematics by designing various performance criteria
[31].

Among such performance criteria, a representative
performance criterion is the maximizing of the manip-
ulators’ manipulability [16,27,29,30], which is pro-
posed and investigated for solving the so-called sin-
gularity problem arising in the motion planning and
control of manipulators. It is worth pointing out that
when the manipulator is at a kinematic singularity
configuration, the Jacobian matrix of the manipula-
tor becomes ill-conditioned and rank-deficient. This
would result in the failure of the end-effector move-
ment in a certain direction. As a matter of fact, get-
ting close to a singularity point of the kinematic map-
ping is also undesirable (or say, unacceptable). This
is because that, in such a state, when the end-effector
moves in certain directions, joint velocities and accel-
erations can be arbitrarily large [32,33], which would
cause damage to the physical manipulator. Thus, maxi-
mizing the manipulability of manipulators has explicit
significance when it is related to singularity avoidance.
Besides, the manipulability-maximizing performance
criteria reflect the manipulator’s ability in converting
the motion of the joint. Due to its important role, many
studies have been reported on the redundancy resolu-
tion of robot manipulators through the manipulability
maximizing [27,29,30,32–38]. The initial study was
conducted by Yoshikawa [32], who proposed the quan-
titative measure of the manipulability at the joint state
θ for fixed-base redundant manipulators. Specifically,
the manipulability measure is expressed in the follow-
ing explicit form:

M(θ) =
√
det(J (θ)JT(θ)), (1)

where det(·) denotes the determinant of a matrix,
J (θ) is the Jacobian matrix, and superscript T denotes
the transpose of a matrix or vector. Note that the
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pseudoinverse-type algorithm proposed in [32] aims
at the singularity avoidance of fixed-base redundant
manipulators by maximizing the manipulability mea-
sure M(θ). Bayle et al. [27] extended the theory of
manipulability to the case of wheeled mobile manip-
ulators and pointed out some possible applications
of such instantaneous kinematic analysis from a con-
trol point of view. Huang et al. [34] investigated the
motion planning of mobile manipulators concerning
the platform stability and the manipulator manipulabil-
ity simultaneously. In literature [34], the end-effector
path and platform motion were firstly planned and
given, and then themanipulator configurationwas com-
putedbymeansof themanipulabilitymaximizing.Note
that most of the aforementioned methods and tech-
niques are based on pseudoinverse-type formulations
and do not consider physical limits of mobile manipu-
lators.

In view of the fact that physical limits always exist in
a practical mobile manipulator, it is meaningful to ana-
lyze and investigate the physically constrained mobile
manipulators (with manipulability maximizing). Take
a wheeled mobile manipulator as an example. Physi-
cal limits generally include the joint-angle and joint-
velocity limits of the manipulator as well as the rota-
tional velocity limits of the wheels. Note that it is diffi-
cult to incorporate physical limits into pseudoinverse-
type formulations. To avoid all the physical limits,
a sweaty and boring derivation process of the com-
plex optimization criterion is inevitable, not to mention
determining the magnitude of some related parameters
based on trial-and-error approaches. Thus, it is neces-
sary to develop a scheme that can handle the physical
limits readily for physically constrainedmobile manip-
ulators.

Inspired by the successful work [39–41], by follow-
ing the pseudoinverse-type formulation, we present a
quadratic program (QP)-based rough manipulability-
maximizing (RoMM) scheme. In view of the draw-
backs of the RoMM scheme, a novel QP-based refined
manipulability-maximizing (ReMM) scheme is thus
proposed and investigated in this paper for the coordi-
nated motion planning and control of physically con-
strained WMRM. Such a scheme, which treats the
mobile platform and the redundant manipulator as a
combined robotic system, is reformulated into a uni-
fied QP. Note that the QP can be converted into a linear
variational inequality (LVI), and the resultant LVI is
equivalent to a piecewise-linear equation (PLE) which

can be solved by many algorithms and techniques effi-
ciently, such as numerical methods [12,42] and recur-
rent neural networks [13,43]. In this paper, the LVI-
based primal-dual neural network [13,43] is exploited
for online solutionof theQPproblem, aswell as the pro-
posed ReMM scheme. Comparative simulation results
based on the presented physically constrainedWMRM
(with its kinematics analysis discussed in the ensu-
ing section) further substantiate the efficacy, accuracy
and superiority of the proposed ReMM scheme. To the
best of the authors’ knowledge, the proposed ReMM
scheme for physically constrained mobile manipula-
tors has never been investigated in the existing litera-
ture.

The remainder of this paper is organized as fol-
lows. In Sect. 2, the WMRM composed of a two-
wheel-drive mobile platform and a six-DOFmanipula-
tor is presented and discussed, together with its kine-
matics analysis. Section 3 proposes and investigates
the ReMM scheme for the coordinated motion plan-
ning and control of WMRM, which is reformulated
as a unified QP in Sect. 4. In Sect. 5, comparative
simulation results are shown for the WMRM under
the presented RoMM scheme and under the proposed
ReMMscheme.Observations and comparisons are also
illustrated. Section 6 concludes this paper with final
remarks. Before ending this introductory section, it is
worth mentioning the main contributions of this paper
as follows.

(1) The kinematics analysis of the wheeled mobile six-
DOF manipulator is presented, from which a com-
bined forward-kinematics equation is derived. Note
that the rotational velocities of the wheels and joint
velocities of themanipulator can be obtained simul-
taneously by solving such an equation.

(2) A novel ReMM scheme is proposed and inves-
tigated for the coordinated motion planning and
control of physically constrainedWMRM. In addi-
tion, such a scheme is reformulated as a QP prob-
lem, which is solved via the LVI-based primal-
dual neural network [13,43]. To the best of the
authors’ knowledge, the proposed ReMM scheme
for mobile manipulators has never been investi-
gated in existing literature.

(3) Comparative simulations performed on such a
WMRM demonstrate the efficacy, accuracy and
superiority of the proposedReMMscheme, as com-
pared to the RoMM scheme.
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Fig. 1 CAD model of the wheeled mobile redundant manipula-
tor

2 Wheeled mobile redundant manipulator

In this section, the kinematics analysis of the WMRM
is presented for further investigation. The computer-
aided design (CAD) model of such a mobile manipula-
tor is shown in Fig. 1. Evidently, as seen fromFig. 1, the
WMRMis composed of a two-wheel-drivemobile plat-
form and a six-DOF manipulator. Thus, the kinematics
equation of the wheeled mobile redundant manipula-
tor is obtained based on the kinematics of the wheeled
mobile platform and that of the six-DOF manipulator
discussed in the following subsections.

2.1 Wheeled mobile platform kinematics

In this subsection, the kinematics of thewheeledmobile
platform is discussed for themobilemanipulator shown
in Fig. 1. Note that such a mobile platform has two
independently drivingwheels (and two passive omnidi-
rectional supporting wheels), with its simplified model
illustrated in Fig. 2. To lay a basis for further discussion,
the radius of each driving wheel of the mobile platform
is denoted as γ , and ϕ̇L and ϕ̇R denote the left and right
driving wheels’ angular speeds, respectively. Thus, the
driving wheels’ angular speed vector is ϕ̇ = [ϕ̇L ϕ̇R]T,
and the corresponding angle (angular position) vector
is ϕ = [ϕL ϕR]T. Besides, some descriptions about the
two-wheel-drive mobile platform shown in Fig. 2 are
given in Table 1.

It is worth pointing out here that, in this paper, we
only consider the motion of the mobile platform in the

horizontal plane [9,27,28]. As shown in Fig. 2 (where
żG = 0), in the XwOYw plane of {w}, the motion of
the mobile platform (as a rigid body) can be viewed
as a rotation about the instantaneous center Q. Under
the assumption that no-slipping and no-sideways slid-
ing occur to the platform [9,27,28], the velocities of
points A and B are both strictly perpendicular to the
driving wheel axle. Thus, the instantaneous center Q
must locate at the driving wheel axle or its extended
line, as shown in Fig. 2. Then, the angular velocity,
at which the mobile platform is rotating about Q, is
exactly φ̇.

Based on the above analysis, inspired by [9,27,28],
we can have

φ̇ = γ ϕ̇L

Υ
= γ ϕ̇R

Υ + 2b
= ẋGcφ + ẏGsφ

Υ + b
, (2)

and

ẏGcφ = dφ̇ + ẋGsφ, (3)

where cφ = cosφ, sφ = sin φ, and Υ is the length of
line segment AQ. By following (2) and (3), the kine-
matics equation of the mobile platform can be refor-
mulated as

ṖG =
⎡

⎣
ẋG
ẏG
żG

⎤

⎦ =

⎡

⎢
⎢
⎣

γ
2 cφ + γ d

2b sφ
γ
2 cφ − γ d

2b sφ
γ
2 sφ − γ d

2b cφ
γ
2 sφ + γ d

2b cφ

0 0

⎤

⎥
⎥
⎦

[
ϕ̇L

ϕ̇R

]
,

and φ̇ =
[
− γ

2b

γ

2b

] [
ϕ̇L

ϕ̇R

]
.

2.2 Six-DOF manipulator kinematics

The six-DOFmanipulator mounted on the mobile plat-
form is shown in Fig. 3. In this subsection, the kine-
matics of the manipulator is also presented.

In general, the functional relation between the end-
effector position/orientation vector r0(t) ∈ Rm in
Cartesian space with respect to the base coordinate
frame and the joint-angle vector θ(t) ∈ Rn in joint
space can be written readily as r0 = f (θ), where f (·)
denotes a differentiable nonlinear mapping. According
to some researches on the kinematics of (fixed-base)
robot manipulators [9,12], the specifical kinematics
equation of the six-DOF manipulator shown in Fig. 3
is presented directly as follows:
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Fig. 2 Simplified model of
the two-wheel-drive mobile
platform

φ

φ

ẏG

ẋG

Y0

X0

φ̇

F

Yw

XwO

Q

G

B

A

b

b
d

Table 1 Some descriptions
for the two-wheel-drive
mobile platform shown in
Fig. 2

Symbol Description

A Center point of the left driving wheel

B Center point of the right driving wheel

F Midpoint of line segment AB, and AF = FB = b

G Manipulator’s base location, which is at the midperpendicular of AB

X0Y0Z0 Coordinate frame attached to mobile platform, which is denoted as {0}
XwYwZw World coordinate frame, which is denoted as {w}
φ Orientation angle of mobile platform with φ̇ being its time derivative

[ẋG ẏG żG ]T Velocity vector of point G in {w}
d Length of line segment FG

r0 = f (θ)

=
⎡

⎣
l65(c5s32c1−s5c4c32c1+s5s4s1)+l43s32c1+l2s2c1
l65(c5s32s1−s5c4c32s1−s5s4c1)+l43s32s1+l2s2s1

l65(s5c4s32+c5c32)+l43c32+l2c2+l1+l0

⎤

⎦ ,

(4)

where ci = cos(θi ) and si = sin(θi ) with i =
1, 2, . . . , 6. Besides, l65 = (l6 + l5), l43 = (l4 + l3),
s32 = sin(θ3 + θ2) and c32 = cos(θ3 + θ2). In addition,
l0 = 0.698 m denotes the distance between Joint 1 and
the ground. The specifical values of parameters (for the
six-DOF manipulator shown in Fig. 3) are l1 = 0.065

m, l2 = 0.555m, l3 = 0.19m, l4 = 0.13m, l5 = 0.082
m, and l6 = 0.133 m.

2.3 WMRM kinematics

In this subsection, the kinematics equation of the
WMRM shown in Fig. 1 is developed based on those
of the mobile platform and the six-DOF manipulator,
i.e., the integrated kinematics for the WMRM.

123



250 Y. Zhang et al.

Fig. 3 CAD model of the six-DOF manipulator

The homogeneous coordinate transformationmatrix
from the mobile platform coordinate frame {0} to the
world coordinate frame {w} is given as follows:

w
0 T =

⎡

⎢
⎢
⎣

cφ −sφ 0 xG
sφ cφ 0 yG
0 0 1 0
0 0 0 1

⎤

⎥
⎥
⎦ ,

where xG and yG represent, respectively, the magni-
tude components of point G in the Xw- and Yw-axis
directions shown in Fig. 2. In other words, [xG yG ]T
is the position vector of point G in the XwOYw plane
of {w} (as shown in Fig. 2). Based on (4), the homo-
geneous coordinate of the end-effector with respect to
{w} can be obtained as
[
rw
1

]
= w

0 T

[
r0
1

]
= [rwX rwY rwZ 1]T, (5)

where rwX = xG + l65(c5s32c1φ − s5c4c32c1φ + s5s4
s1φ) + l43s32c1φ + l2s2c1φ , rwY = yG + l65(c5s32s1φ−
s5c4c32s1φ −s5s4c1φ)+ l43s32s1φ + l2s2s1φ , and rwZ =
l65(s5c4s32 + c5c32) + l43c32 + l2c2 + l1 + l0, with
s1φ = sin(θ1 + φ) and c1φ = cos(θ1 + φ). By defining
the augmented variable vector p = [xG yG φ θT]T ∈
R3+n (viewed as the state vector of the wheeled
mobile manipulator), it follows from the aforemen-
tioned analysis, the kinematics equation of the wheeled
mobile manipulator at the position level is formulated
as

rw = g(p),

where g(·) is a differentiable nonlinearmapping, which
is similar to f (·).

Furthermore, let q(t) = [ϕT(t) θT(t)]T ∈ R2+n

denote the combined angle vector, and q̇(t) = [ϕ̇T(t)
θ̇T(t)]T denote the time derivative of q(t) (i.e., the com-
bined velocity vector). Then, the mobile manipulator’s
motion planning/coordinated control is to generate q(t)
or q̇(t) for the drivingwheels and joints, so that the end-
effector of the mobile manipulator can move alone the
desired Cartesian path rdw(t) ∈ Rm in {w}. By dif-
ferentiating (5) with respect to time t , the kinematics
equation of wheeledmobile manipulator at the velocity
level is thus obtained as

ṙw = J (ϑ)q̇, (6)

where ṙw denotes the time derivative of rw, and the
matrix J (ϑ) ∈ Rm×(2+n) (which, hereafter, is rewrit-
ten as J for simplicity) with the vector ϑ = [φ θT]T ∈
R1+n . For the detailed expression about J , please see
the “Appendix”. Note that such an integrated kinemat-
ics depicted in (5) or (6) might give us new insights
to the coordinated control of the mobile manipulators
(since there are lots of work on redundancy resolu-
tion of fixed-base manipulators [9,12,13,39–41]), e.g.,
manipulability maximizing presented in the ensuing
section.

3 Scheme formulation and efficacy analysis

In this section, on the basis of (6), by following the
pseudoinverse-type formulation, a novelmanipulability-
maximizing scheme (i.e., the ReMM scheme) for the
WMRM is proposed and investigated. Besides, the effi-
cacy analysis of such an ReMM scheme is presented
as well.

3.1 Scheme formulation

To achieve the purpose of motion planning of the
WMRM, based on (6), a general pseudoinverse-type
scheme at the velocity level is formulated as

q̇ = Pṙdw + (I − P J )ξ, (7)

where P ∈ R(2+n)×m denotes the pseudoinverse of J ,
ṙdw ∈ Rm denotes the time derivative of the desired
Cartesian path rdw, and I ∈ R(2+n)×(2+n) denotes the
identity matrix. In addition, ξ ∈ R2+n is an arbitrary
vector usually selected by using some optimization cri-
teria (e.g., the manipulability maximizing). For better
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mathematical tractability, differing from the manipula-
bility measure depicted in (1), w = det(J JT) is used
as a newmanipulabilitymeasure in this paper. Tomaxi-
mize themanipulabilitymeasure, ξ in (7) can be chosen
as the positive gradient of w, i.e., ξ = ν∂w/∂q with
ν > 0 being a constant scalar. Thus, we can have the
following pseudoinverse-type scheme for maximizing
the manipulability measure w:

q̇ = Pṙdw + ν(I − P J )
∂w

∂q
, (8)

where the i th [with i = 1, 2, . . . , (2 + n)] element of
∂w/∂q, i.e., ξi , is given mathematically as

ξi = ∂ det (J JT)

∂qi
= det (J JT) trace

(
(J JT)−1 ∂(J JT)

∂qi

)
= det (J JT) trace

(

(J JT)−1

(
∂ J

∂qi
JT + J

(
∂ J

∂qi

)T
))

,

with trace(·) denoting the trace of a matrix argument.
For (8), on the one hand, the first part of the right

side represents the particular solution (i.e., the min-
imum Euclidean-norm solution) to the velocity-level
kinematics equation (6). On the other hand, the rest
part represents the homogeneous solution, which can
achieve the manipulability maximizing. Therefore, the
pseudoinverse-type scheme (8) can be viewed as the
combination of the minimum velocity norm (MVN)
solution and the manipulability-maximizing solution.
By understanding this point and considering the phys-
ical limits of the mobile manipulator, the novel ReMM
scheme for the coordinated motion planning and con-
trol of WMRM is proposed as

minimize
1

2
‖θ̇‖22 − ξTq̇ (9)

subject to J q̇ = ṙdw + κ(rdw − g(p)), (10)

q− ≤ q ≤ q+, (11)

q̇− ≤ q̇ ≤ q̇+, (12)

with ξ = ν∂w/∂q, (13)

where ‖·‖2 denotes the two norm of a vector, θ̇ denotes
the joint-velocity vector of the six-DOF manipulator.
In consideration of the modeling errors and computa-
tional round-off errors, the position feedback is ele-
gantly added to (10), i.e., ṙdw + κ(rdw − g(p)), where

Table 2 Physical limits of the wheeled mobile manipulator

i q−
i (rad) q+

i (rad) q̇−
i (rad/s) q̇+

i (rad/s)

1 −∞ +∞ −25 25

2 −∞ +∞ −25 25

3 −π/12 π/4 −3 3

4 π/12 5π/12 −3 3

5 −π/24 π/3 −3 3

6 −π/12 π/4 −3 3

7 −π/6 π/4 −3 3

8 −π/4 π/12 −3 3

κ > 0 ∈ R is the feedback gain. In addition, q− and
q+ (q̇− and q̇+) denote the lower and upper limits of
the combined angle vector q (the combined velocity
vector q̇), respectively. For convenience, the physical
limits (i.e., q−, q+, q̇− and q̇+) of the wheeled mobile
manipulator used in this paper are listed in Table 2.

3.2 Efficacy analysis

By understanding the nature of the pseudoinverse-
type scheme (8), according to the well-known gradi-
ent method, if q̇ = ν∂w/∂q = ν∂det(J JT)/∂q, then
the redundant DOF of the mobile manipulator can be
utilized to achieve high manipulability during the end-
effector task execution. In other words, w can be max-
imized when q̇ = ν∂w/∂q. Note that such a dynamic
equation is achieved theoretically.

Based on the authors’ previous works [2,3,12] on
the quadratic programming technique for redundancy
resolution, we define ê = q̇ − ξ with ξ = ν∂w/∂q.
Therefore, minimizing ‖ê‖22/2 appears to be more fea-
sible, rather than forcing q̇ − ξ = 0 directly in its exact
form. It is worth pointing out here that the minimiza-
tion of ‖ê‖22/2 is equivalent to the maximizing of w.
Expanding ‖ê‖22/2, we have
‖ê‖22/2 = q̇Tq̇/2 − ξTq̇ + ξTξ/2

= ‖q̇‖22/2 − ξTq̇ + ‖ξ‖22/2.
(14)

Since the motion of wheeled mobile manipulator is
planned at velocity level, the decision-variable vector
is q̇ . Subsequently, the function ξ (i.e., ξ = ν∂w/∂q)
is viewed as a constant in the performance index (14)
(with respect to q̇). In addition, ‖ξ‖22/2 is positive and
viewed as a constant (with respect to q̇ aswell),which is
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thus set aside from the performance index (14). There-
fore, to maximize themanipulability of physically con-
strained WMRM, the following rough manipulability-
maximizing scheme (i.e., the RoMM scheme) can be
obtained directly:

minimize
1

2
‖q̇‖22 − ξTq̇ (15)

subject to J q̇ = ṙdw + κ(rdw − g(p)), (16)

q− ≤ q ≤ q+, (17)

q̇− ≤ q̇ ≤ q̇+, (18)

Note that, for the coordinated motion planning and
control of WMRM (e.g., the one shown in Fig. 1),
in view of the computational complexity, it may be
less necessary to consider the motion of the driving
wheels in theminimumnorm form (i.e., ‖ϕ̇‖22/2). Thus,
we would like to exploit the minimization of ‖θ̇‖22/2
instead of the minimization of ‖q̇‖22/2 for the coordi-
natedmotionplanning and control ofWMRM.Besides,
it is also worth pointing out that the comparative sim-
ulation results (given in Sect. 5) validate that the mini-
mization of ‖θ̇‖22/2− ξTq̇ [i.e., the performance index
(9)] outperforms that of ‖q̇‖22/2− ξTq̇ [i.e., the perfor-
mance index (15)] in terms of maximizing the manip-
ulability of WMRM.

Therefore, based on the above analysis, by setting
‖ϕ̇‖22/2 and ‖ξ‖22/2 from (14), the new performance
index (9) is obtained. Furthermore, by introducing the
position feedback and considering the physical limits,
we have the equality constraint (10) and bound con-
straints (11) and (12). The efficacy analysis of the pro-
posed ReMM scheme for maximizing the manipulabil-
ity is thus complete.

Remark 1 The refined manipulability-maximizing
(ReMM) scheme and the rough manipulability-
maximizing (RoMM) scheme are two different sche-
mes with different performance indices [i.e., (9) for the
ReMM scheme and (15) for the RoMM scheme]. Note
that theReMMscheme and theRoMMscheme are both
reformulated as the QP problems in this paper. Thus,
the QP is not the factor that makes the ReMM scheme
better than the RoMM scheme. Rigorously speaking,
it is the novel performance index (9) that makes the
ReMM scheme better than the RoMM scheme in terms
of the computational complexity for the scheme and
the manipulability maximizing for the WMRM.

4 Scheme unification

According to [12,13], physical limits (11) and (12) can
be combined as ς− ≤ q̇ ≤ ς+, with the i th elements
of ς− and ς+ being, respectively, defined as ς−

i =
max{μ(q−

i −qi ), q̇
−
i } and ς+

i = min{μ(q+
i −qi ), q̇

+
i }

(inwhich i = 1, 2, 3, . . . , 2+n). In addition, the design
parameter μ > 0 ∈ R is used to scale the feasible
region of q̇ .

Then, bydefining the decision-variable vector x = q̇
and setting ‖ϕ̇‖22/2 as well as ‖ξ‖22/2 from (14), the
proposed ReMM scheme (9)–(12) is reformulated and
unified as the following QP:

minimize
1

2
xT Q̂x − p̂Tx (19)

subject to J x = d̂, (20)

ς− ≤ x ≤ ς+, (21)

where coefficients are defined as follows:

Q̂ =
[
0 0
0 I

]
∈ R(2+n)×(2+n), p̂ = ξ ∈ R2+n,

d̂ = ṙdw + κ(rdw − g(p)),

with the identity matrix I ∈ Rn×n . Note that the QP
reformulation and unification can not only make a bet-
ter understanding of the previous and current work on
redundancy resolution of robot manipulators, but also
give us many new insights to the motion planning of
(mobile) redundant manipulators in the future robotic
research. These are the reasons why we tend to develop
a rich repertoire of QP-based schemes [12,13,39–41]
for redundant robot manipulators. Besides, for online
solution of the QP problem, lots of recurrent neural
networks have been proposed, developed and inves-
tigated [13,43]. Thus, in this paper, the primal-dual
neural network based on linear variational inequality
(LVI) [13,43] is exploited for solving QP (19)–(21).
Hereafter, (19)–(21) is termed the ReMM scheme for
presentation convenience.

Remark 2 Unlike the conventional pseudoinverse-type
form (7), the proposed ReMM scheme (19)–(21) is
depicted readily in a more concise optimization form,
which can realize the coordinated movements of the
mobile platform and the manipulator. In addition, dif-
fering from the pseudoinverse-type scheme (8), the pro-
posed scheme can plan the manipulability-maximizing
motion of the WMRM with physical limits consid-
ered, which is more reasonable in practical applica-
tions. In summary, the proposed ReMM scheme is
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superior to the scheme (8). More importantly, such an
ReMM scheme shows an interesting trend of mixing
motion planning and reactive control methodologically
and systematically, which is becoming more and more
important in the field of automatic control and robotics.

Remark 3 It is worth pointing out here that the sig-
nificance of the QP for the reformulation of the pro-
posedReMMscheme lies in the following facts. Firstly,
the proposed QP-based ReMM scheme (19)–(21) can
avoid solving for Jacobian pseudoinverse [44], and thus
it costs considerably less time to solve the same prob-
lem than the pseudoinverse-type scheme (8). In other
words, the QP-based ReMM scheme (19)–(21) has the
relatively low computational complexity. Secondly, the
QP-based scheme can handle one-sided inequality con-
straints and bound constraints (i.e., two-sided inequal-
ity constraints),whichmeans that theQP-based scheme
can handle other subtasks when the robot manipulator
executes the primary task [3]. Finally, for online solu-
tion of the QP problem, lots of recurrent neural net-
works have been proposed, developed and investigated
in the recent years [13,43,45], due to their parallel-
processing and adaptive-tuning nature [46].

5 Effective verifications

In this section, simulations based on the presented
WMRM are performed to verify the efficacy, accu-
racy and superiority of the proposed ReMM scheme
(19)–(21). For comparison, the RoMM scheme (15)–
(18) is also simulated. Note that, in the simulations,
xG(0) = yG(0) = 0 m, φ(0) = π/3 and θ(0) =
[π/12, π/4, π/6, π/12, π/12, −π/12]T rad are used
for the wheeled mobile manipulator. In addition, the
feedback gain κ = 1 and the task duration T = 20 s.

5.1 Tricuspid-curve path-tracking task

For validating the superior performanceof the proposed
ReMM scheme (19)–(21), comparative simulations are
performed on the presentedWMRM in this subsection.
That is, the RoMM scheme and the ReMM scheme are
comparatively applied to the WMRM in order for the
manipulator’s end-effector to follow a same tricuspid-
curve path. Specifically, the desired velocities of the
end-effector for completing such a tracking task are
described as

⎧
⎪⎨

⎪⎩

ṙdwX = −α 2π2

T sin
(

π t
T

)
(sin(β) + sin(2β)),

ṙdwY = α 2π2

T sin
(

π t
T

)
(cos(β) − cos(2β)) cos(π/20),

ṙdwZ = α 2π2

T sin
(

π t
T

)
(cos(β) − cos(2β)) sin(π/20),

where α = 0.25 and β = 2π sin2(π t/(2T )).

5.1.1 Simulation results under RoMM scheme

Specifically, Fig. 4 illustrates the simulation results
synthesized by the RoMM scheme (15)–(18), when the
manipulator’s end-effector tracks the tricuspid-curve
path. Evidently, Fig. 4a shows that the path-tracking
task is completed well owing to the coordinated move-
ments of the mobile platform and the manipulator.
However, as seen from Fig. 4b, the generated maximal
absolute value of the position error ε = rdw − g(p)
is around 6 × 10−3 m, which is too large to meet the
requirement of practical applications. As shown in Fig.
4c, during t ∈ [4.8, 9] and [11, 12] s, themanipulability
measure w = det(J JT) of the whole mobile manipu-
lator system is quite small (specifically, around 0.004),
and the manipulability measure warm = det(Jarm JTarm)

[with Jarm = ∂ f (θ)/∂θ ] of the six-DOF manipulator
is about zero. This means that there exists the singu-
larity problem (which corresponds to the situation of
warm = 0) in the motion of the mobile manipulator.
Such a singularity problem is undesirable and unac-
ceptable in practice, which would result in the failure
of the path-tracking task, and, sometimes, the damage
of the mobile manipulator. In addition, profiles of joint
angles are presented in Fig. 4d–f. As illustrated in Fig.
4d–f, except that the joint angle θ6 is kept within its
physical limits, all the other joint angles reach but not
exceed their limits during some time periods of the task
execution process. These results show that the bound
constraints (17) and (18) are effective and activated dur-
ing the motion. In summary, Fig. 4 indicates that the
RoMM scheme (15)–(18) is undesirable and unaccept-
able for theWMRM in view of large end-effector posi-
tion error and unexpected singularity problem. There-
fore, an effective motion planner (e.g., the proposed
ReMM scheme) appears to be needed for avoiding the
aforementioned undesirable phenomena.

5.1.2 Simulation results under ReMM scheme

The simulation results synthesized by the proposed
ReMM scheme (19)–(21) are shown in Figs. 5 and 6.
Specifically, Fig. 5a illustrates the top view of motion
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Fig. 4 The WMRM end-effector moves along a tricuspid-curve
path, as synthesized by the RoMM scheme (15)–(18). a Motion
trajectories. b Position error ε profiles. c Manipulability mea-

sures. d Joint angle θ1 and θ2 profiles. e Joint angle θ3 and θ4
profiles. f Joint angle θ5 and θ6 profiles
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the proposed ReMM scheme (19)–(21) in addition to Fig. 5. a

Joint velocity θ̇ profiles. b xG , yG and φ profiles. c Rotational
angle ϕ profiles. d Rotational velocity ϕ̇ profiles

trajectories of the WMRM, with the corresponding
position error profiles are shown in Fig. 5b. As seen
from Fig. 5a, b, the path-tracking task is fulfilled well
(with the maximal absolute value of the position error
being around 2.5 × 10−5 m) owing to the coordinated
motion of the mobile platform and the manipulator.
More importantly, as shown in Fig. 5c, themanipulabil-
ity measures w and warm are always greater than zero,
and, more specifically, greater than their initial val-
ues w(0) and warm(0), respectively. This implies that
the purpose of singularity avoidance is achieved suc-
cessfully via the proposed ReMM scheme (19)–(21).

Besides, profiles of joint angles are presented in Fig.
5d–f. Evidently, all the synthesized joint angles are kept
within their corresponding joint limits and not reach
their limits, showing the effectiveness of the bound con-
straint (21). By comparing Fig. 4 with Fig. 5, the pro-
posedReMMscheme is superior to theRoMMscheme.
For further investigation and illustration, more supple-
mentary simulation results synthesized by the proposed
scheme (19)–(21) are shown in Fig. 6. As illustrated in
Fig. 6, the profiles of θ̇ , xG , yG , φ, ϕ and ϕ̇ vary with
time t continuously and smoothly, which are suitable
for practical applications. Moreover, as compared to

123



QP-based refined manipulability-maximizing scheme 257

−1
−0.5

0
0.5

1

−1

0

1

2
0

0.5

1

1.5

X (m)Y (m)

Z (m)
End-effector trajectory

Final state

Initial state

0 5 10 15 20
−3

−2

−1

0

1

2

3

4

X

Y

Z

t (s)

0 5 10 15 20
0

0.01

0.02

0.03

0.04

0.05

0.06

t (s)

w

warm

0 5 10 15 20
−6

−4

−2

0

2

4

6

t (s)

ϕ̇L

ϕ̇R

ϕ̇ (rad/s)

0 5 10 15 20
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

t (s)

θ1
θ2
θ3
θ4
θ5
θ6

θ (rad)

0 5 10 15 20
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

t (s)

θ̇1
θ̇2
θ̇3
θ̇4
θ̇5
θ̇6

θ̇ (rad/s)

x 10−5(m)

(a) (b)

(c) (d)

(e) (f)
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path with σ = 2, as synthesized by the proposed ReMM scheme
(19)–(21). a Motion trajectories. b Position error ε profiles. c
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path with σ = 4, as synthesized by the proposed ReMM scheme
(19)–(21). a Top view of motion trajectories. b Position error ε
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physical limits listed in Table 2, all the joint velocities
and rotational velocities are kept within their physical
limits [showing again the effectiveness of the bound
constraint (21)]. All these results further demonstrate
the efficacy of the proposed ReMM scheme.

In summary, the above simulation results have
demonstrated the efficacy, accuracy and superiority of
the proposed ReMM scheme (19)–(21) for manipu-
lability maximizing and coordinated motion planning
and control of the WMRM, as compared to the RoMM
scheme (15)–(18).

5.2 Rhodonea-curve path-tracking tasks

In this subsection, the end-effector is expected to track a
Rhodonea-curve path [47], which is synthesized by the
proposed ReMM scheme (19)–(21). Similarly, for bet-
ter understanding, the desired velocities of the manip-
ulator’s end-effector for tracking the Rhodonea-curve
path are designed as
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ṙdwX = −α π2

T sin
(

π t
T

)
(σ sin(σβ) cos(β)

+ cos(σβ) sin(β)),

ṙdwY = −α π2

T sin
(

π t
T

)
(σ sin(σβ) sin(β)

− cos(σβ) cos(β)),

ṙdwZ = 0,

where α = 0.5 and β = 2π sin2(π t/(2T )) are used in
this paper. Note that different values of σ would lead to
different types of Rhodonea curves [47]. In the simula-
tions, σ = 2 and σ = 4 are used for investigation and
illustration, and the corresponding simulation results
are shown in Figs. 7 and 8.

As seen from Figs. 7a, b, and 8a, b, by using the
proposed ReMM scheme (19)–(21), the two desired
Rhodonea-curve paths are tracked successfully, with
the maximal absolute value of position errors being
tiny enough (e.g., less than 8.0× 10−5 m). In addition,
from Figs. 7c and 8c, we can also observe that, when
the manipulator’s end-effector tracks the Rhodonea
curve with σ = 2 or σ = 4, the manipulability mea-
sures w and warm are always greater than their initial
value w(0) and warm(0), respectively. More specif-
ically, w and warm keep increasing during the end-
effector task execution, which implies that there does
not exist the singularity problem in coordinated motion
planning and control of the WMRM. In the two path-
tracking tasks, all the joint angles, joint velocities and

rotational velocities illustrated in Figs. 7b–f and 8b–
f are kept within their corresponding physical lim-
its shown in Table 2. These results demonstrate well
the efficacy of the proposed ReMM scheme (19)–(21)
for coordinated motion planning and control of the
WMRM.

In summary, all the above simulation results (i.e.,
Figs. 4 , 5, 6, 7 and 8) have demonstrated well that
the proposed ReMM scheme (19)–(21) is effective on
maximizing the manipulability of the WMRM system
and the six-DOF manipulator.

6 Conclusions

By following the pseudoinverse-type formulation (8),
this paper has proposed and investigated the novel
manipulability-maximizing scheme, i.e., the ReMM
scheme (19)–(21), for the coordinated motion planning
and control of theWMRM.Then, such a scheme,which
treats the mobile platform and the redundant manipu-
lator as a combined system and incorporates position
feedback and physical limits, has been reformulated
into a unified QP. For testing the proposed ReMM
scheme, awheeledmobile redundantmanipulator com-
posed of a two-wheel-drive mobile platform and a six-
DOF manipulator has been presented and investigated,
togetherwith its kinematics analysis. Comparative sim-
ulation results based on the presented mobile manipu-
lator have further substantiated the efficacy and supe-
riority of the proposed ReMM scheme for singularity
avoidance, physical limits avoidance, andmanipulabil-
ity maximizing of the whole mobile manipulator and
the six-DOF manipulator. Besides, it is worth point-
ing out that the proposed ReMM scheme can both be
suitable for the presented wheeled mobile manipula-
tor and be applied to other types of mobile manipula-
tors, which can be a interesting direction of the future
work.
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Appendix

In this appendix, the detailed expression of the matrix
J (ϑ) in (6) is presented. First, we denote J (ϑ) as

J (ϑ) =
⎡

⎣
j11 j12 j13 j14 j15 j16 j17 j18
j21 j22 j23 j24 j25 j26 j27 j28
j31 j32 j33 j34 j35 j36 j37 j38

⎤

⎦ ∈ Rm×(2+n).

Second, let

j01 = l65(−c5s32s1φ + s5c4c32s1φ + s5s4c1φ)

− l43s32s1φ − l2s2s1φ,

and

j02 = l65(c5s32c1φ − s5c4c32c1φ + s5s4s1φ)

+ l43s32c1φ + l2s2c1φ.

Then, the elements of J (ϑ) are shown as follows:

j11 = γ

2
cφ + γ d

2b
sφ − γ

2b
j01,

j12 = γ

2
cφ − γ d

2b
sφ + γ

2b
j01,

j13 = j01,

j14 = l65(c5c32c1φ + s5c4s32c1φ)

+ l43c32c1φ + l2c2c1φ,

j15 = l65(c5c32c1φ + s5c4s32c1φ) + l43c32c1φ,

j16 = l65(s5s4c32c1φ + s5c4s1φ),

j17 = l65(−s5s32c1φ − c5c4c32c1φ + c5s4s1φ),

j18 = 0;
j21 = γ

2
sφ − γ d

2b
cφ − γ

2b
j02,

j22 = γ

2
sφ + γ d

2b
cφ + γ

2b
j02,

j23 = j02,

j24 = l65(c5c32s1φ + s5c4s32s1φ)

+ l43c32s1φ + l2c2s1φ,

j25 = l65(c5c32s1φ + s5c4s32s1φ) + l43c32s1φ,

j26 = l65(s5s4c32s1φ − s5c4c1φ),

j27 = l65(−s5s32s1φ − c5c4c32s1φ − c5s4c1φ),

j28 = 0;
j31 = j32 = j33 = 0,

j34 = l65(s5c4c32 − c5s32) − l43s32 − l2s2,

j35 = l65(s5c4c32 − c5s32) − l43s32,

j36 = l65(−s5s4s32),

j37 = l65(c5c4s32 − s5c32),

j38 = 0,

where γ = 0.1025 m, b = 0.32 m, and d = 0.1 m.
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