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Abstract In this paper, we investigate the periodic
dynamical behaviors for a class of general Cohen–
Grossberg neural networks with discontinuous right-
hand sides and mixed time delays involving both time-
varying delays and distributed delays. In view of func-
tional differential inclusions theory, we obtain the exis-
tence of global solutions. By means of functional dif-
ferential inclusions theory and fixed-point theorem of
multi-valued maps, the existence of one and multiple
positive periodic solutions for the neural networks is
given. It is worthy to point out that, without assum-
ing the boundedness or under linear growth condition
of the discontinuous neuron activation functions, our
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results on the existence of one and multiple positive
periodic solutions will also be valid. We derive some
sufficient conditions for the global exponential stability
and convergence of the discontinuous neural networks,
in terms of non-smooth analysis theory with general-
ized Lyapunov approach. Finally, we give some numer-
ical examples to show the applicability and effective-
ness of our main results.
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1 Introduction

Recently, neural networks with discontinuous (or non-
Lipschitz, or non-smooth) neuron activations have been
found useful to address a number of interesting engi-
neering tasks, such as dry friction, impactingmachines,
systems oscillating under the effect of an earthquake,
power circuits, switching in electronic circuits, linear
complimentarily systems, and therefore have received
a great deal of attention in the literature [1–7]. It is
well known that, in the paper [1], under the frame-
work of the theory of Filippov differential inclusions,
Forti and Nistri were the first who dealt with the global
stability of a neural network modeled by a differen-
tial equation with a discontinuous right-hand side. As
Forti and Nistri pointed out, neural networks with dis-
continuous neuron activations are important and do fre-
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quently arise in the applications. For example, consider
the classical Hopfield neural networks with graded
response neurons [7,8]. Under the standard hypothe-
sis of high-gain amplifiers, the sigmoidal neuron acti-
vations would closely approach a discontinuous hard
comparator function. Moreover, the analysis of dis-
continuous neural networks can reveal many specially
interesting and important traits of the dynamics such as
the phenomenon of convergence in finite time toward
the equilibrium point or limit cycle. Thus, it is of prac-
tical importance to explore the dynamical behaviors of
discontinuous neural networks.

Note that the properties of periodic solutions are of
great interest, which have been successfully applied
in many neural networks, such as many biological
and cognitive activities (for example heartbeat, respira-
tion, mastication, and locomotion, and memorization)
require repetition. Moreover, an equilibrium point can
be regarded as a special case of periodic solution for
neural networks with arbitrary period. Therefore, the
analysis of periodic solutions for neural networks is
more general and interesting. In [9], the authors studied
the global exponential stability of the periodic solution
for a delayed neural network with discontinuous neu-
ron activations. In [10–18], by using the theory of fixed
point in differential inclusion and Lyapunov approach,
the authors analyzed the problems of periodic solutions
for various neural networks with discontinuous neuron
activations.

However, the discontinuous neuron activations con-
sidered in these papers are bounded or satisfy the
growth condition. As pointed out by Gonzalez [19],
to truly exploit the potential of neural networks, a non-
linear activation function must be used. Virtually, all
neural networks use nonlinear activation functions at
some point within the network. This permits the net-
work to reproduce nonlinear patterns in complex data
sets. There are several types of nonlinear activation
functions, such as the log-sigmoid transfer function
and the tan-sigmoid transfer function. When dealing
with a dependent variable that is not bounded, we
could choose an unbounded nonlinear activation func-
tion such as f (x) = x3. Thus, it is interesting and
practical to investigate neural networks with discontin-
uous neuron activationswhich are unbounded or satisfy
nonlinear growth condition.

As pointed out by [20], the coexistence of multiple
equilibria is necessary in the applications of neural net-
works for associative memory storage, pattern recog-

nition, decision making, digital selection, and analogy
application. In [21–30], some methods guaranteeing
the existence of many equilibria or multiple periodic
solutions of neural networks have been derived. How-
ever, all of the above works were based on the assump-
tion that the activation functions are continuous, even
piecewise linear functions. To the existence of many
equilibria or multiple periodic solutions of neural net-
works with general activation functions, even discon-
tinuous activations, themethods used in [21–30]will be
invalid. Therefore, it is very difficult to obtain the exis-
tence of many equilibria or multiple periodic solutions
of neural networks with discontinuous activations. And
a few results have been obtained on the existence of
many equilibria ormultiple periodic solutions of neural
networks with discontinuous activations. Motivated by
the above discussion, one of the main contributions of
this paper is to investigate the existence of one andmul-
tiple periodic solutions of neural networks with discon-
tinuous neuron activations.

Because of finite switching speed of amplifiers and
communication time, in many practical applications
of neural networks like communication systems, elec-
tric power systems with lossless transmission lines,
control, image processing, pattern recognition, signal
processing and associative memory, time delays are
often inevitable. Moreover, as Forti et al. pointed out,
it is interesting and important to investigate discontin-
uous neural networks with more general delays, such
as time-varying or distributed ones. In fact, in elec-
tronic implementation of analog neural networks, the
delays between neurons are usually time-varying and
sometimes vary violently with time due to the finite
switching speed of amplifiers and faults in the elec-
trical circuit [31,32]. On the other hand, although the
models with discrete delays is a good approximation
in simple circuits consisting of only a small number
of cells, neural networks usually have a spatial extent
due to the presence of a multitude of parallel path-
ways with a variety of axon sizes and lengths. Thus
it is common to have a distribution of propagation
delays. In these circumstances, the signal propagation
is not instantaneous, and it cannot be modeled by dis-
crete delays. A more appropriate approach is to incor-
porate continuously distributed delays [33,34]. It is
worthy to pointed out that, time delays can affect the
stability of the neural network systems and may lead
to some complex dynamic behaviors such as oscilla-
tion, chaos, and instability. Thus, it is of great impor-
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tance to explore the dynamical behaviors of neural
networks with mixed delays. Hence, we consider the
more general type of delays, such as time-varying
and distributed ones, which are general more com-
plex, and therefore, they are more difficult to deal
with.

On the other hand, Cohen–Grossberg neural net-
work (CGNN) model is an important recurrent neural
network model, which was first described by Cohen
and Grossberg in 1983 [35]. It is easy to see that
CGNN include a range of well-known ecological mod-
els and neural networks such as the Lotka–Volterra
system, the bidirectional associative memory (BAM)
neural networks [36,37], and the Hopfield neural net-
works [7,8]. In recent years, CGNNs with or without
delays have been extensively studied due to the poten-
tial for applications in classification, parallel comput-
ing, associative memory, especially in solving some
optimization problems. Such applications depend on
the existence and uniqueness of equilibrium points and
the qualitative properties of stability, so the qualita-
tive analysis of these dynamical behaviors is important
in the practical design and applications of neural net-
works. Many researchers have investigated the delayed
or without delayed Cohen–Grossberg neural networks
[25,38].

There are also some works on CGNN discontin-
uous neuron activations with time delays [39–45].
In [39,40], the authors studied the stability of delayed
CGNN with discontinuous neuron activation. Some
sufficient conditions were obtained to ensure the exis-
tence, uniqueness, and global stability of the equi-
librium point of the neural network, respectively. In
[41], the authors investigated the nonnegative peri-
odic dynamics of delayedCohen–Grossberg neural net-
works with discontinuous activations. In [42], based
on the Mawhin-like coincidence theorem, the authors
studied the periodic dynamics of delayed Cohen–
Grossberg neural networks with discontinuous acti-
vations. In [43], the authors investigated the exis-
tence, uniqueness, and global stability of periodic
solution in view of fixed-point theorem of set-valued
maps and non-smooth analysis theory. However, there
are no results on multiple periodic solutions for
delayed CGNN with discontinuous neuron activa-
tions.

Motivated by the aboveworks, in this paper, we con-
sider the following general CGNN model with discon-
tinuous activations:

dxi (t)

dt
= qi (xi (t))

⎡
⎣−di (t)xi (t)+

n∑
j=1

ai j (t) f j (x j (t))

+
n∑
j=1

bi j (t) f j (x j (t − τ(t)))

+
n∑
j=1

ci j (t)
∫ +∞
0

f j (x j (t−s))l j (s)ds+ Ii (t)

⎤
⎦,

i = 1, 2, . . . , n, (1.1)

or equivalently in the vector form

dx(t)

dt
= Q(x(t))[−D(t)x(t) + A(t) f (x(t))

+ B(t) f (x(t − τ(t)))

+ C(t)
∫ +∞

0
f (x(t − s))l(s)ds + I (t)], (1.2)

where x(t) = (x1(t), x2(t), . . . , xn(t))T ∈ R
n and

xi (t) represents the state of the i th unit at time t ;
Q(x(t)) = diag(q1(x1(t)), q2(x2(t)), . . . , qn(xn(t)))
and qi (xi (t)) denotes amplification function of the
i th neuron; D(t) = diag(d1(t), d2(t), . . . , dn(t)) and
di (t) > 0 is the self-inhibition of the i th neu-
ron; A(t) = (ai j (t))n×n and ai j (t) is the connec-
tion strength of the j th neuron on the i th neuron;
B(t) = (bi j (t))n×n , C(t) = (Ci j (t))n×n , bi j (t) and
ci j (t) are the delayed feedbacks of the j th neuron
on the i th neuron, with time-varying and distributed
delay, respectively; τ(t) is the time-varying delay;
l(s) = (l1(s), l2(s), . . . , ln(s))T and li (t) is the prob-
ability kernel of the distributed delay; f (x(t)) =
( f1(x1(t)), f2(x2(t)), . . . , fn(xn(t)))T :Rn→R

n and
fi (xi (t)) denotes the neuron input-output activation of
the i th neuron; I (t) = (I1(t), I2(t), . . . , In(t))T ∈ R

n

and Ii (t) denotes the external input to the i th neuron.
The neuron activation functions in (1.1) are assumed

to satisfy the following properties:
(H1) For every i = 1, 2, . . . , n, fi is continuous

except on a countable set of isolate points ρi
k , where

there exist finite right limits lim
xi→(ρi

k)
+ fi (xi ) �

f +
i (ρi

k) and left limits lim
xi→(ρi

k)
− fi (xi ) � f −

i (ρi
k),

respectively. Moreover, fi has a finite number of dis-
continuous points on any compact interval of R.

(H2) For each i = 1, 2, . . . , n, there exist nonnega-
tive continuous functions Wi such that

sup
γi∈co[ fi (xi )]

|γi | � Wi (xi ), ∀xi ∈ R,
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where co[ fi (xi )] = [min{ f −
i (xi ), f +

i (xi )},
max{ f −

i (xi ), f +
i (xi )}].

Throughout this paper, we always assume that
di (t), ai j (t), bi j (t), τ (t), Ii (t) are continuous ω-
periodic functions, where i, j = 1, 2, . . . , n; τ(t) � 0,
di (t) > 0 for each i = 1, 2, . . . , n and t > 0. qi (x) are
all positive, continuous and bounded functions, there
exist positive constants qli , q

M
i such that 0 < qli �

qi (x) � qM
i , for ∀x ∈ R and i, j = 1, 2, . . . , n.

The delay kernels l j : [0,+∞) → R are continu-
ous, integrable, and there exist constants L j such that∫ +∞
0 |l j (s)|ds � L j , j = 1, 2, . . . , n.
For convenience, we shall introduce the notations

gl = min
s∈[0,ω] g(s), gM = max

s∈[0,ω] g(s),

where g(t) is an ω-periodic function.
The main contributions of this paper include three

aspects. First, for the delayed differential equations
with discontinuous right-hand sides, we obtain the
existence of global solution. Second, by using the
fixed-point theorem of multi-valued maps, we study
the periodicity and multiperiodicity of the neural net-
works with discontinuous neuron activations. Third, in
terms of non-smooth analysis theory and Lyapunov-
like approach, we discuss the global exponential stabil-
ity of the neural networks with discontinuous neuron
activations.

2 Preliminaries

Note that CGNN model (1.1) is defined as a piece-
wise continuous vector function, and the classical defi-
nition of solutions has been shown to be invalid. To deal
with the differential equation with discontinuous right-
hand side, a solution in the sense of Filippov [46,47]
is particularly useful because Filippov solutions are
good approximation of solutions of actual systems that
possess nonlinearities with very high slop. To specify
what is meant by a solution of the delayed differential
equation (1.1) with a discontinuous right-hand side, we
extend the concept of the Filippov solutions with the
delayed differential equation (1.1) as follows:

Definition 2.1 Avector function x=(x1, x2, . . . , xn)T :
(−∞, T )→R

n, T ∈ (0,+∞], is a state solution of the
discontinuous system (1.1) on (−∞, T ) if

(1) x is continuous on (−∞, T ) and absolutely con-
tinuous on any compact interval of [0, T );

(2) there exists ameasurable functionγ = (γ1, γ2, . . . ,

γn)
T : (−∞, T ) → R

n such that γ j (t) ∈
co[ f j (x j (t))] for a.e. t ∈ (−∞, T ) and

dxi (t)

dt
= qi (xi (t))Fi (t, γ ), for a.e. t ∈ [0, T ),

i = 1, 2, . . . , n (2.1)

where

Fi (t, γ ) = −di (t)xi (t) +
n∑
j=1

ai j (t)γ j (t)

+
n∑
j=1

bi j (t)γ j (t − τ(t)) +
n∑
j=1

ci j (t)

×
∫ +∞

0
γ j (t − s)l j (s)ds + Ii (t).

Any function γ = (γ1, γ2, . . . , γn)
T satisfying

(2.1) is called an output solution associated with
the state x = (x1, x2, . . . , xn)T . With this defini-
tion, it turns out that the state x = (x1, x2, . . . , xn)T

is a solution of (1.1) in the sense of Filippov since
it satisfies

dxi (t)

dt
∈ qi (xi (t))Fi (t, f ), for a.e. t ∈ [0, T ),

i = 1, 2, . . . , n (2.2)

where

Fi (t, f ) = −di (t)xi (t) +
n∑
j=1

ai j (t)co[ f j (x j (t))]

+
n∑
j=1

bi j (t)co[ f j (x j (t − τ(t)))] +
n∑
j=1

ci j (t)

×
∫ +∞

0
co[ f j (x j (t − s))]l j (s)ds + Ii (t).

For an initial value problem (IVP) associated with
the CGNN neural network (1.1), we follow the defini-
tion introduced by Forti et al. in [1,9].

Definition 2.2 (IVP). For any continuous function
φ = (φ1, φ2, . . . , φn)

T : (−∞, 0] → R
n and any mea-
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surable selectionψ = (ψ1, ψ2, . . . , ψn)
T : (−∞, 0]→

R
n , such that ψ j (s) ∈ co[ f j (φ j (s))]( j = 1, 2, . . . , n)

for a.e. s ∈ (−∞, 0] by an initial value problem
associated with (1.1) with initial condition [φ,ψ], we
mean the following problem: find a couple of functions
[x, γ ] : (−∞, T ) → R

n ×R
n , such that x is a solution

of (1.1) on (−∞, T ) for some T > 0, γ is an output
solution associated with x , and
⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

dxi (t)
dt= qi (xi (t))Fi (t, γ ), for a.e. t ∈ [0, T ),

i = 1, 2, . . . , n,

γ j (t) ∈ co[ f j (x j (t))], for a.e. t ∈ [0, T ),

x(s) = φ(s), ∀s ∈ (−∞, 0],
γ (s) = ψ(s), for a.e. s ∈ (−∞, 0].

(2.3)

Throughout this paper, the initial functions φ and ψ

(as described in Definition 2.2) satisfy the following: φ
is a bounded continuous function from (−∞, 0] to R

n

and ψ is an essentially bounded measurable function
from (−∞, 0] to R

n .
The following proposition shows that the solutions

in the sense of Filippov of system (1.1) exist globally.

Proposition 2.1 (See Appendix A for a Proof). Sup-
pose that the conditions (H1), (H2) and
(H3) there exists a nonnegative andmonotonically non-
decreasing function W (x), such that

max
1�i�n

Wi (x) � W (x) and

∫ +∞

0

1

1 + r + W (r)
dr = +∞;

be satisfied. Then each solution x(t) of the system (1.1)
in the sense of Filippov exists on the interval [0,+∞),
i.e., the solution x(t) of the functional differential inclu-
sions (2.2)with the initial condition [φ,ψ] exists on the
interval [0,+∞).

Remark 1 If W (x) is bounded or satisfies W (x)
= a|x |α + b(α ∈ (0, 1], a, b� 0), then the condition
(H3) holds. That is to say, Proposition 2.1 generalizes
and improves the corresponding results of some earlier
literature, such as Theorem 1 of [4], Property 2 of [6],
Lemma 2 of [17], Theorem 3.1 of [18], and Lemma 2 of
[41]. Moreover, for a class of more general functional
differential inclusions, such as x ′(t) ∈ F(t, x(t), x(t−
τ)), x ′(t) ∈ F(t, x(t), x(t − τ(t)), x(t − σ(t))), the
global existence of solutions can be similarly dealt
with.

Next, let us introduce some basic concepts and facts
frommulti-valued analysis whichwill be used through-
out this paper [48–56].

Let ([0, ω],L) denote the Lebesgue measurable
space and R

n(n � 1) be an n-dimensional real Euclid-
ean space with inner product 〈·, ·〉 and induced norm
|| · ||. Suppose E ⊂ R

n , then x 
→ F(x) is called a
multi-valued map from E ↪→ R

n , if for each point x
of a set E ⊂ R

n , there corresponds a non-empty set
F(x) ⊂ R

n . F is said to have a fixed point if there is
x ∈ E such that x ∈ F(x). For the sake of convenience,
we introduce the following notations:

Pcl(cb)(R
n)

= {A ⊂ R
n : non-empty and closed (bounded)},

Pcp(cv)(R
n)

= {A ⊂ R
n : non-empty and compact (convex) }.

Let A ⊂ Pcl(Rn), then the distance from x to A is given
by dist(x, A) = inf{||x − a|| : a ∈ A}. On Pcl(Rn) we
can define a generalized metric known in the literatures
as “Hausdorff metric,” by setting

ρ(A, B) = max{β(A, B), β(B, A)}, A, B ⊂ Pcl(R
n),

where

β(A, B) = sup{dist(x, B) : x ∈ A},
β(B, A) = sup{dist(y, A) : y ∈ B}.
It is well known that Pcl(Rn) is a completemetric space
with the Hausdorff metric ρ and Pcl,cv(Rn) is a closed
subset of it.

Definition 2.3 Amulti-valued map F with non-empty
values is said to be upper semi-continuous (USC) at
x0 ∈ E , if β(F(x), F(x0)) → 0 as x → x0. F(x)
is said to have a closed (convex, compact) image if
for each x ∈ E , F(x) is closed (convex, compact).
A multi-valued map F : [0, ω] → Pcl(Rn) is said
to be measurable, if for each x ∈ R

n , the R+ valued
function t 
→ dist(x, F(t)) = inf{||x − v|| : v ∈
F(t)} is measurable. This definition of measurability
is equivalent to saying that

Graph(F) = {(t, v) ∈ [0, ω] × R
n, v ∈ F(t)}

∈ L × B(Rn)

(graphmeasurability), whereL([0, ω]) is the Lebesgue
σ -field of [0, ω], B(Rn) is the Borel σ -field of R

n .
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For notational purposes, for � > 0 let

� = {x ∈ X : ||x ||X < �},
∂� = {x ∈ X : ||x ||X = �},
� = {x ∈ X : ||x ||X � �}.
As a matter of convenience, we recall the fixed-

point theorem of multi-valued maps due to Agarwal
and O’Regan. (see [50] Theorems 2.3 and 2.7).

Lemma 2.1 Let X = (X, || · ||X ) be a Banach space
and E ⊆ X a closed, convex, non-empty set with αu +
βv ∈ E for all α � 0, β � 0 and u, v ∈ E. And let
r, R be positive constants with 0 < r < R. Suppose
F : R → Pcp,cv(E) (here Pcp,cv(E) denotes the
family of non-empty, compact, convex subset of E) is
a USC, k-set-contractive (here 0 � k < 1) map and
assume the following conditions hold:

(1) x /∈ λF(x) for λ ∈ [0, 1) and x ∈ ∂R,
(2) there exist a v ∈ E\{θ} with x /∈ F(x) + δv δ > 0

and x ∈ ∂r .
Then F has a fixed point in {x : x ∈ E and r �
||x ||X � R}.
Lemma 2.2 Let X = (X, || · ||X ) be a Banach space
and E ⊆ X a closed, convex, non-empty set with αu +
βv ∈ E for all α � 0, β � 0 and u, v ∈ E. And let
r, R be positive constants with 0 < r < R. Suppose
F : R → Pcp,cv(E) (here Pcp,cv(E) denotes the
family of non-empty, compact, convex subset of E) is
a USC, k-set-contractive (here 0 � k < 1) map and
assume the following conditions hold:

(1) x /∈ λF(x) for λ ∈ [0, 1) and x ∈ ∂r ,
(2) there exist a v ∈ E\{θ} with x /∈ F(x) + δv δ >

0 and x ∈ ∂R.
Then F has a fixed point in {x : x ∈ E and r �
||x ||X � R}.
Definition 2.4 [52]. A multi-valued map F : [0, ω] ×
E → P(E) is called L1-Carathéodory if

(1) t → F(t, u) is measurable with respect to t for
every u ∈ E ;

(2) t → F(t, u) is USC with respect to u for a.e. t ∈
[0, ω];

(3) for eachq > 0, there existshq ∈ L1([0, ω], [0,∞))

such that
|||F(t, u)||| � sup{|v| : v ∈ F(t, u)} � hq(t) for
all ||u|| � q and for a.e. t ∈ [0, ω].
The following lemma will be used in the proof.

Lemma 2.3 [53]. Let J be a compact real interval,
F : J × E → Pcb,cl,cv(E), (t, x) → F(t, x) (here
Pcb,cl,cv(E) denote the set of all bounded, closed, con-
vex and non-empty subsets of E) a L1-Carathéodory
multi-valuedmap, SF,x (here SF,x = { fx ∈ L1(J, E) :
fx (t) ∈ F(t, x) for a.e. t ∈ J }) be non-empty for each
fixed x ∈ E and let � be a linear continuous map-
ping from L1(J, E) to C(J, E). Then the map � ◦ SF :
C(J, E) → Pcb,cl,cv(C(J, E)), y → (� ◦ SF )(y) =
�(SF,y) is a closed graph map in C(J, E) ×C(J, E).

Definition 2.5 A solution x(t) of the given IVP of sys-
tem (1.1) on [0,+∞) is a periodic solution with period
ω if x(t + ω) = x(t) for all t � 0.

Definition 2.6 Let x∗(t) = (x∗
1 (t), x

∗
2 (t), . . . , x

∗
n (t))

T

be a solution of the given IVP of system (1.1), x∗(t) is
said to be globally exponentially stable, if for any solu-
tion x(t) = (x1(t), x2(t), . . . , xn(t))T of (1.1), there
exist constants M > 0 and δ > 0 such that

||x(t) − x∗(t)|| � Me−δt , for t � t0 � 0.

Suppose that x(t) : [0,+∞) → R
n is absolutely

continuous on any compact interval of [0,+∞). We
give a chain rule for computing the time derivative of
the composed function V (x(t)) : [0,+∞) → R as
follows.

Lemma 2.4 (ChainRule) [47,56]. Suppose that V (x) :
R
n → R is C-regular and that x(t) : [0,+∞) → R

n

is absolutely continuous on any compact interval of
[0,+∞). Then, x(t) and V (x(t)) : [0,+∞) → R are
differential for a.e. t ∈ [0,+∞), and we have

dV (x(t))

dt
= 〈ξ(t),

dx(t)

dt
〉, ∀ξ(t) ∈ ∂V (x(t)),

where ∂V (x(t)) is the Clark generalized gradient of V
at x(t).

3 Periodicity and multiperiodicity

In this section, under some conditions, we investigate
the periodicity and multiperiodicity of IVP for the sys-
tem (1.1) with discontinuous neuron activations. Our
approaches are based on the application of fixed-point
theorem of multi-valued maps due to Agarwal and
O’Regan [50] and the functional differential inclusions
theory.
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Periodicity and multi-periodicity for discontinuous CGNN 73

Lemma 3.1 (SeeAppendix B for a Proof)Vector func-
tion x(t) = (x1(t), x2(t), . . . , xn(t))T is a ω-periodic
solution of the system (1.1) in the sense of Filippov if
and only if x(t) = (x1(t), x2(t), . . . , xn(t))T is a ω-
periodic solution the following integral inclusions

xi (t) ∈
∫ t+ω

t
Gi (t, v)qi (xi (v))Fi (v, f )dv,

for t ∈ [0, ω], i = 1, 2, . . . , n, (3.1)

where

Fi (v, f ) =
n∑
j=1

ai j (v)co[ f j (x j (v))]

+
n∑
j=1

bi j (v)co[ f j (x j (v − τ(v)))]

+
n∑
j=1

ci j (v)

∫ +∞

0
co[ f j (x j (v−s))]l j (s)ds+Ii (v),

Gi (t, v) = e
∫ v
t qi (xi (s))di (s)ds

e
∫ t+ω
t qi (xi (s))di (s)ds − 1

, i = 1, 2, . . . , n.

Let us define

X = {x(t) = (x1(t), x2(t), . . . , xn(t))
T

∈ C(R, R
n) : x(t + ω) = x(t)},

||x ||X = max
1�i�n

|xi |∞, |xi |∞ = max
t∈[0,ω] |xi (t)|,

i = 1, 2, . . . , n.

Then X is a Banach space with the above norm || · ||X .
Define a cone P in X by

P = {x(t) = (x1(t), x2(t), . . . , xn(t))
T ∈ X : xi (t)

� κi |xi |∞, i = 1, 2, . . . , n},

where κi = gi
Gi

and gi = 1

eq
M
i dM

i − 1
, Gi =

eq
L
i d

L
i

eq
L
i d

L
i − 1

.

Define the multi-valued map ϕ : X → P(X) by

ϕ(x) = (ϕ1(x), ϕ2(x), . . . , ϕn(x))
T ,

where

ϕi (x)(t) =
∫ t+ω

t
Gi (t, v)qi (xi (v))Fi (v, f )dv,

i = 1, 2, . . . , n.

It follows from Lemma 3.1 that, the existence problem
of ω-periodic solutions to the system (1.1) is equiva-
lent to the existence problem of ω-periodic solutions
to the integral inclusions (3.1). Hence, if x∗(t) =
(x∗

1 (t), x
∗
2 (t), . . . , x

∗
n (t))

T ∈ X is a fixed point of the
multi-valued map ϕ(x), then x∗(t) is a positive ω-
periodic solution of the system (1.1). In the following
discussion, we will solve the fixed-point problem by
virtue of Lemmas 2.1 and 2.2. For the multi-valued
map ϕ : X → P(X), we have the following Lemmas.

Lemma 3.2 (See Appendix C for a Proof). If the con-
ditions (H1), (H2) and
(H4) for i = 1, 2, . . . , n and x(t) ∈ R ∩ P, we have

inf
γ j (t)∈co[ f j (x j (t))]

{Fi (v, γ )} > 0

where

Fi (t, γ ) =
n∑
j=1

ai j (t)γ j (t) +
n∑
j=1

bi j (t)γ j (t − τi j (t))

+
n∑
j=1

ci j (t)
∫ +∞

0
γ j (t − s)l j (s)ds + Ii (t),

hold, then the multi-valued map ϕ : R ∩ P →
Pcp,cv(P), i.e., ϕ(x) ∈ Pcp,cv(P) for each fixed x(t) ∈
R ∩ P.

Lemma 3.3 (See Appendix D for a Proof). Assume
that the conditions (H1), (H2), and (H4) hold. Then
the multi-valued map ϕ : R ∩ P → Pcp,cv(P) is a
k-set-contractive map with k = 0.

Lemma 3.4 (See Appendix E for a Proof). Assume
that the conditions (H1), (H2), and (H4) hold. Then
the multi-valued map ϕ : R ∩ P → Pcp,cv(P) is an
upper semi-continuous(USC) map.

Denote

�i (r) = max
t∈[0,ω] sup

x∈∂r
⋂

P

∫ t+ω

t
Gi (t, v)qi (xi (v))

×Fi (v, γ )dv,

�i (r) = min
t∈[0,ω] inf

x∈∂r
⋂

P

∫ t+ω

t
Gi (t, v)qi (xi (v))

×Fi (v, γ )dv,
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where Fi (v, γ ) is defined as above and γ j (v) ∈
co[ f j (x j (v))].
(H5) There exists two positive constants R0, R1 with
0 < R0 < R1, such that

�(R1) = max
1�i�n

�i (R1) � R1 and

�(R0) = min
1�i�n

�i (R0) � R0.

(H5*) There exists two positive constants R0, R1 with
0 < R0 < R1, such that

�(R0) = max
1�i�n

�i (R0) � R0 and

�(R1) = min
1�i�n

�i (R1) � R1.

(H6) There exists four positive constants R0, R1, R2,

R3 with 0 < R0 < R1 < R2 < R3, such that

�(R1) = max
1�i�n

�i (R1) � R1,

�(R0) = min
1�i�n

�i (R0) � R0,

�(R3) = max
1�i�n

�i (R3) � R3,

�(R2) = min
1�i�n

�i (R2) � R2.

(H6*) There exists four positive constants R0, R1, R2,

R3 with 0 < R0 < R1 < R2 < R3, such that

�(R0) = max
1�i�n

�i (R0) � R0,

�(R1) = min
1�i�n

�i (R1) � R1,

�(R2) = max
1�i�n

�i (R2) � R2,

�(R3) = min
1�i�n

�i (R3) � R3.

(H7) There exists 2m positive constants R0, R1, . . . ,

R2m−1 with 0 < R0 < R1 < · · · < R2m , such that

�(R2k+1) = max
1�i�n

�i (R2k+1) � R2k+1 and

�(R2k)= min
1�i�n

�i (R2k) � R2k, k=0, 1, . . . ,m − 1.

(H7*) There exists 2m positive constants R0, R1, . . . ,

R2m with 0 < R0 < R1 < · · · < R2m−1, such that

�(R2k+1) = min
1�i�n

�i (R2k+1) � R2k+1 and �(R2k)

= max
1�i�n

�i (R2k) � R2k, k = 0, 1, . . . ,m − 1.

Theorem 3.1 Assume that the conditions (H1), (H2),
(H4), and (H5) hold. Then the system (1.1) has at least
one positive ω-periodic solution.

Proof To prove that the result of Theorem 3.1 is true,
it is enough to show that ϕ has least one fixed point in
{x : x ∈ P and R0 � ||x ||X � R1}. In view of Lemmas
3.1–3.4, it remains to verify whether the conditions (1)
and (2) of Lemma 2.1 hold. ��

First, for any x(t) = (x1(t), x2(t), . . . , xn(t))T ∈
R ∩ P, κi |xi |∞ � xi (t) � |xi |∞ and y(t) =
(y1(t), y2(t), . . . , yn(t))T ∈ ϕ(x). There exists a mea-
surable function γ = (γ1, γ2, . . . , γn)

T : [0, T ) →
R
n such that γi (t) ∈ co[ fi (xi (t))] with |γi (t)| �

max0�s�R{Wi (s)} (i = 1, 2, . . . , n) for t ∈ [0, T ) and

yi (t) =
∫ t+ω

t
Gi (t, v)qi (xi (v))Fi (v, γ )dv > 0,

i = 1, 2, . . . , n.

Then, we have

|yi (t)|∞ = max
t∈[0,ω]

{
|
∫ t+ω

t
Gi (t, v)qi (xi (v))Fi (v, γ )dv|

}

= max
t∈[0,ω]

{∫ t+ω

t
Gi (t, v)qi (xi (v))Fi (v, γ )dv

}

��i (R1) � �(R1) � R1.

Hence, for any x = (x1, x2, . . . , xn)T ∈ ∂R1 ∩ P,

||y||X = max
1�i�n

|yi (t)|∞ � max
1�i�n

�i (R1)

= �(R1) � R1.

Thus, we claim that the condition (1) in Lemma 2.1 is
true. Otherwise, there exists x0 ∈ ∂R1 ∩ P and some
constant λ0 ∈ [0, 1) such that

x0 ∈ λ0ϕ(x0) for x0 ∈ ∂R1 ∩ P.

Then there exists y0 ∈ ϕ(x0) with x0 = λ0y0. There-
fore,

R1 = ||x0||X = ||λ0y0||X = |λ0| · ||y0||X < ||y0||X
� ||y||X � R1,

which is a contradiction. That is, the condition (1) in
Lemma 2.1 is satisfied.

Next, we will prove that the condition (2) in Lemma
2.1 hold. Suppose η = (η1, η2, . . . , ηn)

T ∈ P\{θ}. We
will show that for any x = (x1, x2, . . . , xn)T ∈ ∂R0∩
P and any μ > 0, such that x /∈ ϕ(x)+μη. Otherwise,
there exist some x00 = (x001 , x002 , . . . , x00n )T ∈ ∂R0∩
P and some μ00 > 0, such that

x00 ∈ ϕ(x00) + μ00η.
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Then there exists y00 = (y001 , y002 , . . . , y00n )T ∈
ϕ(x00) with x00 = y00 + μ00η. Let ηi0 �= 0 for some
i0 ∈ {1, 2, . . . , n}. Thus
x00i0 = y00i0 + μ00ηi0 .

Note that x00 = (x001 , x002 , . . . , x00n )T ∈ ∂R0 ∩ P,
then we have κi0 |x00i0 |∞ � x00i0 (t) � |x00i0 |∞. Since

ϕi0(x
00) =

∫ t+ω

t
Gi0(t, v)ai0(x

00
i0 (v))

×
⎧⎨
⎩

n∑
j=1

ai0 j (v)co[ f j (x00j (v))]

+
n∑
j=1

bi0 j (v)co[ f j (x00j (v − τ(v)))]

+
n∑
j=1

ci0 j (v)

∫ +∞

0
co[ f j (x00j (v − s))]l j (s)ds

+ Ii0(v)

⎫⎬
⎭ dv,

that is

y00i0 =
∫ t+ω

t
Gi0(t, v)ai0(x

00
i0 (v))

×
⎧⎨
⎩

n∑
j=1

ai0 j (v)γ 00
j (v) +

n∑
j=1

bi0 j (v)γ 00
j (v − τ(v))

+
n∑
j=1

ci0 j (v)

∫ +∞

0
γ 00
j (v−s)l j (s)ds+ Ii0(v)

⎫⎬
⎭ dv

� �i0(R0) � �(R0) � R0,

where γ 00
j (t)∈ co[ f j (x00j (t))] ( j = 1, 2, . . . , n).

Hence,

R0 � |x00i0 |∞ = |y00i0 +μ00ηi0 |∞ � R0+μ00ηi0 > R0,

which is a contradiction. This proves the condition (2)
in Lemma 2.1 is also satisfied.

By Lemma 2.1, the system (1.1) has at least one
positive ω-periodic solution.

Applying Lemma 2.2 and similar to the proof of
Theorem 3.1, we also have the following Theorem 3.2.

Theorem 3.2 Assume that the conditions (H1), (H2),
(H4) and (H5*) hold. Then the system (1.1) has at least
one positive ω-periodic solution.

Remark 2 Based on fixed-point theorem of multi-
valued maps due to Agarwal and O’Regan[50], we
apply a new method to investigate the existence of
positive periodic solutions for the neural networks
(1.1) with discontinuous neuron activations and mixed
delays. Compared with the corresponding results in
the earlier literature [1,2,7,9–18,39–44], Theorems 3.1
and 3.2 obtained in this section are essentially new.
In addition, note that the control function Wi (xi ) (see
assumption (H2)) may be unbounded, may be super
linear, even to be exponential. Thus, the discontinuous
neuron activations fi (i = 1, 2, . . . , n) are allowed to
be unbounded, to be super linear, even to be exponen-
tial. Meanwhile, the restriction condition f +

i (ρi
k) >

f −
i (ρi

k) (where fi is discontinuous at ρi
k) in the existing

papers has also been eliminated successfully. There-
fore, the activation functions of this paper are more
general and more practical. Hence, Theorems 3.1 and
3.2 generalize and improve the corresponding results
of the earlier literature [9,10,12,13,15–18,41,42].

Next, we discuss the multiplicity of positive ω-
periodic solutions for the neural networks (1.1) with
discontinuous neuron activations.

Theorem 3.3 Assume that the conditions (H1), (H2),
(H4) and (H6) hold. Then the system (1.1) has at least
two positive ω-periodic solutions.

Proof It follows from Theorem 3.1 that ϕ has at least
one fixed point in {x (1) : x (1) ∈ P and R0 � ||x (1)||X �
R1}.Meanwhile, Theorem3.2 implies thatϕ has at least
one fixed point in {x (2) : x (2) ∈ P and R2 � ||x (2)||X �
R3}. That is, ϕ has at least two fixed points in x (1), x (2)

(x (1), x (2) ∈ P) with R0 � ||x (1)||X � R1 < R2 �
||x (2)||X � R3. Thus the system (1.1) has at least two
positive ω-periodic solutions. ��

From the proof of Theorems 3.1–3.3, it is easy to
obtain the following result.

Theorem 3.4 Assume that the conditions (H1), (H2),
(H4) and (H6*) hold. Then the system (1.1) has at least
two positive ω-periodic solutions.

Theorem 3.5 Assume that the conditions (H1), (H2),
(H4) and (H7) hold. Then the system (1.1) has at least
m positive ω-periodic solutions.

Theorem 3.6 Assume that the conditions (H1), (H2),
(H4) and (H7*) hold. Then the system (1.1) has at least
m positive ω-periodic solutions.
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Remark 3 In the earlier papers, such as [23,24,27,28],
the authors investigated the multiperiodicity for neu-
ron networkswith continuous neuron activations.How-
ever, for neuron networks with discontinuous neuron
activations, there are few papers studied the multiperi-
odicity of it. In [29,30], the authors studied the mul-
tiperiodicity of neuron networks with r -level discon-
tinuous neuron activation functions. For neuron net-
works with more general discontinuous neuron acti-
vation functions, the methods used in [29,30] will be
invalid. Hence, to study the multiperiodicity of neuron
networks with discontinuous neuron activations, a new
method should be introduced. By means of functional
differential inclusions theory and fixed-point theorem
of multi-valued maps due to Agarwal and O’Regan
[50], we obtain the existence of multiple positive peri-
odic solutions for the neural networks with more gen-
eral discontinuous neuron activations. In this sense,
Theorems 3.3–3.6 are completely new.

4 Uniqueness and global exponential stability

For most practical applications, it is of prime impor-
tance tomake sure that the designedneural networks are
stable. By applyingTheorems 3.3 and 3.4, under appro-
priate conditions, there exist multiple periodic solu-
tions of system (1.1). Thus, it is interesting to obtain the
uniqueness of ω-periodic solution to the system (1.1).
And so, in this section, we shall explore the unique-
ness and global exponential stability of the ω-periodic
solution for the time-varying and distributed delayed
Cohen–Grossberg neural networks (1.1) with discon-
tinuous neuron activations. For convenience, we state
some assumptions.

(H8) For each i = 1, 2, . . . , n, fi (xi ) is monotoni-
cally decreasing in R.

(H8*) For each i = 1, 2, . . . , n, fi (xi ) is monoton-
ically nondecreasing in R.

(H9) The time-varying delay τ(t) is continuously
differentiable function and satisfying τ ′(t) < 1. More-
over, there exist positive constants ξ1, ξ2, . . . , ξn and
δ > 0 such that

dli q
l
i > δ and lim sup

t→+∞
ϒi (t) < 0, i = 1, 2, . . . , n,

ϒi (t) = −ξi aii (t)

+
n∑

j=1, j �=i

ξ j |a ji (t)| +
n∑
j=1

ξ jeδτM |b ji (ϕ
−1(t))|

1 − τ ′(ϕ−1(t))

+
n∑
j=1

ξ j

∫ +∞

0
|c ji (s + t)||l j (s)|eδsds.

and ϕ−1 is the inverse function of ϕ = t − τ(t).
(H9*) The time-varying delay τ(t) is continuously

differentiable function and satisfying τ ′(t) < 1. More-
over, there exist positive constants ξ1, ξ2, . . . , ξn and
δ > 0 such that

dli q
l
i > δ and lim sup

t→+∞
ϒ̂i (t) < 0, i = 1, 2, . . . , n,

where

ϒ̂i (t) = ξi aii (t) +
n∑

j=1, j �=i

ξ j |a ji (t)|

+
n∑
j=1

ξ jeδτM |b ji (ϕ
−1(t))|

1 − τ ′(ϕ−1(t))

+
n∑
j=1

ξ j

∫ +∞

0
|c ji (s + t)||l j (s)|eδsds.

and ϕ−1 is the inverse function of ϕ = t − τ(t).

Theorem 4.1 Assume that the conditions (H1), (H2),
(H4), (H5), (H8) and (H9) hold. Then the system (1.1)
has a uniqueness positive ω-periodic solution which is
globally exponentially stable.

Proof It follows from Theorem 3.1 that the existence
of the ω-periodic solution for the system (1.1) is obvi-
ous. Assume that x∗(t) = (x∗

1 (t), x
∗
2 (t), . . . , x

∗
n (t))

T

is a positive ω-periodic solution of (1.1), γ ∗(t) =
(γ ∗

1 (t), γ ∗
2 (t), . . . , γ ∗

n (t))T (γ ∗
i (t) ∈ co[ fi (x∗

i (t))]) is
an output solution associated with the state x∗(t) =
(x∗

1 (t), x
∗
2 (t), . . . , x

∗
n (t))

T . And that x(t) = (x1(t),
x2(t), . . . , xn(t))T is any solution of (1.1), γ (t) =
(γ1(t), γ2(t), . . . , γn(t))T (γi (t) ∈ co[ fi (xi (t))]) is
an output solution corresponding to the state x(t) =
(x1(t), x2(t), . . . , xn(t))T .

Now, we consider the following Lyapunov function
as follows:

V (t) =
n∑

i=1

ξie
δt |

∫ xi (t)

x∗
i (t)

dρ

qi (ρ)
|

+
n∑

i=1

n∑
j=1

ξi

∫ t

t−τ(t)

|bi j (ϕ−1(ρ))|
1 − τ ′(ϕ−1(ρ))

|γ j (ρ)
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− γ ∗
j (ρ)|eδ(ρ+τM )dρ,

+
n∑

i=1

n∑
j=1

ξi

∫ +∞

0

∫ t

t−s
|ci j (s + ρ)||γ j (ρ)

− γ ∗
j (ρ)||l j (s)|eδ(s+ρ)dρds.

Obviously, V (t) is regular. Meanwhile, the ω-periodic
solution x∗(t) and any solution x(t) of the system (1.1)
are all absolutely continuous. Then, V (t) is differential
for a.e. t � 0, and the time derivative can be evaluated
by Lemma 2.4.

Moreover,

d

dt
|
∫ xi (t)

x∗
i (t)

dρ

qi (ρ)
|=∂|

∫ xi (t)

x∗
i (t)

dρ

qi (ρ)
| × d

dt

∫ xi (t)

x∗
i (t)

dρ

qi (ρ)

= νi (t)

{
1

qi (xi (t))

dxi (t)

dt
− 1

qi (x∗
i (t))

dx∗
i (t)

dt

}
,

where νi (t) = sign{∫ xi (t)
x∗
i (t)

dρ

qi (ρ)
} = sign{xi (t) −

x∗
i (t)}, if xi (t) �= x∗

i (t), while νi (t) can be arbitrar-
ily choosen in [−1, 1], if xi (t) = x∗

i (t). In particular,
we choose νi (t) as follows

νi (t)=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, if xi (t) − x∗
i (t)

= γi (t)−γ ∗
i (t)=0,

−sign{γi (t) − γ ∗
i (t)}, if xi (t) = x∗

i (t)
and γi (t) �=γ ∗

i (t),
sign{xi (t) − x∗

i (t)}, if xi (t) �= x∗
i (t).

It is easy to see that

νi (t){xi (t) − x∗
i (t)} = |xi (t) − x∗

i (t)|, νi (t)

{γi (t) − γ ∗
i (t)} = −|γi (t) − γ ∗

i (t)|, i = 1, 2, . . . , n.

In view of the chain rule in Lemma 2.4, calculate the
time derivative of V (t) along the solution trajectories
of the system (1.1) in the sense of equation (2.2), then
we can get

dV (t)

dt
=

n∑
i=1

δξie
δt |

∫ xi (t)

x∗
i (t)

dρ

qi (ρ)
| +

n∑
i=1

ξie
δtνi (t)

×
{

1

qi (xi (t))

dxi (t)

dt
− 1

qi (x∗
i (t))

dx∗
i (t)

dt

}

+
n∑

i=1

n∑
j=1

ξi
|bi j (ϕ−1(t))|
1 − τ ′(ϕ−1(t))

|γ j (t) − γ ∗
j (t)|eδ(t+τM )

−
n∑

i=1

n∑
j=1

ξi |bi j (t)||γ j (t − τ(t))

− γ ∗
j (t − τ(t))|eδ[t−τ(t)+τM ]

+
n∑

i=1

n∑
j=1

ξi

∫ +∞

0
|ci j (s + t)||γ j (t)

− γ ∗
j (t)||l j (s)|eδ(s+t)ds

−
n∑

i=1

n∑
j=1

ξi

∫ +∞

0
|ci j (t)||γ j (t − s)

− γ ∗
j (t − s)||l j (s)|eδtds

� −eδt
n∑

i=1

ξi

(
dL
i − δ

qL
i

)
|xi (t) − x∗

i (t)|

+ eδt
n∑

i=1

ϒi (t)|γi (t) − γ ∗
i (t)|.

It follows from the condition (H9) that, there exists
nonnegative constants ςi (i = 1, 2, . . . , n) and t0 � 0
such that for t � t0, we have

ϒi (t) � −ςi � 0.

Thus

dV (t)

dt
� −�0e

δt
n∑

i=1

ξi

(
dL
i − δ

qL
i

)
|xi (t) − x∗

i (t)|,

where �0 = min0�i�n ξi

(
dL
i − δ

qL
i

)
> 0. Notice

that
n∑

i=1

eδt ξi

qM
i

|xi (t) − x∗
i (t)| � V (t).

Hence
n∑

i=1

|xi (t) − x∗
i (t)| � V (t)

ξ
e−δt � V (t0)

ξ
e−δt ,

where ξ = min{ξ1, ξ2, . . . , ξn} > 0. Therefore, the
positive ω-periodic solution x∗(t) of the system (1.1)
is globally exponentially stable.Consequently, the peri-
odic solution x∗(t) of the system (1.1) is unique. The
proof is complete. ��

From the proof of the Theorem 4.1, it is easy get the
following theorems.

Theorem 4.2 Assume that the conditions (H1), (H2),
(H4), (H5), (H8*) and (H9*) hold. Then the system
(1.1) has a uniqueness positive ω-periodic solution
which is globally exponentially stable.

123



78 D. Wang, L. Huang

Theorem 4.3 Assume that the conditions (H1), (H2),
(H4), (H5*), (H8) and (H9) hold. Then the system (1.1)
has a uniqueness positive ω-periodic solution which is
globally exponentially stable.

Theorem 4.4 Assume that the conditions (H1), (H2),
(H4), (H5*), (H8*) and (H9*) hold. Then the system
(1.1) has a uniqueness positive ω-periodic solution
which is globally exponentially stable.

Remark 4 By construct suitable Lyapunov-like func-
tions, we study the global exponential stability of the
periodic solution for the neural network dynamic sys-
tem (1.1) with discontinuous neuron activations and
mixed time delayed. However, by comparison we find
that Theorems 4.1–4.4 obtained in this section make
the following improvements:

(1) It is well known that most of the existing results
concerning the delayed neural network dynamical
systemswith discontinuous neuron activations have
not considered the time-varying delays and distrib-
uted delays situation. It is easy to see that the sys-
tems in the papers [1,2,6,7,9–18,39,40,44] are just
special cases of our system.

(2) It is well known that, in the papers [1,2,6,7,9–
18,39,40,44], many results on the stability (or
global exponential stability) analysis of periodic
solution or equilibrium point for neural networks
with discontinuous activation functions are con-
ducted under the following assumptions:

• For each i = 1, 2, . . . , n, fi (xi ) is monotoni-
cally non-decreasing in R.

• For each i = 1, 2, . . . , n, there exists a con-
stant Li , such that for any twodifferent numbers
u, v ∈ R, ∀γi ∈ co[ fi (u)], ∀ηi ∈ co[ fi (v)],
γi − ηi

u − v
� −Li .

It is easy to see that these conditions are not
required in this paper.

In addition, the restriction condition f +
i (ρi

k) >

f −
i (ρi

k) (where fi is discontinuous at ρi
k) in the papers

[1,2,6,7,9–18,39,40,44] has also been eliminated suc-
cessfully. Therefore, the results on global exponential
stability of periodic solution in this paper aremore gen-
eral and more practical.

5 Numerical examples

In this section, we consider three numerical examples,
with which the time-varying and distributed delayed
neural networks have different discontinuous neuron
activation functions, to show the effectiveness of the
theoretical results given in the previous sections.

Example 5.1 Consider the following general Cohen–
Grossberg neural networks:

dx1(t)

dt
= [0.4 + 0.1 tanh(x1(t))][−2x1(t)

+ (2 + 0.01esin 2t ) f1(x1(t)) + 0.1 f2(x2(t))

+ (0.1 + 0.1 sin(sin 2t)) f1(x1(t − τ(t)))

+ 0.1 f2(x2(t−τ(t)))+0.2+0.01 sin(sin 2t)]
dx2(t)

dt
= [0.4 + 0.1 tanh(x2(t))][−2x2(t)

+ 0.1 f1(x1(t))+(2+0.01ecos 2t ) f2(x2(t))

+ 0.1 f1(x1(t−τ(t)))+(0.1+0.1 sin(cos 2t))

× f2(x2(t − τ(t)))+0.2+0.01 cos(cos 2t)],
(5.1)

where f1(s) = f2(s) =
{
0.01, |s| � 2,
s2 + 40, |s| > 2,

and

τ(t) ≡ 1.

Consider the IVP of the system (5.1) with the initial
condition φ(s) = (0.111, 0.115)T for s ∈ [−1, 0],
and ψ(s) = (0.01, 0.01)T for s ∈ [−1, 0]. It is not
difficult to verify that the coefficients of the system (5.1)
satisfy all the conditions in Theorem 3.1. Therefore, it
follows from Theorem 3.1 that the non-autonomous
system (5.1) has at least one π -periodic solution. As
shown in Figure 1, numerical simulations also confirm
that there exists a π -periodic solution of the system
(5.1) by MATLAB.

Remark 5 It is easy to see that the activation func-
tions f1(s) and f2(s) of Example 5.1 are discontinuous,
unbounded, non-monotonic, and satisfy the super linear
growth condition(in fact, | fi (s)| � s2 + 40, i = 1, 2).
Therefore, the results in [9,10,12,13,15–18,41,42]
cannot be applied to discuss the existence of periodic
solution for the system (5.1). Moreover, the activation
functions fi (s)(i = 1, 2) are discontinuous at s = ±2
and f −

i (−2) = 44 > 0.01 = f +
i (−2)(i = 1, 2).

It is obviously from this example that the assumption
(H2) in this paper is much less conservative than that
in [9,10,12,13,15–18,41,42] since the functionsWi (s)
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Fig. 1 Trajectory of the system (5.1) with initial value x(t) = (0.111, 0.115)T , t ∈ [−1, 0]
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Fig. 2 Trajectory of the system (5.2) with 5 random initial conditions

may be a class of general functions and the restriction
condition f +

i (ρi
k) > f −

i (ρi
k)(where fi is discontinu-

ous at ρi
k) in [9,10,16,18,41,42] has also been elimi-

nated successfully.

Example 5.2 Consider the following general Cohen–
Grossberg neural networks:

dx1(t)

dt
= [0.3 + 0.1 arctan(x1(t))][−0.3x1(t)

+ (1.5+0.2 cos(sin t+1)) f1(x1(t))+0.1 f2(x2(t))

+ (0.2 + 0.1 sin(2 sin t + 1)) f1(x1(t − τ(t)))

+ 0.1 f2(x2(t − τ(t))) + 0.3 + 0.1 tanh(sin t + 1)]
dx2(t)

dt
= [0.3 − 0.1 arctan(x2(t))][−0.3x2(t)

+ 0.1 f1(x1(t))+(1.5 − 0.2 sin(cos t+1)) f2(x2(t))

+ 0.1 f1(x1(t − τ(t)))+(0.2 − 0.1 cos(2 cos t+1))

× f2(x2(t − τ(t))) + 0.3 + 0.1 tanh(cos t + 1)],
(5.2)

where f1(s) = f2(s) =
⎧⎨
⎩
s2 + 100, s � 0,
0.1, 0<s<2,
0.001, s�2,

and

τ(t) = 1.

Consider the IVP of the system (5.2) with 5 random
initial conditions φ(s) = (1.5, 1.5)T , (1.75, 1.75)T ,
(2.0, 2.0)T , (2.25, 2.25)T and (2.5, 2.5)T for s ∈
[−1, 0]. It is not difficult to verify that the coefficients
of the system (5.2) satisfy all the conditions in Theo-
rem 4.1. Therefore, it follows from Theorem 4.1 that
the non-autonomous system (5.2) has a unique 2π -
periodic solution which is globally exponentially sta-
ble. As shown in Figure 2, numerical simulations also
confirm that all the solutions converge to the unique
2π -periodic solution of the system (5.2) by MATLAB.

Remark 6 It is easy to see that the activation func-
tions f1(s) and f2(s) of Example 5.2 are discontin-
uous, unbounded, monotonic decreasing, and satisfy
the super linear growth condition(in fact, | fi (s)| �
s2 + 100, i = 1, 2). Therefore, the results in [9,10,
12,13,15–18,41,42] cannot be applied to discuss the
stability (or global exponential stability) of periodic
solution for the system (5.2). Meanwhile, the activa-
tion functions fi (s)(i = 1, 2) are discontinuous at
s = 2 and s = 0. In addition, for i = 1, 2, we
have f −

i (0) = 10 > 0.1 = f +
i (0) and f −

i (2) =
0.1 > 0.01 = f +

i (2). Thus, the restriction condition
f +
i (ρi

k) > f −
i (ρi

k)(where fi is discontinuous at ρi
k)
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in the papers [9,10,12,13,15–18,41,42] has also been
eliminated successfully. Therefore, the results of this
paper are more general and more practical.

Example 5.3 Consider the following general Cohen–
Grossberg neural networks:

dx1(t)

dt
= [1 + 0.01 arctan(x1(t))]

× [−2x1(t) + (1.5 + 0.1 tanh(sin t + 1))

× f1(x1(t)) + 0.01 f2(x2(t))

+ (0.1 + 0.1 sin(2 sin t + t)) f1(x1(t − τ(t)))

+ 0.1 f2(x2(t − τ(t)))+0.5+0.1 arctan(sin t+1)]

dx2(t)

dt
= [1 − 0.01 arctan(x2(t))][−2x2(t)

+ 0.01 f1(x1(t))+(1.5−0.1 tanh(cos t+1)) f2(x2(t))

+ 0.1 f1(x1(t−τ(t)))+(0.1−0.1 cos(2 cos t+t))

× f2(x2(t − τ(t))) + 0.5 − 0.1 arctan(cos t + 1)],
(5.3)

where f1(s) = f2(s) =
⎧⎨
⎩
0.1s2 + 0.4, s � 0.5,
0.01, 0.5 < s < 1,
0.1s2 + 1, s � 1,

and τ(t) = 0.5.
Consider the IVP of the system (5.3) with 9 ran-

dom initial conditions φ(s) = (0, 0)T , (0.25, 0.25)T ,
(0.5, 0.5)T , (0.75, 0.75)T , (1.0, 1.0)T , (1.25, 1.25)T ,
(1.5, 1.5)T , (1.75, 1.75)T and (2.0, 2.0)T for s ∈
[−1, 0]. Take R0 = 0.1, R1 = 0.5, R2 = 1 and
R3 = 2. It is not difficult to verify that the coeffi-
cients of the system (5.3) satisfy all the conditions in
Theorem 3.3. Therefore, it follows from Theorem 3.3
that the non-autonomous system (5.3) has at least two
positive 2π -periodic solutions. As shown in Figure 3,

numerical simulations also confirm that there exists two
2π -periodic solutions of the system (5.3) byMATLAB.

Remark 7 It is easy to see that the activation func-
tions f1(s) and f2(s) of Example 5.3 are discontinuous,
unbounded, and satisfy the super linear growth condi-
tion(in fact, | fi (s)| � 0.1s2 + 1, i = 1, 2). Therefore,
the results in [23,24,27–30] cannot be applied to dis-
cuss the existence of multiple periodic solutions for the
system (5.3). In addition, from Figure 3, there exist at
least two stable periodic solutions. Now, another prob-
lem arising in discontinuous neural networks: the mul-
tistability of periodic solutions(or equilibria), we left it
for future research.

6 Conclusion

In this paper, a class of general Cohen–Grossberg
neural networks with discontinuous neuron activations
and mixed delays has been investigated. Under the
framework of the theory of Filippov functional differ-
ential inclusions, the existence of the global solutions
is given. Based on fixed-point theorem of multi-valued
analysis due to Agarwal and O’Regan, the existence of
one and multiple periodic solutions for the neural net-
work systems have been obtained. It is worthy to point
out that, without assuming the boundedness or under
linear growth condition of the discontinuous neuron
activation functions, our results on the existence of one
and multiple positive periodic solutions will also be
valid. After that, in terms of non-smooth analysis the-
ory with generalized Lyapunov approach, we have got
some sufficient conditions for the global exponential
stability of the neural network systems. It is interesting
that, under the hypnosis of the discontinuous neuron
activations to be monotonically decreasing, the results
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Fig. 3 Trajectory of the system (5.3) with 9 random initial conditions
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of the global exponential stability also hold. Moreover,
our results extend previous works not only on time-
varying and distributed delayed neural networks with
continuous or even Lipschitz continuous activations,
but also on time-varying and distributed delayed neural
networks with discontinuous activations. Finally, we
gave some numerical examples to show the applica-
bility and effectiveness of our main results. We think
it would be interesting to investigate the possibility of
extending the results to more complex discontinuous
neural network systems with time-varying and distrib-
uted delays, such as multistability of multiple periodic
solutions, uncertain network systems and stochastic
neural network systems. These issues will be the topic
of our future research.

7 Appendix

7.1 Appendix A. Proof of Proposition 2.1

Proof It is easy to see that the multi-valued map

x(t) ↪→ Q(x(t))F(t, f ),

where

F(t, f ) = −D(t)x(t) + A(t)co[ f (x(t))]
+ B(t)co[ f (x(t − τ(t)))]
+C(t)

∫ +∞

0
co[ f (x(t − s))]l(s)ds + I (t),

is upper semi-continuous with non-empty compact
convex values, the local existence of a solution x(t) =
(x1(t), x2(t), . . . , xn(t))T of (2.2) can be guaranteed
[46,47]. That is, the IVP of system (2.2) has at least a
solution x(t) = (x1(t), x2(t), . . . , xn(t))T on [0, T )

for some T ∈ (0,+∞] and the derivative of x(t)
is a measurable selection from Q(x(t))F(t, f ). For
a real matrix � = (λi j )m×n , denote ||�||M =
max1�i�n

∑m
j=1 |λi j |. From the Continuation Theo-

rem (Theorem 2, P78, [46]), we have that either T =
+∞, or T < +∞ and limt→T− ||x(t)||M = +∞. In
the following, we will prove that limt→T− ||x(t)||M <

+∞ if T < +∞, which means that the maximal exist-
ing interval of x(t) can be extended to +∞.

First, we’ll show that x(t) is uniformly bounded
about t ∈ [0, T ).

Let r0 = ||x(0)||M, rs = max0�t�s ||x(t)||M. And
the interval [r0, rs] can be divided as follows

r0 < r1 < · · · < rm = rs .

Denote t∗l = min{t ∈ [0, s] | ||x(t)||M = rl}, l =
0, 1, 2, . . . ,m; and t∗∗

l = max{t ∈ [0, t∗l+1] |
||x(t)||M = rl}, l = 0, 1, 2, . . . ,m − 1. Note that
||x(t)||M is a continuous function, we have

t∗0 � t∗∗
0 < t∗1 � t∗∗

1 < · · · < t∗m−1 � t∗∗
m−1 < t∗m,

and

rl � ||x(t)||M � rl+1, ∀t ∈ [t∗∗
l , t∗l+1],

i = 0, 1, 2, . . . ,m − 1.

Thus, we have

rl+1 − rl = ||x(t∗l+1)||M − ||x(t∗∗
l )||M

� ||x(t∗l+1) − x(t∗∗
l )||M �

∫ t∗l+1

t∗∗
l

||x ′(t)||Mdt.

(7.1)

Since x(t) is a solution of the differential inclusions
(2.2) with the initial condition [φ,ψ], we can obtain

||x ′(t)||M
� ||Q(x(t))D(t)x(t)||M

+ ||Q(x(t))A(t)co[ f (x(t))]||M
+ ||Q(x(t))B(t)co[ f (x(t − τ(t)))]||M
+ ||Q(x(t))C(t)

∫ +∞

0
co[ f (x(t−s))]l(s)ds||M

+ ||Q(x(t))I (t)||M
� ||Q(x(t))||M||D(t)||M||x(t)||M

+ ||Q(x(t))||M||A(t)||M||co[ f (x(t))]||M
+ ||Q(x(t))||M||B(t)||M||co[ f (x(t−τ(t)))]||M
+ ||Q(x(t))||M||C(t)||M||
×

∫ +∞

0
co [ f (x(t − s))]l(s)ds||M

+ ||Q(x(t))||M||I (t)||M
� M1[||x(t)||M + W (||x(t)||M) + 1], (7.2)

where

M1 = max
t∈[0,ω]{max{qM ||D(t)||M, qM [||A(t)||M

+ ||B(t)||M + L||C(t)||M],
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qM [||B(t)||M + L||C(t)||M]||ψ ||M,∞
+ qM ||I (t)||M}}

and qM = max1�i�n{qM
i }, ||ψ ||M,∞ =

max1�i�n{||ψi ||∞}=max1�i�n{ess sups∈(−∞,0] |ψi

(s)|}.
It follows from (7.1) and (7.2) that

rl+1 − rl �
∫ t∗l+1

t∗∗
l

||x ′(t)||Mdt �
∫ t∗l+1

t∗∗
l

M1[||x(t)||M
+ W (||x(t)||M) + 1]dt

� [||x(ηl)||M + W (||x(ηl)||M) + 1]
× M1(t

∗
l+1 − t∗∗

l ), (7.3)

where ||x(ηl)||M + W (||x(ηl)||M) = maxt∈[t∗∗
l ,t∗l+1]{||x(t)||M + W (||x(t)||M)}. From (7.3), we have

1

||x(ηl)||M + W (||x(ηl)||M) + 1
(rl+1 − rl)

� M1(t
∗
l+1 − t∗∗

l ). (7.4)

Summing on both sides of (7.4) from 0 to m − 1 with
respect to l, we can derive

m−1∑
l=0

1

||x(ηl)||M + W (||x(ηl)||M) + 1
(rl+1 − rl)

�
m−1∑
l=0

M1(t
∗
l+1 − t∗∗

l ) � M1T .

Since the division of segment [r0, rs] is arbitrary, and
from the definition of integration, we have
∫ rs

r0

1

1 + r + W (r)
dr � M1T < +∞,

which, together with the condition (H3) imply that rs
is uniformly bounded about s ∈ [0, T ). Hence, x(t) is
uniformly bounded about t ∈ [0, T ).

Next, we will show that limt→T− ||x(t)||M < +∞.
There exists M2 > 0, such that ||x(t)||M � M2,
∀t ∈ [0, T ), since x(t) is uniformly bounded about
t ∈ [0, T ). For 0 � t1 < t2 < T , we have

||x(t2) − x(t1)||M �
∫ t2

t1
||x ′(t)||Mdt

�
∫ t2

t1
M1[||x(t)||M + W (||x(t)||M) + 1]dt

� [1 + M2 + W (M2)]M1(t2 − t1),

which implies that limt→T− x(t) exist, i.e., limt→T− ||
x(t)||M < +∞. The proof is completed. ��

7.2 Appendix B. Proof of Lemma 3.1

Suppose that x(t) = (x1(t), x2(t), . . . , xn(t))T is a ω-
periodic solution of system (1.1) in the sense of Filip-
pov, in view of Definition 2.1, we can obtain from (2.2)
that

dxi (t)

dt
∈ qi (xi (t))Fi (v, f ), for a.e. t ∈ [0, T ),

i = 1, 2, . . . , n.

Thus

[
xi (t)e

∫ t
0 qi (xi (s))di (s)ds

]′ ∈ e
∫ t
0 qi (xi (s))di (s)dsqi (xi (t))

Fi (v, f ), for a.e. t ∈ [0, T ), i = 1, 2, . . . , n.

(7.5)

Note that the periodicity of x(t), by integrating both
sides of differential inclusion (7.5) over the interval
[t, t + ω](0 � t � ω), we get the following integral
inclusions

xi (t) ∈
∫ t+ω

t
Gi (t, v)qi (xi (v))Fi (v, f )dv, for t

∈ [0, ω], i = 1, 2, . . . , n.

That is, x(t) is a ω-periodic solution of integral inclu-
sions (3.1).

On the other hand, suppose that x(t) is a ω-periodic
solution of integral inclusions (3.1). By the integral rep-
resentation theorem [48], there exist ameasurable func-
tion γ = (γ1, γ2, . . . , γn)

T : [0, T ) → R
n such that

γi (t) ∈ co[ fi (xi (t))] for a.e. t ∈ [0, T ) and

xi (t) =
∫ t+ω

t
Gi (t, v)qi (xi (v))Fi (v, γ )dv,

i = 1, 2, . . . , n. (7.6)

Since the right-hand sides of (7.6) is absolutely contin-
uous, deviating the two sides of (7.6) about t , for a.e.
t ∈ [0, T ), we obtain

dxi (t)

dt
= Gi (t, t + ω)qi (xi (t + ω))Fi (t + ω, γ )

− Gi (t, t)qi (xi (t))Fi (t, γ ).
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Note that the periodicity of x(t) and γ (t), we have

dxi (t)

dt
= qi (xi (t))Fi (t, γ ),

for a.e. t ∈ [0, T ), i = 1, 2, . . . , n.

In view of Definition 2.1, we know that x(t) =
(x1(t), x2(t), . . . , xn(t))T is a ω-periodic solution of
system (1.1) in the sense of Filippov.

The proof of Lemma 3.1 is completed.

7.3 Appendix C. Proof of Lemma 3.2

First, for any x(t) = (x1(t), x2(t), . . . , xn(t))T ∈
R ∩ P and y(t) = (y1(t), y2(t), . . . , yn(t))T ∈ ϕ(x).
There exists a measurable function γ = (γ1, γ2, . . . ,

γn)
T : [0, T ) → R

n such that γi (t) ∈ co[ fi (xi (t))]
with |γi (t)| � max0�s�R{Wi (s)}(i = 1, 2, . . . , n) for
a.e. t ∈ [0, T ) and

yi (t) =
∫ t+ω

t
Gi (t, v)qi (xi (v))Fi (v, γ )dv > 0,

i = 1, 2, . . . , n. (7.7)

Thus, for t � v � t + ω and x ∈ R ∩ P, we have

0 < yi (t) � Gi

∫ t+ω

t
qi (xi (v))Fi (v, γ )dv,

which implies

|yi (t)|∞ � Gi

∫ t+ω

t
qi (xi (v))Fi (v, γ )dv,

i = 1, 2, . . . , n.

From (7.7), for t � v � t + ω and x ∈ R ∩ P, we
also have

yi (t) � gi

∫ t+ω

t
qi (xi (v))Fi (v, γ )dv

� gi
Gi

|yi (t)|∞ � κi |yi (t)|∞, i = 1, 2, . . . , n.

Therefore, for any x ∈ R ∩ P and y ∈ ϕ(x), we have
y ∈ P. That is, ϕ(x) ∈ P for every fixed x ∈ P, i.e.,
ϕ : R ∩ P → P.

Next, we prove that ϕ(x) is convex for each x ∈
R ∩ P. In fact, for any x = (x1, x2, . . . , xn)T , if y =
(y1, y2, . . . , yn)T , z = (z1, z2, . . . , zn)T ∈ ϕ(x), then

there exist γ = (γ1, γ2, . . . , γn)
T : [0, T ) → R

n and
η = (η1, η2, . . . , ηn)

T : [0, T ) → R
n with γi (t) ∈

co[ fi (xi (t))] and ηi (t) ∈ co[ fi (xi (t))] for a.e. t ∈
[0, T ), such that for each t ∈ [0, T ) we have

yi (t) =
∫ t+ω

t
Gi (t, v)qi (xi (v))Fi (v, γ )dv,

i = 1, 2, . . . , n,

and

zi (t) =
∫ t+ω

t
Gi (t, v)qi (xi (v))Fi (v, η)dv,

i = 1, 2, . . . , n.

Let 0 � α � 1. Then for each t ∈ [0, ω] we have

[αyi (t) + (1 − α)zi (t)] =
∫ t+ω

t
Gi (t, v)qi (xi (v))

Fi (v, αγ + (1 − α)η)dv

∈
∫ t+ω

t
Gi (t, v)qi (xi (v))Fi (v, f )dv,

that is

[αyi (t) + (1 − α)zi (t)] ∈ ϕi (x)(t), i = 1, 2, . . . , n.

Hence,

[αy(t) + (1 − α)z(t)] ∈ ϕ(x).

Finally, it is easy to see thatϕ(x) is closed. The proof
of Lemma 3.2 is completed.

7.4 Appendix D. Proof of Lemma 3.3

It is enough to show that ϕ : R ∩ P → Pkc(P)

is a compact map. According to the Ascoli-Arzela
Theorem, it suffices to show that ϕ(R ∩ P) is
an uniformly bounded and equi-continuous set. For
any x = (x1, x2, . . . , xn)T ∈ R ∩ P and y =
(y1, y2, . . . , yn)T ∈ ϕ(x). There exists a measur-
able function γ = (γ1, γ2, . . . , γn)

T : [0, T ) →
R
n such that γi (t) ∈ co[ fi (xi (t))] with |γi (t)| �

max0�s�R{Wi (s)} (i = 1, 2, . . . , n) for a.e. t ∈ [0, T )

and

yi (t) =
∫ t+ω

t
Gi (t, v)qi (xi (v))Fi (v, γ )dv > 0,

i = 1, 2, . . . , n.
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Hence

|yi (t)|∞ � Giq
M
i

∫ t+ω

t
Fi (v, γ )dv

� Giq
M
i ω

⎡
⎣

n∑
j=1

(aMi j + bMi j + cMi j )

(
max

0�s�R
{Wi (s)} + ||ψ ||∞

)
+ I Mi

]
,

i = 1, 2, . . . , n,

where ||ψ ||∞ = ess sups∈(−∞,0] |ψ(s)|. Which yields

||y||X � max
1�i�n⎧⎨

⎩Giq
M
i ω

⎡
⎣

n∑
j=1

(
aMi j + bMi j + cMi j

) (
max

0�s�R
{Wi (s)}

+||ψ ||∞) + I Mi

]}
,

∀x ∈ R ∩ P.

Thus, ϕ(R ∩ P) is an uniformly bounded set for all
x ∈ R ∩ P.

Let t1, t2 ∈ [0, ω], then for any x ∈ R ∩ P and
each i = 1, 2, . . . , n, we have

|yi (t1)−yi (t2)|=|
∫ t1+ω

t1
Gi (t1, v)qi (xi (v))Fi (v, γ )dv

−
∫ t2+ω

t2
Gi (t2, v)qi (xi (v))Fi (v, γ )dv|

�
∣∣∣∣
∫ t1+ω

t1
Gi (t1, v)qi (xi (v))Fi (v, γ )dv

−
∫ t1+ω

t1
Gi (t2, v)qi (xi (v))Fi (v, γ )dv

∣∣∣∣

+
∣∣∣∣
∫ t1+ω

t1
Gi (t2, v)qi (xi (v))Fi (v, γ )dv

−
∫ t2+ω

t2
Gi (t2, v)qi (xi (v))Fi (v, γ )dv

∣∣∣∣

=
∣∣∣∣
∫ t1+ω

t1
[Gi (t1, v) − Gi (t2, v)]

× qi (xi (v))Fi (v, γ )dv

∣∣∣∣

+
∣∣∣∣
∫ t2

t1
Gi (t2, v)qi (xi (v))Fi (v, γ )dv

| + |
∫ t2+ω

t1+ω

Gi (t2, v)qi (xi (v))Fi (v, γ )dv

∣∣∣∣ .

According to the mean value theorem of derivations,
we obtain

|Gi (t1, v) − Gi (t2, v)| = |Gi (t1 + λ(t2 − t1), v)

× qi (xi (t1+λ(t2−t1)))di (t1+λ(t2−t1))||t2−t1|
� Giq

M
i dM

i |t2 − t1|,

where 0 < λ < 1. And

∣∣∣∣
∫ t2

t1
Gi (t2, v)qi (xi (v))Fi (v, γ )dv

∣∣∣∣

� Giq
M
i

⎡
⎣

n∑
j=1

(
aMi j + bMi j + cMi j

) (
max

0�s�R
{Wi (s)}

+ ||ψ ||∞) + I Mi

]
|t2 − t1|,

∣∣∣∣
∫ t2+ω

t1+ω

Gi (t2, v)qi (xi (v))Fi (v, γ )dv

∣∣∣∣

� Giq
M
i

⎡
⎣

n∑
j=1

(
aMi j + bMi j + cMi j

)

×
(

max
0�s�R

{Wi (s)} + ||ψ ||∞
)

+ I Mi

]
|t2 − t1|.

Hence

|yi (t1) − yi (t2)| � Mi |t2 − t1|,

where Mi = GiqM
i (qM

i dM
i + 2)[∑n

j=1(a
M
i j + bMi j +

cMi j )(max0�s�R{Wi (s)} + ||ψ ||∞) + I Mi ].
As a result we have that

||y(t1) − y2(t2)||X � max
1�i�n

{Mi }|t2 − t1|→0ast2→t1.

Hence, ϕ(R ∩ P) is an equi-continuous set in X .
Therefore, the multi-valued map ϕ : R ∩ P →

Pcp,cv(P) is a k-set-contractive map with k = 0.

7.5 Appendix E. Proof of Lemma 3.4

We will show that ϕ has closed graph. Denote

�(t, x) = (q1(x1(t))F1(t, f ), q2(x2(t))

F2(t, f ), . . . , qn(xn(t))Fn(t, f ))T .

Let |||�(t, x)||| = sup{|u| : u ∈ �(t, x)} and
L1([0, ω], R

n) be the Banach space of all functions
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u = (u1, u2, . . . , un)T : [0, ω] → R
n which are

Lebesgue integrable. Define the multi-valued operator

F = (F1, F2, . . . , Fn)
T : X → L1([0, ω], R

n)

by letting

Fi (x) = {ui ∈ L1([0, ω], R) : ui (t) ∈ qi (xi (t))Fi (t, f )

for a.e. t ∈ [0, ω]}, i = 1, 2, · · · , n.

It is easy to show that �(t, x) is a L1-Carathéodory
map and the set F(x) is non-empty for each fixed x ∈
R ∩ P.

Consider the linear continuousoperatorL : L1([0, ω],
R
n) → C([0, ω], R

n),

Lu(t) =
(∫ t+ω

t
G1(t, v)u1(v)dv,

∫ t+ω

t
G2(t, v)u2(v)dv, . . . ,

∫ t+ω

t
Gn(t, v)un(v)dv

)T

, t ∈ [0, ω].

Hence, it follows from Lemma 2.3 that ϕ = L ◦ F is
a closed graph operator. We should be point out that
USC is equivalent to the condition of being a closed
graph multi-valued map when the map has non-empty
compact values, that is to say, we have shown that ϕ is
USC.
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