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Abstract This paper presents a new approach to
design a robust finite-time partial stabilization for
uncertain nonlinear systems. The main contribution of
this paper is to divide system state into two subsys-
tems based on their required stability properties, and
to stabilize just one of them in finite-time. First, inte-
gral sliding mode control is applied and the system is
converted to a chain of integrators. Then, a finite-time
state feedback controller with dynamical gains is uti-
lized. Since guidance issue is an appropriate example
in which stabilization of all of the state variables is not
desirable, the proposed approach is employed to design
a robust finite-time convergent guidance law. Simula-
tion results justify that the proposed method is reliable
in terms of robustness and effectiveness.

Keywords Robust partial stability · Finite-time
convergence · Uncertain nonlinear systems

M. Golestani
Young Researchers and Elite Club, Qazvin Branch, Islamic
Azad University, Qazvin, Iran
e-mail: m.golestani@qiau.ac.ir

I. Mohammadzaman (B)
Department of Electrical Engineering,
Malek-Ashtar University of Technology, Tehran, Iran
e-mail: mohammadzaman@mut.ac.ir

M. J. Yazdanpanah
Control & Intelligent Processing Center of Excellence,
School of Electrical and Computer Engineering, University
of Tehran, P.O. Box 14395/515, Tehran, Iran
e-mail: yazdan@ut.ac.ir

1 Introduction

The problem of partial stability concerns stabilizing a
part of system states to their equilibriums [1]. In partic-
ular, this approach has widely been utilized in the study
of physical systems such as spacecraft stabilization,
electromagnetics, inertial navigation systems, adaptive
stabilization, etc. [2–6]. In these works, although the
plant might be unstable in the sense of Lyapunov, the
plant has become partially stable using this approach,
which means that the stability of a part of the system
state has been guaranteed. The number of articles in
the field of partial stability applications is on the rise,
whereas there are a few articles which focus on propos-
ing a control scheme which is able to partially stabilize
the system. And the benefits of the partial control need
to be recognized [6]. In [7,8], two general approaches
to design robust partial controller have been proposed.
These controllers ensure that a part of system states
converges to zero as time approaches infinity, whereas
in many engineering problems, it is necessary that the
system states converge to zero in a finite time.

Finite-time stability means leading the system states
to their equilibrium point and keeping them there for-
ever so that the convergence of state variables occurs
in a finite time. The design of continuous finite-time-
stabilizing feedback controllers was first introduced in
[9]. This finite-time stabilization has been expanded
in [10–12]. This concept has also been examined for
uncertain nonlinear systems dominated by a lower-
triangular system [13,14]. These papers propose con-
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trollers in order to guarantee global finite-time stability
of the closed-loop system based on the finite-time Lya-
punov stability theorem.

To control high-order uncertain nonlinear systems,
the sliding mode control (SMC) as a robust technique
is a powerful method [15]. While this approach claims
robustness property, the chattering phenomenon is the
major disadvantage of this method for the implementa-
tion of it. Recently, to alleviate chattering effect, high-
order SMC has been proposed which preserves the
advantages of the standard SMC and provides enough
precision [16,17]. Based on integral SMC approach,
many papers exist concerning high order SMC [18–
21]. The integral SMC can be expressed by integrating
an integral function into the sliding mode structure.
Improving the reaching phase problem is a significant
advantage of the integral SMC. In the reaching phase,
state variables have not yet reached the sliding surface.
So, the system is sensitive to any uncertainty or distur-
bance [22]. Integral SMC can solve the reaching phase
problem by omitting it. This control approach ensures
that the system trajectories start from the initial time
instance. As a result, the integral SMC must maintain
the system trajectories on the integral sliding surface
until trajectories converge to zero in spite of any dis-
turbance and uncertainty.

Motivated by the above discussion, this paper intro-
duces a new method for the design of a control input to
partially stabilize the nonlinear system. The approach
of this paper is based on integral SMC, so that a con-
tinuous feedback is produced combining the robustness
of high-order sliding modes and finite-time stabiliza-
tion by continuous control. The main advantage of this
new design principle is its application in robust par-
tial stabilization so that the objective of the method
is to deal with unknown but bounded system uncer-
tainties. The suggested control law is able to lead only
a part of the system state to zero in a finite time in
spite of any disturbances and uncertainties. In fact,
for the first subsystem which its stabilization is impor-
tant, by applying integral sliding mode, the subsystem
is converted to a chain of integrators. Then, to con-
trol this linear system and to obtain finite-time con-
vergence property, a finite-time state feedback with
dynamical gain is employed. In many practical appli-
cations like guidance problem, the provision of par-
tial stability is necessary; consequently, the proposed
approach is employed to design a robust finite-time
guidance law.

The rest of the paper is organized as follows. In
the next section, some requirement definitions and the-
orems are presented. The main results are shown in
Sect. 3, where a robust finite-time controller is devel-
oped based on partial stability. In Sect. 4, the proposed
method is used to design a guidance law and simula-
tion results are also discussed. Finally, conclusions are
presented in Sect. 5.

2 Problem formulation

Before presentingmain result of the control design pro-
cedure, the definitions and notations of partial stability
and finite-time stability are introduced.

Definition 1 [12] Consider the following nonlinear
system:

ẋ(t) = f (x), f (0) = 0, x ∈ Rn (1)

where f : U0 → Rn is continuous on U0, and U0 is
an open neighborhood of the originx = 0. The equi-
librium x = 0 of the system is finite-time conver-
gent if, for any given initial time t0 and initial state
x(t0) = x0 ∈ U/{0}, there exists a settling time
T (x0) > 0, such that every solution of the system (1),
x(t) = υ(t, x0) ∈ U/{0} satisfies
{

lim
t→T (x0)

υ(t, x0) = 0, t ∈ [0, T (x0)]
υ(t, x0) = 0, t ≥ T (x0)

(2)

In addition, if U = Rn , then x = 0 is a global finite-
time stable equilibrium.

Theorem 1 [23] Consider the nonlinear system (1).
Suppose that there is a C1 (continuously differentiable)
function V (x) defined in a neighborhood Û ⊂ Rn of
the origin, and that there are real numbers ᾱ > 0 and
0 < λ̄ < 1, such that V (x)is positive definite on Û and
that V̇ (x)+ ᾱV λ̄(x) ≤ 0 on Û . Then, the zero solution
of the system (1) is finite-time stable. Furthermore, the
settling time is calculated as follows:

T ≤ V 1−λ̄(x0)

ᾱ(1 − λ̄)
(3)

Remark 1 Note that if Û = Rn and V (x) is radially
unbounded, then the origin is globally finite-time stable
[23].
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Lemma 1 [14] Let D1 = diag[1, 2, . . . , (n −
1), n], D2 = diag[n + d, n − 1 + 2d, . . . , 2 +
(n − 1)d, 1 + nd] and d ∈ (0, 1) be a fraction whose
numerator and denominator are odd integers, A0 ∈
Rn×n and B ∈ Rn be the matrices in the canonical
controller form as:

A0 =

⎛
⎜⎜⎜⎜⎜⎝

0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
0 0 0 · · · 0

⎞
⎟⎟⎟⎟⎟⎠ , B =

⎛
⎜⎜⎜⎜⎜⎝

0
0
...

0
1

⎞
⎟⎟⎟⎟⎟⎠

Then, there exist positive real numbersα1, α2, β1, β2,
a constant symmetric positive definite matrixP ∈
Rn×n, and a row vector K = (a1, a2, . . . , an) sat-
isfying:

P A + AT P ≤ −I
α1 I ≤ PD1 + D1P ≤ β1 I
α2 I ≤ PD2 + D2P ≤ β2 I

(4)

where A = A0 − BK .

Theorem 2 [14] Consider the following chain of inte-
grators:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
ż1 = z2
...

żn−1 = zn
żn = wnom

(5)

A state feedback controller of the form

wnom = −Ln+1r (n+1)d K ζ (6)

can globally finite-time stabilize the system (5) where
r and L are dynamically updated respectively by

ṙ = − L

4β2
rd + L

4β2

‖ζ‖2
r2−d

, r(0) = r0 > 0

L̇ = sgn(‖ζ‖)
α1

Lρ(t)�(r, ζ ), L(0) = M ≥ 1 (7)

ζ = (ζ1, ζ2, . . . , ζn)
T with ζi = zi

Li rn−i+1+id , the row
vector K and constants α1, β2 are given in Lemma 1,
ρ(t) is a nonnegative function, �(r, ζ ) is an appropri-
ate continuous positive function of r and ζ , and M is a
large enough constant.

Definition 2 [24] Consider the system (1). Let f :
Rp × Rn−p ∼= Rn → Rn , x = (x1, x2) ∈ Rp ×
Rn−p 	→ f (x) ∈ Rp be defined and continuous on a
neighborhood of (0, 0) ∈ Rp × Rn−p. Suppose that

f (0, x2) = 0.

(0, 0) ∈ Rp × Rn−p will be p-partially stable in finite-
time for ẋ = f (x) if

(0, 0) is Lyapunov stable for ẋ = f (x)
there exist r > 0 and T > 0 such that if ẋ = f (x)

and |x(0)| < r , then x1(t) = 0 for every t ≥ T (and
therefore t 	→ x2(t) is constant for t ≥ T ).

Now, consider the following nonlinear system:

ẋ1 = F1(x1, x2, u(x1, x2)), x1(t0) = x10

ẋ2 = F2(x1, x2, u(x1, x2)), x2(t0) = x20

y = σ(x1) (8)

where u ∈ R and F1 : D × Rn2 × R → Rn1 is such
that for every x2 ∈ Rn1 , F1(., x2, .) is locally Lipschitz
in x1 and u and F1(0, x2, 0) = 0. Also, F2 : D×Rn2 ×
R → Rn2 is such that for everyx1 ∈ D, F2(x1, ., .) is
locallyLipschitz in x2 andu.σ(x1) ∈ R is themeasured
smooth output function (sliding variable). Now, let the
ẋ1 equation in (8) be affine with respect to the control
input (the equationmay have a general dynamics form).
Thus

ẋ1 = f1(x1, x2) + g1(x1, x2)u

ẋ2 = F2(x1, x2, u)

y = σ(x1) (9)

The uncertainties f1(x) and g1(x) are due to unmod-
elled dynamics, parameter variations and external dis-
turbances. Assume that:

Assumption 1 The relative degree r̄ of the system (9)
with respect to σ(x1) is constant and known, and the
associated zero dynamics are stable.

Definition 3 [10] Consider the nonlinear system (9),
and let the time derivative σ, σ̇ , . . . , σ (r̄−1) be con-
tinuous functions, and the manifold defined as Sr̄ ={
x1

∣∣σ = σ̇ = · · · = σ (r̄−1) = 0
}
is called “r̄ th-order

sliding set”, is non-empty and is locally an integral set
in the Filippov sense [25]. The motion on Sr̄ is called
“r̄ th-order sliding mode” with respect to the sliding
variable σ .

The r̄ th-order SMC approach allows the finite-time
stabilization to be zero of the sliding variable σ and its
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(r̄−1)thtime derivatives by defining a suitable discon-
tinuous control function. So, using the Lie derivative
notation, the r̄ thσ satisfies the following equation

σ (r̄) = A(x1, x2) + B(x1, x2)u (10)

where A(x1, x2) = Lr̄
f1
σ(x1) and B(x1, x2) =

Lg1L
r̄−1
f1

σ(x1).

Without loss of generality, assume that

{
A(x1, x2) = Ā(x1, x2) + 
A(x1, x2)
B(x1, x2) = B̄(x1, x2) + 
B(x1, x2)

(11)

where Ā(x1, x2) and B̄(x1, x2) represent the nom-
inal parts of A(x1, x2) and B(x1, x2) respectively.

A(x1, x2)and
B(x1, x2) denote the unknown uncer-
tain bounded functions.

Assumption 2 
A(x1, x2)and
B(x1, x2) are bounded
as follows

‖
A(x1, x2)‖ ≤ ρ∥∥∥
B(x1, x2)B̄
−1(x1, x2)

∥∥∥ ≤ 1 − α

whereρ and 0 < α ≤ 1 are constant.

The r̄ th-order sliding mode control of system (9)
with respect to the σ(x1) is equal to the finite-time
stabilization of the uncertain system

żi = zi+1

żr̄ = A(x1, x2) + B(x1, x2)u (12)

where 1 ≤ i ≤ r̄ − 1 and z = [z1, z2, . . . , zr̄ ]T =[
σ, σ̇ , . . . , σ (r̄−1)

]T
.

Remark 2 Let ρ̄be the relative degree of the system
(9) with respect to sliding variableσ . For the sake of
simplicity, this paper is only devoted to ther̄ = ρ̄.

By defining a preliminary feedback as follows

u = B̄−1(x1, x2)
{− Ā(x1, x2) + w

}
(13)

and applying it as well as (11) to the system (10) with
uncertainty gives

y(r̄) = σ (r̄)(x1) = (1 + 
B(x1, x2)B̄
−1(x1, x2))w

−
B(x1, x2)B̄
−1(x1, x2) Ā(x1, x2)

+
A(x1, x2) (14)

Meanwhile, in Eq. (13),w is the auxiliary control input.

The r̄ th-order sliding mode control of the system
(9) with respect to the σ(x1) is equal to the finite-time
stabilization of the uncertain system

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ż1 = z2
...

żr̄−1 = zr̄
żr̄ = (1 + 
B(x)B̄−1(x))w

− 
B(x)B̄−1(x) Ā(x) + 
A(x)

3 Robust finite-time partial control design

In this section, the control objective is to employ a con-
trol schemewhich is able to stabilize the first subsystem
in finite time. To fulfill this task, the higher order sliding
mode control is derived in two steps:

(a) The finite-time stabilization of nominal system (5)
by designing a finite-time controller wnom(z)

(b) Rejecting the uncertainties of system (15) by
designing a discontinuous control law wdisc(z) =
−Gsign(s)

Consider the following control law to stabilize uncer-
tain system (15) in finite time:

w = wnom − Gsign(s) (15)

where the first term, wnom is presented in Theorem 2,
and the gain G satisfies

G ≥ (1 − α)(‖wnom‖ + ∥∥ Ā(x)
∥∥) + ρ + η

α
(16)

in which
∥∥
B(x)B̄−1(x)

∥∥ ≤ 1−α, ‖
A(x)‖ ≤ ρ and
η > 0.

Let us define the integral sliding variable s(z),
related to wdisc, as follows:

s(z(t)) = zn(t) − zn(t0) −
t∫

t0

wnomdτ (17)

Note that it is s(z(t0)) = 0 at t = t0, so sliding mode
also occurs at the beginning of the initial time instance.

Theorem 3 Consider the nonlinear system (9). If
Assumption 1 and Assumption 2 are fulfilled and the
control law is designed as
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Robust finite-time stabilization of uncertain nonlinear systems based on partial stability 91

u = B̄−1(x)
(− Ā(x) + wnom − Gsgn(s)

)
(18)

then trajectories of ẋ1-subsystem converge to zero in
finite time.

Proof Construct a Lyapunov function

V = 1

2
s2 (19)

Differentiating V and using (14), (15)–(17) result in

V̇ = sṡ = s (żn − wnom)

= s
(
(1 + 
B(x)B̄−1(x))w

−
B(x)B̄−1(x) Ā(x) + 
A(x) − wnom

)
= s

(
−(1 + 
B(x)B̄−1(x))Gsgn(s)

−
B(x)B̄−1(x) Ā(x)

+
A(x) + 
B(x)B̄−1(x)wnom

)
≤ −G ‖s‖ + (1 − α)G ‖s‖ + (1 − α)

∥∥ Ā(x)
∥∥ s

+ρs + (1 − α) ‖wnom‖ s
≤ −αG ‖s‖+(

(1−α)(‖wnom‖+∥∥ Ā(x)
∥∥)+ρ

) ‖s‖
≤ −η ‖s‖ (20)

Therefore, Eq. (20) implies that the system trajecto-
ries evolve on the manifold {x ∈ Rn : s = 0} during a
finite time interval and stays there in presence of the
uncertainties. In the sliding mode, by writing ṡ = 0,
the equivalent control of wdisc is obtained as follows:

Gsgn(s) = −[1+
B(x)B̄−1(x)]−1[
B(x)B̄−1(x) Ā(x)

−
A(x) − 
B(x)B̄−1(x)wnom] (21)

In the sliding mode, by substituting w = wnom

− Gsign(s) into (15), the equivalent closed-loop
dynamics will be similar as the nominal system (5).
The system trajectories converge to zero in finite time,
because the control law wnom is derived utilizing The-
orem 2. As a result, trajectories of ẋ1-subsystem con-
verge to zero in finite time. 
�
Remark 3 The proposed control scheme is a non-
smooth controller which guarantees fast convergence
and robustness of the system. It involves a signum
function, indicating that the control variable sometimes
switches. In practical application, the switching cannot
be completely instantaneous. The delay of switching
induces the chattering effect. To remove the chattering,

the signum function can be smoothed, usually replaced
with a saturation function which is expressed as

satδ(s) =
⎧⎨
⎩
1; s > δ

s/δ; |s| ≤ δ

−1; s < −δ

where δ is a small positive constant.

4 Homing guidance: robust finite-time partial
control

To examine the performance of the proposed scheme, it
is used to design a guidance law. The reason is that the
guidance problem is an appropriate example in which
stabilization of all state variables is not desirable. So,
partial stability can be a good idea. Since the guidance
process occurs in a short time, the finite-time stabi-
lization of state variables is required. Furthermore, the
target maneuver is an external disturbance which can
lead the guidance loop to instability. So, in order to hit
the target, designing a robust guidance law which can
reject the target maneuver is mandatory. For these rea-
sons, the proposed law in this paper is a suitable tool
to design a robust finite-time convergent guidance law
based on partial stability.

4.1 Formulation of interceptor–target engagement and
guidance law design

The geometry of planar interception is shown in Fig. 1.
According to the principle of the kinematics, the cor-
responding equations of motion between the target and
the interceptor can be described by [26]:

R̈ = λ̇2R + aT R − aMR (22)

λ̈ = −2Ṙ

R
λ̇ + aTλ

R
− aMλ

R
(23)

where R denotes relative distance between the target
and the interceptor; λ̇ represents the line-of-sight (LOS)
angular rate; aT R and aMR denote the target and the
interceptor acceleration along the LOS, respectively;
andaTλ andaMλ represent the target and the interceptor
acceleration normal to the LOS, respectively.

Furthermore, the control loop dynamics can be
described by a first-order differential equation as fol-
lows [27].

ȧMλ = −1

τ
aMλ + 1

τ
u (24)
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Fig. 1 Planar interception geometry

where τ represents the time constant, and u denotes the
command acceleration.

According to parallel navigation concept, if LOS
direction is kept unchanged with respect to inertial
frame and relative range between the interceptor and
the target is getting lower (Ṙ < 0), in that case colli-
sion will be certain. In other words, the LOS angular
rate must be zero. So, in order to hit the target, the
following conditions must be satisfied:

λ̇ = 0 (25)

Ṙ < 0 (26)

Since in terminal guidance process, aMR cannot be
adjustable, we aim to design u to satisfy conditions
(25) and (26).

Bychoosing the state variables as [η1, η2, η3, η4, η5]T

= [
R, Ṙ, λ, λ̇, aMλ

]
, the nonlinear guidance system

can be expressed as follows{
η̇1 = η2
η̇2 = η24η1 − aMR + aT R⎧⎪⎨

⎪⎩
η̇3 = η4

η̇4 = − 2η2
η1

η4 − η5
η1

+ aTλ

η1

η̇5 = − 1
τ
η5 + 1

τ
u

(27)

As it can be seen, the guidance system (27) has been
divided into two parts. According to condition (26),
the stabilization of η2 is not desirable and converging
of this state variable can lead the guidance loop to insta-
bility. Thus, the partial stability approach is a suitable
technique to fulfill this design task. We focus on stabi-
lization of the second subsystemand the first subsystem
is neglected [8]. In the next step, we try to transform the

second subsystem into normal form to use the variable
structure control.

Assume that x1 = λ̇and x2 = ẋ1 = λ̈. Substituting
them into Eq. (23) yields:

x2 = −agx1 − bgaMλ + bgaTλ (28)

where

ag = 2Ṙ

R
, bg = 1

R
(29)

It is clear from Eq. (28) that

aTλ = aMλ + 1

bg
(agx1 + x2) (30)

Differentiating Eq. (28) with respect to time and using
Eqs. (24) and (30) gives:

ẋ2 = A1x1 + A2x2 + bu + f (31)

where

A1 = −ȧg +
(
ḃg
bg

− 1

τ

)
ag,

A2 = −ag + ḃg
bg

− 1

τ

b = −bg
τ

, f = bgȧTλ − baTλ (32)

Thus, the state space can be described as

ẋ1 = x2

ẋ2 = A1x1 + A2x2 + bu + f

y = x1 (33)

In Eq. (33), f denotes an external disturbance, i.e.,
‖ f ‖ ≤ 
, where 
 = const. > 0. Also, the LOS
angular rate is the system’s output that is measurable
by the seeker.

Now, we are about to derive a robust guidance law
which runs λ̇ → 0 in finite time. Define an integral
sliding manifold as

s = x2(t) − x2(t0) +
t∫

t0

(L3r2d K ζ )dτ (34)

where L , r, ζ and K have been defined in Theorem 2.
So, by
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Theorem 3 the robust finite-time convergent guid-
ance law is

u = −1

b

(
A1x1 + A2x2 + L3r2d K z + εsgn(s)

)
(35)

whereε = 
 + δ and δ > 0 is a constant.

4.2 Simulation results

In this section, simulation results are considered in
two scenarios to illustrate the effectiveness and robust-
ness of the robust finite-time convergent guidance
law (35). The initial conditions are taken as: the inter-
ceptor and target positions in Cartesian coordinate are
Rm0 = [00]Tm and Rt0 = [2000 1000]Tm, respec-
tively. Furthermore, their initials velocities are vm0 =
[180 117]Tm/sand vt0 = [50 50]Tm/s, respectively.

In the first scenario, we suppose that the target has
no maneuvering and the goal is to investigate the effect
of the coefficients of the proposed scheme on conver-
gence rate. In the second scenario, to show the proposed
finite-time control law is more effective than the robust
partial control (RPC) presented in [7] and the non-
singular terminal slidingmode (NSTSM) guidance law
in [26], they are simulated under the same condition.
The reason is that although in [26] the use of partial
stability approach has not been mentioned, one sub-
system has been neglected and the authors of the paper
have just focused on finite-time stabilization of the sec-
ond subsystem. It is because the stabilization of the
first subsystem is not useful even it may lead the guid-
ance system to instability. Since the method suggested
in [26] is an application of partial stability notion in
guidance system, it would be a good way to justify the
performance of the approach of the present paper. In
[26], it has been shown that the NSTSM guidance law
is better than the adaptive sliding mode guidance law
[28] and the finite-time convergent guidance law [29].
So, the proposed method has been compared with four
different approaches.

Scenario 1: We assume that the target does not
maneuver. The initial conditions and the parameters
of r and L in (7) which are used in the proposed guid-
ance law (35) are chosen as α1 = 0.1, β2 = 572, r0 =
5, M = 10. Since the initial conditions of the dynam-
ical gain (7) have a significant contribution to conver-
gence rate of the state variable, we will investigate the
effect of them. Let r0 = 5 and M = 2, 3 and 7,
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Fig. 2 The effect of M on LOS convergence rate
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Fig. 3 The effect of M on acceleration command

respectively. For different values of M, the LOS rate
and the interceptor acceleration are plotted in Figs. 2
and 3. As it is seen in Fig. 2, M has a direct relation-
ship with convergence rate so that increasing M can
increase convergence rate of theLOSangular rate.Con-
sequently, it can decrease settling time. According to
Fig. 3, although increasing M makes the settling time
decrease, it causes the maximum acceleration of the
interceptor to increase. So, a large value ofM must not
be chosen to abstain from saturation of the actuator.

To examine the impact of r0, the LOS angular rate
and the interceptor command with respect to r0 are
also plotted in Figs. 4 and 5. Suppose that M = 5
and r0 = 1, 10 and 20. In contrast to M, r0 has an
indirect relationshipwith convergence rate; on the other
hand, it has a direct relationship with maximum value
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Fig. 4 The effect of r0 on LOS convergence rate

Time (sec)
0 2 4 6 8 10 12 14 16

-5

-4

-3

-2

-1

0

1

r0 =1

r0 =10

r0 =20

a m
 (m

/s
ec

2 )

Fig. 5 The effect of r0 on acceleration command

of acceleration command. As a result, the convergence
rate goes down as the value of r0 increases.

Scenario 2: In this case, we aim to compare the pro-
posed lawwith theRPCand theNSTSMguidance laws.
Assume that the target escapes with acceleration com-
ponents aT R = 3 and aTλ = 70 sin(0.25t + π/6). We
suppose that the upper bound of the target acceleration
is known in advance. The simulation is stopped if the
interceptor hit the target (i.e. reaching zero miss dis-
tance) or the closing velocity becomes zero (i.e. miss-
ing the target).The relative distance, the variations of
the closing velocity, LOS rate, the acceleration com-
mand, the trajectory of the interceptor and the target
and the integral sliding mode behavior are depicted in
Figs. 6, 7, 8, 9, 10 and 11.
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Fig. 7 Closing velocity
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Time (sec)
0 2 4 6 8 10 12 14 16 18 20

S
lid

in
g 

su
rfa

ce

10-17

-6

-4

-2

0

2

4

6

Fig. 11 Integral sliding surface

Figure 6 illustrates that under the proposed law the
interceptor hit the target but the RPC and the NSTSM
guidance laws failed to intercept the target and give
rise to large miss distances. The variation of the clos-
ing velocity can be seen in Fig. 7. It is evident that
under the RPC and the NSTSM guidance laws the
closing velocities have been zero and the simulation
has been stopped, but the closing velocity has been
remained negative by using the proposed law. Fig-
ure 8 indicates the LOS rate. As it can be seen, the
proposed law is able to nullify the LOS rate and pre-
serve it at a small vicinity of origin, but the RPC and
the NSTSM guidance laws cannot stabilize it due to
extreme maneuver of the target. The required accel-
eration has been shown in Fig. 9. It is observed that
under the proposed law the acceleration command con-
verge to target acceleration. Figure 10 illustrates the
trajectory of the interceptor and the target, where the
red point is collision point for the proposed law. Also,
it is revealed under the RPC and the NSTSM guid-
ance laws, the interceptor missed the target and gives
rise to a large miss distance. Finally, the variation of
the integral sliding mode is depicted in Fig. 11. As
it can been seen, under the proposed guidance law,
the integral sliding variable starts from zero and it
remains in a very small neighborhood of origin(10−17)

and the reaching phase has been omitted. The sec-
ond scenario shows that the proposed law has gained
better performance compared with that of RPC guid-
ance law in terms of the robustness and effective-
ness.

5 Conclusion

This paper proposed a general scheme to achieve
a robust finite-time partial stabilization of uncertain
nonlinear systems. By the procedure of the proposed
approach, a criterion was proven to guarantee only a
part of the states of the system converges to equilib-
rium in a finite time in spite of any uncertainties or
disturbances. Also, the proposed control scheme bene-
fits from robustness property of integral sliding mode.
To investigate the efficiency of the proposed method, it
was used in guidance law design. The performance of
the robust finite-time guidance law was shown through
simulation.
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