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Abstract Boiler–turbine units may show quasiperi-
odic behavior due to the bifurcation occurrence in
the presence of harmonic disturbances. In this study,
a multi-input–multi-output nonlinear dynamic model
of a boiler–turbine unit is considered. Drum pressure,
electric output, and fluid density are the state vari-
ables and adjusted at the desired values by manipula-
tion of the input variables. Control inputs are the valve
positions for fuel, steam and feed-water flow rates. To
improve the quasiperiodic behavior of the system and
bifurcation control in tracking problem, two controllers
are designed: feedback linearization control and non-
linear sliding mode control (SMC). The feedback lin-
earization controller is designed based on the linearized
dynamics. Dynamic response of the system in track-
ing of four different desired trajectories is examined.
SMC controller acts more efficiently in suppression of
harmonic perturbations and consequently bifurcation
control. Appropriate tracking performance is observed
for the drum pressure, electric output, fluid density and
drum water level in both cases. Control efforts’ mag-
nitudes in both controllers are almost similar. How-
ever, slidingmode controller vanishes the quasiperiodic
solutionsmore successfully and leads to amore smooth
response with less overshoots and less corresponding
control efforts.
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1 Introduction

Boiler–turbine is one of the most important compo-
nents in power plants. Due to its dynamic interaction
with different equipment, it has a complex nonlinear
dynamicmodel.During the power plant operation, vari-
ables such as steam pressure, electric output, fluid den-
sity, and drumwater level should be maintained at their
desired values [1,2].

Different dynamic models have been proposed with
the help of neural networks [3], using data logs and
parameter estimation [4], applying T–S fuzzy method
[5] and fuzzy-neural network methods [6]. Moreover,
many works have been done on dynamic modelling of
this unit based on simplification of nonlinear models of
boiler–turbine units [7], parameter estimation [8], sys-
tem identification using neural networks [9], data logs
[10], and fuzzy auto-regressive moving average model
[11]. Also, nonlinear dynamics of the unit was inves-
tigated through the concepts of bifurcation and limit
cycles behavior [12]. Moreover, state space equations
of amodel for a hydro-turbine systemconsidering surge
tank effects were introduced and critical points of Hopf
bifurcation were obtained [13].

In addition to dynamic modelling, various control
approaches have been applied for the boiler or boiler–
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turbine units. These controllers helped the boiler or
boiler–turbine units to perform appropriately. Linear
optimal regulators [14,15], decoupling controller [16],
multivariable long-range predictive control based on
local model networks [17], fuzzy model predictive
control based on genetic algorithm [18], fuzzy based
control systems for thermal power plants [19,20] and
neuro-fuzzy network modelling and PI control of a
steam-boiler system [21] have been investigated. In
addition, linear control theories such as gain scheduled
optimal control have been used [22].

Moreover, backstepping-based nonlinear adaptive
control [23], adaptive dynamic matrix control with
fuzzy-interpolated step-response model [24], sliding
mode and H∞ robust controllers [2,25–28] and a
comparison between them [2,27] have been applied
for robust performance of the unit. Furthermore, gain
scheduling and feedback linearization controllers in
tracking problem [29] and a control regulator based
on feedback linearization [12] have been designed for
the bifurcation control.

To the best of our knowledge, most of previous stud-
ies have been devoted to simplification of the com-
plex nonlinear dynamic system and controller design
accordingly. Due to this simplification, the designed
controllers may lead to the aggressive response of out-
put variables and also increase in energy consumption.

Harmonic perturbations essentially occur for the
power grid. In this study, tracking of the desired com-
mands is studied in the presence of such perturba-
tions. Four desired tracking objectives are considered
as desired set-paths. In the previous works, only lin-
ear controllers are proposed for tracking in the pres-
ence of perturbations. In this paper, two controllers
are designed: one is applied on the nonlinear complex
model, and the other is applied on the linearized simpli-
fied model. System responses of these two controllers
are compared regarding tracking of the desired com-
mands, bifurcation control and consequently changing
the unstable quasiperiodic solutions into the stable peri-
odic ones. Moreover, the behavior of control efforts for
tracking of the desired paths is also investigated.

2 Nonlinear dynamic model of the boiler–turbine
unit

A water-tube boiler is considered as the case study for
this study. The whole process of this unit is shown

Fig. 1 Schematic of a boiler–turbine unit [29]

in Fig. 1 schematically [30]. As a real case study, all
simulations in this study are applied on the nonlin-
ear dynamic model of a boiler–turbine unit presented
by Bell and Astrom [31]. Parameters of this model
were estimated from experimental data related to the
160MW Synvendska Kraft AB Plant in Malmo, Swe-
den. Output variables are indicated by y1 for drumpres-
sure (kg f/cm2), y2 for electric output (MW) and y3
for drum water level (m) shown in Figure 2 [22]. Input
variables are denoted by u1, u2, and u3 for the valves
position of the fuel flow, steam control, and feed-water
flow, respectively. Dynamic equations of this unit are
described as the followings [31]:

ẋ1 = −α1u2x
9/8
1 + α2u1 − α3u3

ẋ2 = (β1u2 − β2)x
9/8
1 − β3x2

ẋ3 = [γ1u3 − (γ2u2 − γ3)x1]/γ4 (1)

where x1, x2, x3 denotes drum pressure (kg f/cm2),
electric output (MW), and the fluid density (kg/m3),
respectively. Also coefficients αi , βi , γ j i = 1 . . . 3,
j = 1 . . . 4 are listed in Table 1. Drum water level (y3)
is given in terms of the steam quality acs and evapora-
tion rate qe (kg/s) as:

y3 = 0.05
(
0.13073x3 + 100acs + qe

9
− 67.975

)
(2)

where

acs = (1 − 0.001538x3)(0.8x1 − 25.6)

x3(1.0394 − 0.0012304x1)
qe = (0.854u2 − 0.147)x1 + 45.59u1

− 2.514u3 − 2.096 (3)
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Fig. 2 Multivariable model
of the boiler–turbine unit
and structure of the
closed-loop control system

Table 1 Dynamic coefficients of the boiler–turbine model by
Bell and Astrom [30]

α1 = 0.0018 β1 = 0.073 γ1 = 141

α2 = 0.9 β2 = 0.016 γ2 = 1.1

α3 = 0.15 β3 = 0.1 γ3 = 0.19

γ4 = 85

and considering the actuator limitations, control inputs
and their rates are limited as below [30]:

0 ≤ ui ≤ 1

−0.007 ≤ u̇1 ≤ 0.007

−2 ≤ u̇2 ≤ 0.02

−0.05 ≤ u̇3 ≤ 0.05 (i = 1, 2, 3) (4)

Table 2 gives some typical operating points of the
Bell and Astrommodel where the nominal model coin-
cides with the operating point #4 [31].

In order to include more reality to the model, real
harmonic disturbances in state variables are considered,
for instance, as:

�x1 = 10 sin 0.021t;�x2 = 6 sin 0.021t;
�x3 = 40 sin 0.021t (5)

The magnitudes of disturbances are chosen arbitrarily
around 10% of the magnitudes of the nominal operat-
ing point #4 with arbitrary period of 5min. Thus, every
state vector component xi (t) in Eq. (1) is replaced by
xi (t) + �xi (t).

3 Controller design

In very limited number of previous studies, only the lin-
ear control approaches have been implemented on this
system for bifurcation analysis. In this paper, results of
a nonlinear control and a linear control are compared.
For the nonlinear control approach, sliding mode con-

Table 2 Typical operating points of Bell and Astrom model [30]

#1 #2 #3 #4 #5 #6 #7

x01 75.6 86.4 97.2 108 118.8 129.6 140.4

x02 15.27 36.65 50.52 66.65 85.06 105.8 128.9

x03 299.6 342.4 385.2 428 470.8 513.6 556.4

u01 0.156 0.209 0.271 0.34 0.418 0.505 0.6

u02 0.483 0.552 0.621 0.69 0.759 0.828 0.897

u03 0.183 0.256 0.34 0.433 0.543 0.663 0.793

y03 −0.97 −0.65 −0.32 0 0.32 0.64 0.98
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troller (SMC) and for the linear one, feedback lineariza-
tionmethod (FLM) are implemented. It is assumed that
all state variables in the model are available for con-

struction of the feedback control law, either by direct
measurement or by using a state observer. For more
details, one can refer to the previous research [32].

Fig. 3 Desired set-paths for
tracking objectives in
switching between the
operating points #1 to #7 for
a a sequence of steps, b
ramps, c step-ramps and d
sinusoidal signal
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Fig. 3 continued
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Fig. 4 Time response of the
drum pressure (kg f/cm2),
electric output (MW), fluid
density and drum water
level in tracking a sequence
of steps (case ‘a’ of Fig. 4)
after implementation of
sliding mode controller
(solid blue line) and
feedback linearization
method (dashed red line); in
the presence of Hopf
bifurcation. (Color figure
online)

Fig. 5 Periodic and
quasi-periodic orbits of
drum pressure (kg f/cm2)

in tracking a sequence of
steps (case ‘a’); after
implementation of sliding
mode controller (solid blue
line) and feedback
linearization method
(dashed red line). (Color
figure online)

3.1 Nonlinear control using the sliding mode control
approach

In this section, nonlinear dynamics of the boiler–
turbine is considered. This method is suitable for con-

trol of nonlinear systems [33]. However, in previous
studies, the controllers were designed based on the lin-
earized model [12,29].

Sliding mode controller is one of approaches used
for the robust control of different mechanical sys-
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Fig. 6 Time response of the required fuel flow rate, u1, steam
flow rate, u2, and feed-water flow rate, u3 for the Hopf bifur-
cation control in tracking a sequence of steps (case ‘a’); after
implementation of sliding mode controller (solid blue line) and
feedback linearization method (dashed red line). (Color figure
online)

tems [2,27]. In this method, the nth-order problem is
replaced by n equivalent first-order problems. Consider
the nonlinear dynamic system with multiple inputs as:

ẋ = f (x, t) + g(x, t)u (6)

where x and u are the state vector and the control
input, respectively. f (x, t) and g(x, t) are the non-
linear functions of time and states. These functions
may have uncertainties and even unmodelled dynam-
ics; however, they are bounded.A sliding surface vector
can be defined as:

s(x, t) = e(t) = [e1 e2 e3] (7)

where e(t) = x(t)− xd(t) is the tracking error, xd(t) is
the desired state to be tracked. To guarantee Lyapunov
stability condition, the control law u of Eq. (6) must be
selected such that:

1

2

d

dt
s2 = sṡ ≤ −η |s| (8)

where η is a positive constant [for simplicity, s(y, t) is
denoted by s). Equation (8] mentions that the squared
distance to the surface decreases along all system tra-
jectories, and thus it makes the trajectories to move
toward the origin. If x(t = 0) �= xd(t = 0), sliding
surface s can be reached in a finite time smaller than
|s(t = 0)| /η. In order x(t) to track xd(t), sliding sur-
face s is defined as Eq. (7). The time derivative of s is

ṡ = ẋ − ẋd = f (x, t) + g(x, t)u − ẋd (9)

The approximation û of a continuous control law that
would achieve ṡ = 0 is:

û = ḡ−1(x, t)
[
ẋd − f̄ (x, t)

]
(10)

where ḡ(x, t) and f̄ (x, t) are the nominal values asso-
ciated with g(x, t) and f (x, t). In spite of the uncer-
tainty and unmodelled dynamics associated with the
model, to satisfy the sliding condition, a discontinuous
term across the surface s = 0 is added as:

u= û−g−1(x, t)
[
K1sgn(s1) K2sgn(s2) K3sgn(s3)

]T
(11)

where sgn is the sign function. It can be shown that
by assigning K1, K2 and K3 large enough, condition
in Eq. (8) will be satisfied. To eliminate control signal
chattering, the control discontinuity must be smoothed
in a thin boundary layer around the switching surface.
Thus, the sign function is replaced by a saturation func-
tion, so the control input u is modified to

u = û − ḡ−1(x, t)

× [
K1sat(s1/ξ1) K2sat(s2/ξ2) K3sat(s3/ξ3)

]T

sat(s/ξ) =
{
s/ξ |s| ≤ ξ

sgn(s) otherwise
(12)

where ξ is the thickness of boundary layer. Using con-
trol law of Eq. (12) guarantees the tracking and gen-
erally is valid for the all trajectories starting inside the
boundary layer.
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Fig. 7 Time response of the
drum pressure (kg f/cm2),
electric output (MW), fluid
density and drum water
level in tracking a sequence
of ramps (case ‘b’ of Fig. 3)
after implementation of
sliding mode controller
(solid blue line) and
feedback linearization
method (dashed red line), in
the presence of Hopf
bifurcation. (Color figure
online)

Fig. 8 Periodic and quasi-periodic orbits of drum pressure
(kg f/cm2) in tracking a sequence of ramps (case ‘b’), after
implementation of sliding mode controller (solid blue line) and
feedback linearization method (dashed red line). (Color figure
online)

Theorem 1 Consider the plant described by Eq.(6). If
the control law by Eq. (12) is applied on the plant, the
tracking error converges to zero. K1, ξ1, K2, ξ2 and
K3, ξ3 are the constant design parameters.

Proof In order to prove the stability of the control sys-
tem, a positive-definite Lyapunov function is defined
as below:

V = 1

2

(
e21 + e22 + e23

)
= 1

2
sT s (13)

Time derivative of Lyapunov function is obtained as:

V̇ = e1ė1 + e2ė2 + e3ė3 = sT ṡ

= sT [ f (x, t) + g(x, t)u − ẋd] (14)

Replacing the control law by Eq. (12) into Eq. (14),
yields:
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Fig. 9 Time response of the required fuel flow rate, u1, steam
flow rate, u2, and feed-water flow rate, u3 for the Hopf bifur-
cation control in tracking a sequence of ramps (case ‘b’); after
implementation of sliding mode controller (solid blue line) and
feedback linearization method (dashed red line). (Color figure
online)

V̇ = sT
(
f (x, t) + g(x, t)ḡ−1(x, t)

(
ẋd − f̄ (x, t) − [

K1sat(s1/ξ1) K2sat(s2/ξ2) K3sat(s3/ξ3)
]T )

− ẋd
)

V̇ = sT
((

f (x, t) − g(x, t)ḡ−1(x, t) f̄ (x, t)
) + ẋd

(
g(x, t)ḡ−1(x, t) − I

)

−g(x, t)ḡ−1(x, t)
[
K1sat(s1/ξ1) K2sat(s2/ξ2) K3sat(s3/ξ3)

]T
)

(15)

By choosing the positive and large enough values for
K1, K2 and K3, it can be shown that constraint ofEq. (8)
would be satisfied. Then, the candidate Lyapunov func-
tion satisfies the Lyapunov stability criterion, which
guarantees the asymptotic stability of the system. The
terms f̄ (x, t) and ḡ(x, t) appear as the state vector x(t)
is replaced by x(t) + �x(t), which leads to add some
uncertainty and unmodelled dynamics in the state space
equations of the model.

3.2 Linear control using the feedback linearization
method

Formulation of the controller design using feedback
linearization approach was presented in the previous
research [12] (also, it is presented briefly in “Appen-
dix”). In this section, the linear model of the system is
presented.

Dynamic model given by Eq. (1) is considered. To
maintain the system around each operating point of
Table 2 at the state vector x̄0 = [ x01 x02 x03 ], a con-
stant input vector ū0 = [ u01 u02 u03 ]must be imposed.
For math simplicity, let’s define the new variables as:

ξ1 = x01 , ξ2 = x02 , ξ3 = x03
η1 = u01, η2 = u02, η3 = u03 (16)

By linearizing the Eq. (1) around any operating points
of Table 2, one can conclude:

˙̄xδ = A(ξi , ηi )x̄δ + B(ξi , ηi )ūδ i = 1, 2, 3

x̄δ = x̄ − x̄0, ūδ = ū − ū0 (17)

where

A(ξi , ηi ) =
⎡
⎢⎣

−1.125α1η2ξ
1/8
1 0 0

1.125(β1η2 − β2)ξ
1/8
1 −β3 0

− 1
γ4

(γ2η2 − γ3) 0 0

⎤
⎥⎦ ;

B(ξi , ηi ) =
⎡
⎢⎣

α2 −α1ξ
9/8
1 −α3

0 β1ξ
9/8
1 0

0 − γ2
γ4

ξ1
γ1
γ4

⎤
⎥⎦ (18)

In state feedback control scheme, to achieve the desired
locations of closed-loop control system and conse-
quently desired performance of the system, the control
vector ūδ is constructed as:

ūδ = −K (ξi , ηi )ē,

ē = x̄δ − r̄δ, r̄δ = ȳR − ȳ0 (19)

where K (ξi , ηi ) is the feedback gain matrix, ē is the
error vector, ȳR is the command vector signal that
must be tracked. ȳ0 = [ y01 y02 y03 ] is the output vec-
tor, defined by Eqs. (1) and (2), at each operating point
of Table 2. Substituting Eqs. (18) and (19) in the first
derivative of Eq. (17), leads to the following equation:
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Fig. 10 Time response of
the drum pressure
(kg f/cm2), electric output
(MW), fluid density and
drum water level in tracking
a sequence of steps and
ramps (case ‘c’ of Fig. 4)
after implementation of
sliding mode controller
(solid blue line) and
feedback linearization
method (dashed red line); in
the presence of Hopf
bifurcation. (Color figure
online)

Fig. 11 Periodic and orbits of drum pressure (kg f/cm2) in
tracking a sequence of steps and ramps (case ‘c’); after imple-
mentation of sliding mode controller (solid blue line) and feed-
back linearizationmethod (dashed red line). (Color figure online)

˙̄xδ = [A − BK ]x̄δ + BKr̄δ (20)

The procedure of designing a linear controller using
feedback linearization method for the MIMO system
is given in “Appendix.” In the control design, a max-
imum overshoot of Mp = 10% and a settling time of
about ts = 200 s is considered as the desired output in
tracking behavior of all output variables.

Fig. 12 Time response of the required fuel flow rate, u1, steam
flow rate, u2, and feed-water flow rate, u3, for the Hopf bifur-
cation control in tracking a sequence of steps and ramps (case
‘c’); after implementation of sliding mode controller (solid blue
line) and feedback linearizationmethod (dashed red line). (Color
figure online)
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Fig. 13 Time response of
the drum pressure
(kg f/cm2), electric output
(MW), fluid density and
drum water level in tracking
a sinusoidal signal (case ‘d’
of Fig. 4) after
implementation of sliding
mode controller (solid blue
line) and feedback
linearization method
(dashed red line); in the
presence of Hopf
bifurcation. (Color figure
online)

Fig. 14 Periodic and quasi-periodic orbits of drum pressure
(kg f/cm2) in tracking a sequence of a sinusoidal signal (case
‘d’); after implementation of sliding mode controller (solid blue
line) and feedback linearizationmethod (dashed red line). (Color
figure online)

4 Simulations

In this section, nonlinear dynamics of the boiler–
turbine unit is simulated in the presence of harmonic
disturbances caused by environmental effects. If the
controller succeeds to reject these disturbances, it will

Fig. 15 Time response of the required fuel flow rate, u1, steam
flow rate, u2, and feed-water flow rate, u3, for the Hopf bifur-
cation control in tracking a sinusoidal signal (case ‘d’); after
implementation of sliding mode controller (solid blue line) and
feedback linearization method (dashed red line). (Color figure
online)
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reject other kinds of transient disturbances, as they can
be built up by the Fourier series. Realistic parameters
of the model around the nominal operating point #4 are
considered as the initial condition of the boiler–turbine
unit as:

�x1 = 10 sin 0.021t; �x2 = 6 sin 0.021t;
�x3 = 40 sin 0.021t (21)

To achieve the appropriate responses in tracking objec-
tiveswhile the control inputs are bounded in the accept-
able ranges, parameters of the sliding mode controller
are chosen by trial-and-error method as:

K1 = K2 = K3 = 1; ξ1 = 10, ξ2 = ξ3 = 1 (22)

In order to demonstrate the efficiency of designed con-
trollers in switching between various operating points
#1–#7 (Table 2), different arbitrary cases of the desired
set-paths are assigned for the state variables: drumpres-
sure, electric output, and fluid density. As shown in
Fig. 3, a sequence of steps, ramps steps and a com-
bination of them are considered as cases ‘a’, ‘b’, and
‘c’, respectively. Also, in order to investigate the abil-
ity of tracking of any arbitrary command, a sinusoidal
commandwith variable amplitude is considered as case
‘d.’

5 Results and discussion

5.1 case ‘a’

The time response of the state variables: drum pres-
sure (x1 = y1), electric output (x2 = y2), fluid den-
sity (x3 = y3) and drum water level in tracking a
desired sequence of steps are shown in Fig. 4 (case
‘a’ in Fig. 3), after the implementation of SMC and
FLM controllers. As it is observed, both controllers
satisfy the tracking objective. But the FLM controller
cannot eliminate the effect of unstable quasiperiodic
solutions, arisen by Hopf bifurcation occurrence effec-
tively. However, SMC controller regulates the unstable
quasiperiodic solutions with large oscillations around
the desired operating points.

Related limit cycles’ behavior is shown in Fig. 5. As
shown, although limit cycles exist in the time responses,
FLM controller changes the large quasiperiodic limit
cycles into the small periodic ones. On the other hand,
limit cycles are vanished by using SMC controller. It

should be noticed that, the size of small diameter of
elliptical limit cycles indicates the amount of oscilla-
tions around the operating points. As shown in Fig. 5,
SMC controller is more effective rather than FLM one
in maintaining the system around its operating points
with small oscillatory behavior (equilibrium points are
the final destinations in plots of top Fig. 5 for SMC).

Figure 6 shows the required variation of valve posi-
tions for the fuel (u1), steam (u2) and feed-water (u3)
flowrates for the purposeof bifurcation control in track-
ing of case ‘a’. As it is observed, less amount of control
efforts is required when the SMC controller is used (in
comparison with FLM controller).

5.2 Cases ‘b’,‘c’ and ‘d’

Time responses and corresponding limit cycles of
the drum pressure and electric output in tracking the
desired paths of ramps steps (case ‘b’ in Fig. 3) are
shown in Figs. 7 and 8, respectively. As shown, FLM
controller is able to change the unstable quasiperi-
odic behavior of the system into a stable periodic one
(around the fixed points). However, it cannot eliminate
the oscillatory behavior in the tracking of the desired
commands.But, SMCcontroller is capable of suppress-
ing limit cycles. Also, required control efforts for bifur-
cation control and maintaining the system around the
desired set-path of case ‘b’ are shown in Fig. 9. It is
observed that when SMC controller is implemented,
required control efforts are smoother (in comparison
with the FLM controller).

Dynamic behavior of the boiler–turbine unit, in
tracking a desired combination of ramps and steps (case
‘c’ of Fig. 3), is shown in Figs. 10, 11 and 12. As it is
shown in Figs. 10 and 11, similar to the previous cases
‘a’ and ‘b’; implementation of SMC controller leads to
the efficient performance in the suppression of unstable
quasiperiodic orbits. Moreover, less manipulation of
valves positions for the fuel, steam and feed-water flow
rates is requiredwhen SMC controller is used (Fig. 12).
As another remark in all three cases, when SMC con-
troller is used, oscillatory behavior is not observed for
the output (as shown in Figs. 4, 7 and 10). This is more
desirable for the power grid where less oscillations of
the electric output around the desired operating points
are expected.

Dynamic behavior of the boiler–turbine unit, in
tracking a desired sinusoidal command with variable
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amplitude (case ‘d’ of Fig. 3), is shown in Figs. 13,
14 and 15. Results show the good performance of both
controllers. However, sliding mode controller leads to
a better performance of the system. SMC leads to the
lower amplitude variation around the operating point.
Also, overshoots in this method are smaller compared
with the FLM.

6 Conclusions

In this paper, control of nonlinear dynamics of a
multi-inputmulti-outputmodel of boiler–turbine unit is
investigated in the presence of harmonic disturbances.
Under bifurcation conditionswhich lead to the unstable
quasiperiodic behavior of the output variables, imple-
mentation of an efficient controller is necessary. To
track the desired paths for the state variables and con-
sequently the water drum level, one linear (based on
feedback linearization method, FLM) and one nonlin-
ear controller (based on sliding mode control, SMC)
are designed and applied on this nonlinearmodel. Their
performance in suppression of perturbations and bifur-
cation control is compared.

Designed controllers guarantee the appropriate track-
ing performance of the boiler–turbine unit, against pos-
sible harmonic disturbances. While both controllers
satisfy the constraint conditions on the control efforts,
they result in smaller oscillatory behavior of limit
cycles. This behavior is more obvious in the results
of SMC. Moreover, SMC leads to the more smooth
responses with less overshoots. Consequently, more
stable electric output with very small oscillations is
delivered to the power grid which is highly desired. On
the other hand, when the SMC is applied, less control
efforts with more smooth signals are predicted (which
is the other great advantage of SMC in comparisonwith
FLM).

Finally, it should be mentioned that the objective of
bifurcation control is to decrease the effects of pertur-
bations. According to the results, two different con-
trol approaches are examined in tracking of the desired
commands. Also, their effectiveness to diminish the
effects of unstable quasiperiodic behavior of the output
variables is investigated. In otherwords, in the presence
of bifurcations (due to nonlinear nature of the problem),
the proposed controllers make the dynamic system to
move from the unstable quasiperiodic responses into
the stable periodic ones.

Appendix: Structure of the feedback control law
in MIMO system

Dynamic model of the boiler–turbine unit is of rank
n = 3. Since the controllability matrix

C = [B AB A2B . . . An−1B]
is of rank3, dynamic system is completely state control-
lable. Using the similarity transformation� as x̄ = �z̄,
Eq. (17) is represented as:

˙̄zδ = ÂG z̄δ + B̂Gūδ

ÂG = �−1A�, B̂G = �−1B (23)

where z̄δ is the new introduced state vector. Also, using
the following transformations:

ūδ = Fw̄δ; w̄δ = v̄δ − Pz̄δ (24)

Equation (23) is described as:

˙̄zδ = AG z̄δ + BGv̄δ

AG = ÂG − B̂GFP, BG = B̂GF (25)

where v̄δ is the newcontrol input vector and AG, BG has
the general canonical form with elements of [Ai ]γi×γi ,
[Bi ]γi×1, i = 1, 2, .., r and

∑r
i=1 γi = n as [34]:

AG =

⎡
⎢⎢⎣

[A1] 0 . . . 0
0 [A2] . . . 0

.

0 0 ... [Ar ]

⎤
⎥⎥⎦
n×n

,

BG =

⎡
⎢⎢⎣

[B1] 0 . . . 0
0 [B2] . . . 0

.

0 0 ... [Br ]

⎤
⎥⎥⎦
n×r

,

[Ai ] =

⎡
⎢⎢⎢⎢⎣

0 1 0 . . . 0
0 0 1 . . . 0

.

0 0 0 . . . 1
0 0 0 . . . 0

⎤
⎥⎥⎥⎥⎦

γi×γi

,

[Bi ] =

⎡
⎢⎢⎢⎢⎣

0
0
.

.

1

⎤
⎥⎥⎥⎥⎦

γi×1

(26)

where r is the number of input variables (in this case,
r = 3). Introducing the modified controllability matrix
as:

C̄ = [ b1 b2 .. br
... Ab1 Ab2 .. Abr

... .....
...

An−r b1 An−r b2 .. An−r br ]

123



242 H. Moradi et al.

where bi are the columns of matrix B given by Eq. (6);
regular basis of¯ is developed as

Ĉ = [ b1 Ab1 .. Aγ1−1b1
... b2 Ab2 .. Aγ2−1b2

... .....
... br Abr .. Aγr−1br ] (27)

where each column, A jbi , i = 1, ldots, r, j =
0, . . . , r , is independent from its previous columns.
Inverse of Ĉ given by Eq. 27 is displayed as ([]′ stands
for transpose of the [] quantity):
Ĉ

−1 =
[
e′
11 .. e′

1γ1

... e′
21 .. e′

2γ2

... .....
... e′

r1 .. e′
rγr

]′

Similarity transformation � is defined as [34]:

� =
([

e′
1γ1

e′
1γ1

A, .. e′
1γ1

Aγ1−1
... e′

2γ2
e′
2γ2

A .. e′
2γ2

Aγ2−1
... .....

... e′
rγr e

′
rγr A .. e′

rγr A
γr−1

]′)−1

(28)

Considering again Eq. 25 and constructing the feed-
back control law as vδ = −	zδ , yields:
˙̄zδ = Ad z̄δ, Ad = AG − BG	 (29)

where Ad is the desired state matrix including coef-
ficients representing the desired closed-loop poles
(|s I − Ad| = (s−μ1)(s−μ2)...(s−μn)); having the
general form of AG as given by Eq. (26). Considering
Eqs. (19), (24) and similarity transformation x̄δ = �z̄δ ,
yields the feedback control law of the system as:

ūδ = −K (ξi , ηi )x̄δ

K (ξi , ηi ) = F[	 + P]�−1 (30)

where F, P and 	 are obtained using Eqs. (24), (25)
and (29) as follows:

F=(B ′
G B̂G)−1, P= B ′

G(AG − ÂG), 	

= B ′
G(AG − Ad) (31)
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