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Abstract The complex dynamical networks have
attracted increasing attention in various fields. The pre-
vious models investigated are commonly time invari-
ant; however, the complex networks with time-varying
inner coupling are widespread in real world, and their
synchronization problems have been rarely studied.We
introduce a complex dynamical network model with
time-varying inner coupling in this paper. We give the
sufficient condition to achieve the exponential syn-
chronization. The numerical simulation results are pre-
sented to illustrate the effectiveness of the proposed
synchronization criteria.
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1 Introduction

The last decade has witnessed the evolution of complex
dynamical networks in various fields of humanities and
science, such as the biological networks, smart power
grids, information science, secure communization, etc
[1,2]. In complex networks, the elements are modeled
as nodes and the links represent the interaction among
the elements. Complex networks often exhibit complex
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and interesting synchronization behavior [3]; synchro-
nization is essentially a kind of collective behavior and
plays more vital role in real-life systems. The synchro-
nization problems of some fractional-order modified
chaotic systems have been studied and applied in the
field of secure communication, such as digital signa-
ture and message recovery [4], image encryption and
decryption [5] and affine cipher with high-level secu-
rity [6]. In order to exploit the relationship between the
power network model and coupled oscillators, the syn-
chronization problem for the network-reduced model
of a power grid system with non-trivial transfer con-
ductances was presented in [7].

The synchronization problems of complex dynami-
cal networks include the local synchronization, global
synchronization, lag synchronization, exponential syn-
chronization, cluster synchronization, etc. Several cri-
teria on local and global exponential synchronization
were derived in [8] for the proposed delayed network
model with output coupling. The problem of finite-
time generalized function matrix projective lag syn-
chronization between two different coupled dynamical
networks with different dimensions was presented in
[9]; themethodwas based on the double power function
nonlinear feedback control. The exponential synchro-
nization problems for complex dynamical networks
with time-varying coupling delay and sampled data
were considered in [10], and the sampling period was
assumed to be time-varying but bounded. Somepinning
synchronization criteria are established to ensure the
global pinning synchronization of a class of complex
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dynamical networks in [11]. The adaptive projective
synchronization of dynamical network with unknown
topology and with both unknown topology and sys-
tem parameters was considered in [12], respectively,
and the sufficient conditions were obtained by using
Lyapunov stability theory and LaSalle invariance prin-
ciple.

To achieve synchronization in complex dynamical
networks, the nodes should try to synchronize to its
neighbors via a sufficient information exchange among
the interconnections. Various control schemes have
been proposed for the stabilization and synchroniza-
tion of complex dynamical networks, such as adap-
tive control, impulsive control and pinning control,
to name just a few. The generalized function matrix
projective lag synchronization of uncertain complex
dynamical networks via adaptive control was inves-
tigated in [13]; the adaptive controller was obtained
based on Lyapunov stability theory. By constructing
appropriate Lyapunov functions, several adaptive feed-
back synchronization criteria are derived in [14] for
achieving globally exponentially asymptotic synchro-
nization. The globally exponential synchronization of
the delayed complex dynamical networks was studied
in [15] by using concept of “average impulsive inter-
val”; the networks were subject to impulsive topology
and stochastic perturbations. The impulsive distributed
control was designed to achieve the exponential syn-
chronization of complex dynamical networks with sys-
tem delay and coupling delays in [16], and the suffi-
cient conditions for global exponential synchronization
were derived. Pinning control can reduce the number of
controllers and improve control efficiency. The adap-
tive pinning synchronization in complex networks with
non-delay and variable couplings was investigated in
[17].

However, many real-world networks, particularly
biological networks, are not static but more likely to
be time-varying evolving. A robust adaptive synchro-
nization approach based on LaSalle–Yoshizawa theo-
remwas proposed in [18], and the couplingmatrixwere
unknownbut only a time-varying coupling strengthwas
used. The stability of synchronized state of dynam-
ical complex networks with time-varying couplings,
which were not restricted to the symmetric and irre-
ducible connections or the non-negative off-diagonal
links, was presented in [19]. The above works mainly
focus on the network with time invariant inner cou-
pling, the synchronization results of complex networks

with time-varying inner coupling are seriously lack-
ing; this is our main contribution in this paper. The
[20] is about the time-varying inner coupling matrix
case, however, the requirement on the coupling matrix
is about every instant; and cannot be zero at any instant,
meanwhile, the vector-valued function in the dynam-
ical system model must be differentiable. The system
models considered in ourwork contain ones that cannot
be handled by the existing similar works.

The rest of this work is organized as follows. Some
graph theory andmathematical preliminary knowledge
are given in Sect. 2. In Sect. 3, we give the problem
description and our objective. This is followed by our
main results in Sect. 4 where we give the theoretical
analysis of exponential synchronization for such a net-
workwith time-varying inner coupling.Numerical sim-
ulations are shown in Sect. 5. The conclusion is finally
drawn in Sect. 6.

2 Graph theory and mathematical preliminary

In this section, we give some graph theory and mathe-
matical preliminary knowledge which will be used in
the later analysis, the interested readers can refer to [21]
for more details.

Some basic concepts and results from algebraic
graph theory are introduced here. For a system of n
connected agents, its network topology can be mod-
eled as a digraph defined as a pair G = (V, E), where
V = {v1, v2, . . . , vn} is a nonempty finite set of nodes
and E ⊆ V × V is an edge set, in which an edge is
represented by an ordered pair of distinct nodes. Note
that G is said to be undirected if (vi , v j ) ∈ E implies
(v j , vi ) ∈ E for arbitrary vi , v j ∈ V . The neighbors of
agent i are denoted by Ni = {v j ∈ V : (v j , vi ) ∈ E},
and v j ∈ Ni means that node i can access the state
information of agent j . A directed path is a sequence of
edges in a directed graph of the form (v1, v2), (v2, v3),
. . ., where vi ∈ V . An undirected path in an undi-
rected graph is defined analogously. A directed path
has a directed spanning tree if there exists at least one
node having a directed path to all other nodes. An undi-
rected graph is connected if there is an undirected path
between every pair of distinct nodes.

The adjacency matrixA = [ai j ] ∈ R
n×n associated

with the graph G is defined such that ai j is a positive
weight if (v j , vi ) ∈ E , and ai j = 0, otherwise. Sup-
pose that each node has no self-edge, i.e., aii = 0.
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The Laplacian matrix L = [li j ] ∈ R
n×n is defined as

follows

li j =
{−ai j , i �= j∑n

j=1, j �=i ai j , i = j

For the undirected graph, bothA and L are symmetric.

Lemma 1 Construct a new matrix

L̃ = (l̃i j )(n−1)×(n−1)

=
⎛
⎜⎝
l22 − l12 · · · l2n − l1n

...
. . .

...

ln2 − l12 · · · lnn − l1n

⎞
⎟⎠ .

(1)

If the graph G has a spanning tree, then we have, for
arbitrary positive definite matrix Q, there exists sym-
metric positive definite matrices P such that

P(−L̃) + (−L̃)TP = −Q. (2)

Proof Let L be the Laplacian matrix of diagraph G, if
there is a spanning tree in G, it follows from [22] that
zero is a simple eigenvalue ofL and all the other eigen-
values have positive real parts. Denote the eigenvalues
of L and L̃ by γ1, γ2, . . . , γn and μ1, μ2, . . . , μn−1,
respectively, where 0 = γ1 ≤ γ2 ≤ · · · ≤ γn and
μ1 ≤ μ2 ≤ · · · ≤ μn−1, then we have μ1 = γ2, μ2 =
γ3, . . . , μn−1 = γn [23]. It is easy to know that the
real parts of eigenvalues of L̃ are strictly positive, so the
set of eigenvalues of matrix −L̃ is Hurwitz. Therefore,
the Lyapunov (2) admits a symmetric positive definite
solution P . ��

Notations Throughout this paper, the following nota-
tions will be used: Let Rm×n be the set of m × n real
matrices. The superscripts “T”means transpose for real
matrices,⊗ denotes theKronecker product ofmatrices,
‖·‖ indicates the Euclidean norm. Im is used to repre-
sent an identity matrix of dimension m. Let λmin(A)

and λmax(A) be the minimal and maximal eigenvalue
of a symmetric square matrix A, respectively.

Lemma 2 [24] The Kronecker product ⊗ has the fol-
lowing properties. For A ∈ R

m×n, B ∈ R
r×s , C ∈

R
n×p, D ∈ R

s×t , we have

(1) (αA) ⊗ B = A ⊗ (αB), where α is a constant;
(2) (A ⊗ B)T = AT ⊗ BT;
(3) (A + B) ⊗ C = A ⊗ C + B ⊗ C;
(4) (A ⊗ B)(C ⊗ D) = (AC) ⊗ (BD).

3 Problem formulation

In this paper, we consider a complex dynamical net-
work consisting of n diffusively coupled identical
nodes with time-varying inner coupling. Each of the
nodes in the network is a m-dimensional dynamical
system, the proposed dynamical network is given by

ẋi (t) = f (xi (t)) + c
∑
j∈Ni

ai jΓ (t)(x j (t) − xi (t)),

i = 1, 2, . . . , n

(3)

where xi (t) = [xi1(t), xi2(t), . . . , xim(t)]T ∈ R
m

are the state variables of node i , c > 0 is the cou-
pling strength, f (xi (t)) = [ f1(xi (t)), f2(xi (t)), . . . ,
fm(xi (t))]T ∈ R

m is a continuous vector-valued func-
tion, [ai j ] ∈ R

n×n is the coupling configuration weight
matrix representing the topological structure of the
complex dynamical network, Γ (t) ∈ R

m×m is the
time-varying inner coupling matrix of each node.

Remark 1 Different from the previous common mod-
els given in references [25], where the inner coupling
matrix was assumed to be time invariant, the time-
varying case is widespread in real world. For example,
the inner coupling of the multiple autonomous under-
water vehicles system maybe time varying due to tem-
perature, density and salinity. The influence of time-
varying inner coupling will be studied in this paper.

Definition 1 The synchronization of complex dynam-
ical network is said to be reached exponentially, if there
exist positive constants κ > 0, � > 0 and T > 0 such
that∥∥xi (t) − x j (t)

∥∥ ≤ κe−� t , i, j = 1, 2, . . . , n

for all t > T , and � is called the convergence rate.

The purpose of this paper is to obtain the sufficient
conditions which guarantee the exponential synchro-
nization of the states of the complex dynamical net-
works with time-varying inner coupling matrix.

4 Main results

The main results on exponential synchronization of the
network (3) are derived in this section. For this pur-
pose, the following assumptions are necessary for the
derivation of the main results.

123



16 X. Fang, W. Chen

Assumption 1 The time-varying inner coupling
matrix Γ (t) is assumed to be persistently exciting
(PE), i.e., there exist two positive constants T and
ε, such that

Γ (t) ≥ γ (t)I,
∫ t+T

t
γ (τ)dτ ≥ ε.

Assumption 2 The nonlinear function f (·) is assumed
to satisfy the global Lipschitz condition, that is, there
exists a constant ρ > 0 such that

‖ f (x) − f (y)‖ ≤ ρ ‖x − y‖ , ∀ x, y ∈ R
m

According to this assumption, the following Lipschitz
conditions hold

‖ f (x2(t)) − f (x1(t))‖ ≤ ρ ‖x2(t) − x1(t)‖ ,

· · ·
‖ f (xn(t)) − f (x1(t))‖ ≤ ρ ‖xn(t) − x1(t)‖ ,

Remark 2 Note that the correspondingdynamical func-
tions of some classical chaotic systems, such as Lorenz
system,Chen system,Lü systemandChua’s circuit sys-
tem, are satisfying the above assumption. The Chua’s
circuit system will be used for simulation in Sect. 5
below.

Now, we can derive the following theorem on expo-
nential synchronization.

Theorem 1 Suppose that the communication topol-
ogy G contains a directed spanning tree and Assump-
tions 1, 2 hold. Then, we can take the coupling strength

c >
2ρλ2max(P)

λmin(P)
· T

ε
, (4)

such that the synchronization of the dynamical network
with time-varying inner coupling can be reached expo-
nentially, with the convergence rate

� = cε

2Tλmax(P)
− ρλmax(P)

λmin(P)
.

Proof Based on Eq. (3), we can define the new vari-
ables x̃i = xi+1 − x1, i = 1, 2, . . . , n − 1, and denote
x̃ = [x̃1, x̃2, . . . , x̃n−1]T, then the system model (3)
can be written more compactly as

˙̃x = F(x̃) − c
(
L̃ ⊗ Γ (t)

)
x̃,

where F(x̃) = [F(x̃1), F(x̃2), . . . , F(x̃n−1)]T,
F(x̃i ) = f (xi+1) − f (x1), then we have ‖F(x̃i )‖ ≤
ρ ‖x̃i‖ by Assumption 2, and L̃ is defined in Eq. (1).

Since there is a directed spanning tree in the topol-
ogy, there must be a P satisfying the Eq. (2), we can
consider the following Lyapunov function candidate

V (t) = x̃T(P ⊗ Im−1)x̃,

Take the derivative of V (t), then we get

V̇ (t) = ˙̃xT(P ⊗ Im−1)x̃ + x̃T(P ⊗ Im−1) ˙̃x
=

[
F(x̃)T − cx̃T

(
L̃ ⊗ Γ (t)

)T]
(P ⊗ Im−1)x̃

+ x̃T(P ⊗ Im−1)
[
F(x̃) − c

(
L̃ ⊗ Γ (t)

)
x̃
]

= F(x̃)T(P ⊗ Im−1)x̃

− cx̃T
(
L̃ ⊗ Γ (t)

)T
(P ⊗ Im−1)x̃

+ x̃T(P ⊗ Im−1)F(x̃)

− cx̃T(P ⊗ Im−1)
(
L̃ ⊗ Γ (t)

)
x̃

= Ψ1(x̃) + Ψ2(x̃),

where

Ψ1(x̃) =F(x̃)T(P ⊗ Im−1)x̃ + x̃T(P ⊗ Im−1)F(x̃),

Ψ2(x̃) = − cx̃T
(
L̃ ⊗ Γ (t)

)T
(P ⊗ Im−1)x̃

− cx̃T(P ⊗ Im−1)
(
L̃ ⊗ Γ (t)

)
x̃ .

Since the two terms in Ψ1(x̃) are scalar numbers,
then

Ψ1(x̃) = 2x̃T(P ⊗ Im−1)F(x̃),

and according to (2), the following inequality can be
obtained

Ψ2(x̃) = − cx̃T
[
(L̃T ⊗ Γ (t)T)(P ⊗ Im−1)

+(P ⊗ Im−1)
(
L̃ ⊗ Γ (t)

)]
x̃

= − cx̃T
[
L̃TP ⊗ Γ (t)T Im−1

+PL̃ ⊗ Im−1Γ (t)
]
x̃

= − cx̃T
[
(L̃TP + PL̃) ⊗ Γ (t)

]
x̃

= − cx̃T(Q ⊗ Γ (t))x̃ .

Then, we yield

V̇ (t) = 2x̃T(P ⊗ Im−1)F(x̃) − cx̃T(Q ⊗ Γ (t))x̃ .
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Synchronization of complex dynamical networks 17

By Assumption 2, one gets

2x̃T(P ⊗ Im−1)F(x̃)

≤ 2
∥∥∥x̃T

∥∥∥ ‖P ⊗ Im−1‖ ‖F(x̃)‖
≤ 2ρλmax(P)

∥∥∥x̃T∥∥∥ ‖x̃‖
= 2ρλmax(P)x̃T x̃,

(5)

by Assumption 1 and Eq. (5), it follows that

V̇ (t) ≤ 2ρλmax(P)x̃T x̃ − cγ (t)x̃T(Q ⊗ Im)x̃,

we choose the arbitrary positive definite matrix Q =
In−1, then

V̇ (t) ≤ 2ρλmax(P)x̃T x̃ − cγ (t)x̃T x̃ .

According to the definition of V (t), it is easy obtain

λmin(P)x̃T x̃ ≤ V (t) ≤ λmax(P)x̃T x̃, (6)

which implies that

V̇ (t) ≤2ρλmax(P)

λmin(P)
V (t) − cγ (t)

λmax(P)
V (t)

= −
[

cγ (t)

λmax(P)
− 2ρλmax(P)

λmin(P)

]
V (t).

by using the Gronwall–Bellman inequality, we have

V (t) ≤ V (t0)e
− ∫ t

t0

[
cγ (τ)

λmax(P)
− 2ρλmax(P)

λmin(P)

]
dτ

,

and let t = t + T , t0 = t , then one gets

V (t + T ) ≤V (t)e
− ∫ t+T

t

[
cγ (τ)

λmax(P)
− 2ρλmax(P)

λmin(P)

]
dτ

≤V (t)e
−

[
cε

λmax(P)
− 2ρλmax(P)T

λmin(P)

]
.

(7)

From (7), if the condition cε
λmax(P)

− 2ρλmax(P)T
λmin(P)

>

0 holds, i.e., c >
2ρλ2max(P)

λmin(P)
· T

ε
, and denote σ =

e
−

[
cε

λmax(P)
− 2ρλmax(P)T

λmin(P)

]
, it is obvious that σ ∈ (0, 1).

Thus, we have

V (t + T ) ≤ σV (t), σ ∈ (0, 1).

Then defining η = − ln σ
T ≥ 1−σ

T [26], it is straight-
forward to show that

V (t) ≤ V (t0)e
−η(t−t0),

By Eq. (6), we have

x̃(t)T x̃(t) ≤ V (t0)

λmin(P)
e−η(t−t0).

Finally, it is readily seen that

‖x̃(t)‖ ≤ Me− η
2 (t−t0),

with M =
√

V (t0)
λmin(P)

> 0, which means that the syn-
chronization of the complex dynamical network can be
achieved exponentially with convergence rate η

2 . The
proof is thus completed. ��
Remark 3 The condition (4) obtained in Theorem 1 is
just the sufficient but not necessary condition, i.e., the
synchronization of the nonlinear dynamical system can
be achieved under some coupling strength c which are
not satisfy (4). We will illustrate this property in the
following simulations.

5 Numerical simulations

In this section, numerical simulations are presented to
verify the effectiveness and feasibility of the exponen-
tial synchronization proposed in previous section. Con-
sider the information interactive networkwith the com-
munication graph G given in Fig. 1 with 6 nodes. There
is a directed spanning tree in the network, and the state
variables of i th node are xi j , where i = 1, 2, . . . , 6,
j = 1, 2, 3, that is, n = 6, m = 3. The initial con-
ditions of each nodes are randomly generated in the
interval [−20, 20].

In simulations, each node on the considered network
is assumed to be a Chua’s circuit, which is often taken
in literature as a paradigm for chaos and for study-
ing synchronization [27,28]. Then, the individual node
dynamics are described by

ẋi =
⎡
⎣α(−xi1 + xi2 − ϕ(xi1))

xi1 − xi2 + xi3
−βxi2

⎤
⎦ ,

with a nonlinear characteristic ϕ(xi1) of Chua’s diode
given by

ϕ(xi1) = bxi1 + 1

2
(a − b) (|xi1 + c| − |xi1 − c|) ,

and parameters α = 10, β = 18, a = −4/3, b = −3/4
and c = 1.With these parameters, the system produces
the double-scroll chaotic attractor. From [29], we know
that Assumption 2 holds for ρ = 4.3871.

From the interactive network Fig. 1, we can obtain
the Laplacian matrix L and the corresponding L̃ of the
network as follows

123
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Fig. 1 The information interactive network

L =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 −1
−1 1 0 0 0 0
0 −1 1 0 0 0
0 0 −1 1 0 0
0 0 0 −1 1 0
0 0 0 0 −1 1

⎤
⎥⎥⎥⎥⎥⎥⎦

L̃ =

⎡
⎢⎢⎢⎢⎣

1 0 0 0 1
−1 1 0 0 1
0 −1 1 0 1
0 0 −1 1 1
0 0 0 −1 2

⎤
⎥⎥⎥⎥⎦

Sincematrix Q in (2) is arbitrary,we choose Q = I5,
we can obtain the eigenvalues of the symmetric positive
definite matrix P are

λ = {0.2226, 0.2929, 0.3944, 0.9802, 1.8631},
the smallest and largest eigenvalue are λmin(P) =
0.2226, λmax(P) = 1.8631, respectively.

The time-varying inner coupling matrix Γ (t) was
chosen as

Γ (t) =
⎡
⎣ sin2(t) 0 0

0 sin2(t) 0
0 0 sin2(t)

⎤
⎦ ≥ sin2(t)I3

and∫ t+2π

t
sin2(τ )dτ = π

then, we can choose ε = π .
From the above calculations, we can obtain the cou-

pling strength

c = 2 × 4.3871 × 1.86312 × 2π

0.2226 × π
= 273.6432.

Since (4) is just the sufficient condition, we provide
three different simulations with the coupling strength:
(1) c = 300, condition (4) holds and the synchro-
nization can be achieved. (2) c = 30, condition (4)
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Fig. 2 The evolution of states xi j (t), i = 1, 2, . . . , 8, j =
1, 2, 3, c = 300
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Fig. 3 The evolution of errors e j (t), j = 1, 2, 3, c = 300

is not hold but the synchronization can be achieved. (3)
c = 0.3, condition (4) is not hold and the synchroniza-
tion cannot be achieved.

Figures 2, 5 and 8 show the evolution of all the
nodes states xi1(t), xi2(t) and xi3(t), where i =
1, 2, . . . , 6. Figures 3, 6 and 9 are the evolution of
errors, e j (t) = xi j (t) − x1 j (t), where j = 1, 2, 3.
The evolution of errors norm are shown in Figs. 4, 7

and 10, E j (t) =
√∑

k∈N1

∥∥xk j (t) − x1 j (t)
∥∥. It shows

that, when c = 300 and c = 30, all the synchro-
nization errors of the complex dynamical network do
globally exponentially converge to zero, i.e., the syn-
chronous solution is exponentially stable for network
(3), while for c = 0.3, the synchronization cannot be
achieved.
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Fig. 4 The evolution of errors norm E j (t), j = 1, 2, 3, c = 300
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Fig. 5 The evolution of states xi j (t), i = 1, 2, . . . , 8, j =
1, 2, 3, c = 30
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Fig. 6 The evolution of errors e j (t), j = 1, 2, 3, c = 30
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Fig. 7 The evolution of errors norm E j (t), j = 1, 2, 3, c = 30
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Fig. 8 The evolution of states xi j (t), i = 1, 2, . . . , 8, j =
1, 2, 3, c = 0.3
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Fig. 9 The evolution of errors e j (t), j = 1, 2, 3, c = 0.3
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Fig. 10 The evolution of errors norm E j (t), j = 1, 2, 3, c = 0.3

6 Conclusions

The exponential synchronization problem of the com-
plex dynamical networks with time-varying inner cou-
pling matrix is studied in this paper; the sufficient con-
dition is presented based on the graph theory, matrix
theory and Lyapunov method. Since (4) is just suffi-
cient condition, we want to give a more compact con-
dition in the future, and to extend the research to the
second-order cases.
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