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Abstract We explore the quasi-periodic (QP) vibra-
tions in a delayed Duffing equation submitted to peri-
odic forcing. The second-step perturbation method is
applied on the slow flow of the oscillator to derive the
slow–slow flow near the primary resonance. The QP
solution corresponding to the nontrivial equilibrium of
the slow–slow flow as well as its modulation envelope
is predicted analytically. The influence of different sys-
tem parameters on the QP response is reported and
discussed. The analytical results show that for weak
nonlinearity and small damping large-amplitude QP
vibration induced by destabilization of limit cycle via
Neimark–Sacker bifurcation occurs in a broadband of
the excitation frequency and in large range of delay
parameters.

Keywords Quasi-periodic response · Duffing
oscillator · Time delay · Perturbation analysis

1 Introduction

The dynamics and stability analysis of the delayed
Duffing oscillator under periodic forcing has been stud-
ied by several authors. Hu et al. [1] considered such
an oscillator when the delay is present in the position
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and velocity and investigated analytically the dynamics
near the primary and the 1:3 subharmonic resonances
using the multiple scales method. In [2,3], the delayed
forced Duffing oscillator has been revisited near the
primary resonance and the focus was directed toward
analyzing analytically the effect of delay parameters
on the periodic response in the region where it is sta-
ble. Instead, in the region where the periodic solutions
turn to unstable via Neimark-Sacker bifurcation giv-
ing rise to QP vibrations, only numerical simulation
was performed to approximate the location of the QP
modulation envelope in the frequency response domain
[4]. Usually, the investigation of the QP oscillations
present in such a problem is generally ignored or just
reported numerically for certain fixed parameters [5,6].
However, in forced nonlinear oscillators under time
delay, the interaction between the forcing and the time
delay induces not only periodic oscillations, but also
QP vibrations covering a broadband of the excitation
frequency around the resonance [7]. Likewise, it was
shown in certain circumstances that the amplitude of
the QP response can be of the same order of magni-
tude as that of the periodic response and it may even be
larger, as reported analytically [8,9] and numerically
[4].

Therefore, in order to perform a comprehensive ana-
lytical study in the problems of forced oscillators under
time delay, as in the delayed forced Duffing oscilla-
tor under consideration, the QP response should not
be ignored. Instead, it must be systematically consid-
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ered and analyzed, as naturally done for the periodic
response near the resonance. The analytical investiga-
tion can be performed by applying the second-step per-
turbation method (on the slow flow) developed first in
[10] and applied successfully to different two-period
QP systems [7–9,11,12].

It is worth noticing that in the case of three-period
QP systemswhere the slowflow is time-dependant hav-
ing two different frequencies, it is possible to approxi-
mate the QP solutions of the slow flow corresponding
to three-period QP oscillations of the original oscillator
using a third-step perturbation on the slow–slow flow
[13].

In the present paper, we report on the analytical
investigation of the QP response of the delayed forced
Duffing oscillator using the second-step perturbation
method [10]. To this end, we consider the following
forced delayed Duffing oscillator

ẍ(t) + δ ẋ(t) + ω2
0x(t) + γ x(t)3

= αx(t − τ) + f cos(λt) (1)

keeping, for convenience, the same parameters and the
same notations as in [4]. Here, the dot denotes differ-
entiation with respect to the nondimensional time t , δ
is a viscous damping coefficient, γ is a small coeffi-
cient representing nonlinear stiffness, ω0 is the natural
frequency of the system, α is the delay amplitude, f
is the amplitude of the excitation, λ is the excitation
frequency and τ is the time delay.

Because we focus our attention on the QP solutions,
we shall approximate directly the periodic solutions
of the slow flow equations obtained near the primary
resonance [4] using the multiple scales method [14].
The second-step perturbation method is then applied
on the slow flow system to extract the slow–slow flow
for which the nontrivial equilibrium corresponds pre-
cisely to the QP response of the original equation (1).
Next, the slow–slow flow is determined and the influ-
ence of various parameters on the QP vibration and its
modulation envelope is examined.

2 The slow–slow flow

The modulation equations of the forced Duffing oscil-
lator with time delay in the position given by Eq. (1)
were obtained near the primary resonance [4], i.e.,
λ = ω0 + εσ , where σ is a detuning parameter. Up
to the second order, this slow flow is given by

⎧
⎪⎪⎨

⎪⎪⎩

ȧ = S1a − 3S3a
2 sin(φ) + S4a

3

+β1 sin(φ) + β2 cos(φ)

aφ̇ = S2a − S3a
2 cos(φ) + S5a

3 + S6a
5

+β1 cos(φ) − β2 sin(φ)

(2)

where a and φ are, respectively, the amplitude and the
phase of the response, while

S1 = −1

2
δ − 1

2
α sin(τ ) − 1

4
α2 cos(τ ) sin(τ )

S2 = λ − ω0 + 1

8
δ2 + 1

2
α cos(τ ) + 1

8
α2 cos2(τ )

−1

8
α2 sin2(τ )

S3 = 3

32
γ f

S4 = 3

16
γ δ + 3

8
αγ sin(τ )

S5 = −3

8
γ − 3

16
αγ cos(τ )

S6 = 15

256
γ 2

β1 = 1

2
f + 1

8
α f cos(τ )

β2 = 1

8
δ f − 1

8
α f sin(τ )

Equilibria of the slow flow (2) corresponding to peri-
odic solutions of the original system (1) were exam-
ined in [4]. Here, we study the periodic solutions of
the slow flow (2) corresponding to QP responses of (1)
and we analyze the influence of different parameters
on the QP response. This can be done by transforming
the modulation equations from the polar form (2) to the
following Cartesian system using the variable change
u = a cosφ and v = −a sin φ

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

du

dt
= S2v + β2 + η{S1u + 2S3uv

+ (S4u + S5v)(u2 + v2) + S6(u2 + v2)2v}
dv

dt
= −S2u − β1 + η{S1v + S3v

2 + S3(u
2 + v2)

+ (S4u − S5v)(u2 + v2) − S6(u2 + v2)2u}
(3)

where η is a bookkeeping parameter introduced in
damping and nonlinearity so that the unperturbed sys-
tem of Eq. (3) admits a basic solution. Following [9–
12], a periodic solution of the slow flow (3) can be
sought in the form

123



On the quasi-periodic response 2071

u(t) = u0(T1, T2) + ηu1(T1, T2) + O(η2)

v(t) = v0(T1, T2) + ηv1(T1, T2) + O(η2) (4)

where T1 = t and T2 = ηt . Introducing Di = ∂
∂Ti

yields d
dt = D1 + ηD2 + O(η2), and substituting (15)

into (3) and collecting terms, one obtains up to the first
order of η

D2
1u0 + ν2u0 = −β1S2

S2v0 = D1u0 − β2 (5)

D2
1u1 + ν2u1 = S2[−D2v0 + S1v0

+ S3v
2
0 + S3(u

2
0 + v20)

+ (S4v0 − S5u0)(u
2
0 + v20)

− S6(u
2
0 + v20)

2u0] − D1D2u0

+ S1D1u0 + D1[2S3u0v0
+ (S4u0 + S5v0)(u

2
0 + v20)

+ S6(u
2
0 + v20)

2v0] (6)

S2v1 = D1u1 + D2u0 − [S1u0 + 2S3u0v0

+ (S4u0 + S5v0)(u
2
0 + v20)

+ S6(u
2
0 + v20)

2v0] (7)

where ν (= S2) is the frequency of slowflow limit cycle
corresponding to the frequency of the QP response. It
is interesting to point out that the frequency of themod-
ulation ν depends on the delay parameters, the natural
frequency, ω0, the frequency of the excitation, λ, and
damping, δ, but it does not depend on the excitation
amplitude f (at least up to the leading order).

The solution at the zero-order system (5) can bewrit-
ten as

u0(T1, T2) = R(T2) cos(S2T1 + θ(T2)) − α1

v0(T1, T2) = −R(T2) sin(S2T1 + θ(T2)) − α2 (8)

where α1 = β1
S2
, α2 = β2

S2
and R and θ are, respectively,

the amplitude and the phase of the slowflow limit cycle.
Substituting (8) into (6) and removing secular terms
give the following autonomous slow–slow flow system
on R and θ

dR

dt
= S4R

3 + (
S1 − α2S3 + 2α2

1S4 + 2α2
2S4

)
R

R
dθ

dt
= S6R

5 + (
S5 + 6(α2

1 + α2
2)S6

)
R3

+ (
(2α2

1 + 2α2
2)S5 + (3α4

1 + 3α4
2

+ 6α2
1α

2
2)S6

)
R (9)

Equilibria of this slow–slow flow determine the QP
solutions of the original equation (1). In addition to the
trivial equilibrium, R = 0, the nontrivial equilibrium
is obtained by setting dR

dt = 0 and given by

R =
√

−S1 + α2S3 − 2α2
1S4 − 2α2

2S4
S4

(10)

Thus, the approximate periodic solution of the slow
flow (3) is given by

u(t) = R cos(φt) − α1

v(t) = −R sin(φt) − α2 (11)

and using (11), the approximate amplitude a(t) of the
QP oscillations reads

(a) (b)

Fig. 1 Variation of the QP modulation frequency versus a α, b τ for λ = 0.6. (Color figure online)
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Fig. 2 Time histories for different values of f for λ = 1.6, α = 0.5, τ = 4.8
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Fig. 3 Periodic and QP frequency responses for τ = 4.8 and different values of α. Analytical prediction (black lines for stable and
blue lines for unstable) and numerical simulation (circles). (Color figure online)
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Fig. 4 Variation of the QP envelope versus τ for λ = 0.8. (Color figure online)
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Fig. 5 Variation of the QP envelope versus τ during one period
of time delay for λ = 0.8 and α = 0.4. (Color figure online)

a(t) =
√[

R2 + α2
1 + α2

2 ] −
[
2α1R cos(φt) − 2α2R sin(φt)

]

(12)

while themodulation envelope is delimited by amin and
amax given by

amin = min
{√

[R2 + α2
1 + α2

2] ±
[
2α1R ± 2α2R]

}

(13)

amax = max
{√

[R2 + α2
1 + α2

2] ±
[
2α1R ± 2α2R]

}

(14)

In what follows, we fix the parameters as ω0 = 1,
δ = 0.1, γ = 0.25 and f = 0.2, unless their variation
is indicated. Figure 1a shows, for two different values
of τ , the variation of the frequency of the QP modula-

tion, ν, as a function of the delay amplitude α. It can
be observed that the frequency of the QP modulation
increases with increasing α for both values of τ . Figure
1b presents for two values of α the variation of the QP
modulation frequency ν with respect to τ . The figure
shows that for α = 0.3 the frequency of the QP modu-
lation oscillates in a small range around a mean value,
while it oscillates in a larger range for increasing α.

It was pointed out above that, up to the leading order,
the frequency of the modulation ν (= S2) does not
depend on the excitation frequency f which can be
considered as a limitation of the approximation. Indeed,
numerical simulations given by time histories shown in
Fig. 2a for f = 0.6 and in Fig. 2b for f = 0.8 indicate
clearly the dependence of the modulation frequency ν

on the excitation amplitude f . Such a limitation in the
approximation of the slow flow (2) deserves to be over-
come by pushing the approximation up to the second
order.

Figure 3 presents the periodic frequency response
[4] and the QP modulation envelope as given by Eqs.
(13) and (14). The comparison between the analytical
predictions (solid lines) and the numerical simulations
of theQPenvelopeobtainedbyusingdde(23) algorithm
[15] (double circles) shows that the analytical results
predict well the envelope of the QP modulation. It can
be observed that increasing the delay amplitude α, the
frequency response turns to linear and decreases drasti-
cally, while the amplitude of the QP response increases
as shown in Fig. 3b. This result indicates that in practi-
cal applications, as in turning and milling process, try-
ing to quench periodic vibrations by tuning the delay
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Fig. 6 Periodic and QP responses versus � for λ = 0.9. Analytical prediction (black lines for stable and blue lines for unstable) and
numerical simulation (circles). (Color figure online)
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Fig. 7 Variation of the QP envelope versus α for τ = 4.8. (Color figure online)
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Fig. 8 Variation of the QP envelope versus f for τ = 4.8. (Color figure online)

amplitude, it is very likely that dangerous QP vibra-
tions with large amplitudes can occur in the vicinity of
the resonance.

The variation of the response amplitude as a function
of the timedelay is depicted inFig. 4 for fixed frequency
excitationλ and two different values of the delay ampli-
tude α (α = 0.2, Fig. 4a; α = 0.4, Fig. 4b). One
observes the alternate QPmodulation envelopes delim-
ited by amax and amin and connected by small regions
of frequency locking. The variation of the amplitude

during one period of time delay is depicted in Fig. 5
for α = 0.4, and time histories are presented inset in
the figure showing the QP response within the modu-
lation region and the frequency-locked response at the
lines connecting the QP envelopes. Note that when τ

is swept forward or backward, strong jumps between
periodic and QP response may occur which can lead to
dangerous situations in some engineering applications.

Figure 6 compares the analytical prediction of the
QP modulation envelope obtained in the present work
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Fig. 9 Variation of the QP envelope versus γ for τ = 4.8. (Color figure online)
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Fig. 10 Variation of the QP envelope versus δ for τ = 4.8. (Color figure online)

(solid lines)with the results obtained by numerical sim-
ulations (circles) in the parameter plane (a,� = 2π

τ
)

[4] showing a good match. It can be seen from this
figure (as in Fig. 5) the alternate characteristic of the
QP response appearing in certain ranges of �, result-
ing from destabilization of the periodic response via
Neimark-Sacker bifurcation.

In Fig. 7a, b, the variation of the QP envelope versus
the delay amplitudeα is presented for two different val-

ues of the excitation frequency, λ = 0.6 and λ = 1.6,
respectively. The plots indicate that for small values of
α, the system response is periodic with small ampli-
tude of oscillation, as shown by time history inset in
the figure. Increasing α, a jump to QP response occurs
at certain threshold.

Figure 8 shows the variation of the QP modulation
envelope versus the excitation amplitude f for two dif-
ferent values of the frequency, λ = 0.8 (Fig. 8a) and
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Fig. 11 Region of existence of stable QP solutions in the plan (α, f ) for τ = 4.8 and a λ = 0.6, b λ = 1.6

λ = 1.6 (Fig. 8b). Inset in the figures, time histories
corresponding to some values of f are presented. It can
be clearly observed that the frequency of modulation
depends on the excitation amplitude f (Fig. 8b). This
result was not predicted analytically up to the leading
order (ν = S2 which is f -independent).

For completeness of the parametric study, the vari-
ation of the QP modulation envelope as a function of
nonlinearity and damping is illustrated in Figs. 9 and
10, respectively, for two different values of the exci-
tation frequency (Fig. 9) and α (Fig. 10). Inspection

of Fig. 9 shows that the amplitude of the QP vibra-
tions decreases with increasing the nonlinearity. It can
also be observed from Fig. 10 that the amplitude of
the QP vibrations decreases with damping and can be
suppressed at a certain threshold of damping. This sup-
pression onset can be retarded by increasing the delay
amplitude α.

Finally, we examine the stability and bifurcation
of the QP solutions by calculating the eigenvalues of
the Jacobian matrix of system (9). Thus, the region of
existence of stable QP oscillations is delimited by the
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curves given by the conditions

−S1 + α2S3− 2α2
1S4− 2α2

2S4 < 0

S4 < 0 (15)

Figure 11a-left shows in the parameter plane (α, f )
the regions where stable QP solutions exist, as given
by the conditions (15) (green region), while Fig. 11a-
right presents time histories corresponding to three val-
ues picked at the crosses labeled 1, 2 and 5. It can be
observed that the stable QP response exists in a wide
region beyond certain critical values of α. Figure 11b
illustrates similar results but for a different value of λ.
In Fig. 11b-right is shown time histories corresponding
to values picked at crosses labeled 3, 4 and 6.

3 Conclusion

The QP response of a delayed forced Duffing oscil-
lator was studied analytically near the primary res-
onance. The seconde-step perturbation method was
applied directly on the slow flow to derive the slow–
slow flow. The QP solution, given by the nontrivial
equilibrium of the slow–slow flow, as well as its modu-
lation envelope is predicted analytically. Note that the
method has not captured the dependence of the mod-
ulation frequency of the QP solution on the amplitude
of excitation (at least up to the leading order). The
influence of the delay and forcing parameters on the
QP solution was examined. The results show that in
a weakly nonlinear delayed forced Duffing oscillator
with small damping, stable large-amplitude QP vibra-
tions exist in certain ranges of the excitation and delay
parameters. These QP oscillations may persist even for
certain values of delay parameters that decrease the
amplitude of the periodic response.

It can be concluded from the present work that
to conduct a comprehensive study on the vibration
problems in delayed systems under periodic forcing,
QP solutions should not be ignored. The existence of
large-amplitude QP vibrations in broadband of delay
and forcing parameters requires taking into consider-
ation systematically such QP behavior. For instance,
in the problem of turning and milling process, which
can be modeled by a delayed forced Duffing oscilla-
tor, besides the undesirable regenerative effect (self-

sustained vibration), large-amplitude QP vibrations
may also appear in the system. The intuition that
emerges from this study is that such a QP modula-
tion response with a controlled frequency modulation
present in the system may be exploited to manufacture
circular tools with modulated surfaces.

The present work shows once more the effective-
ness of the second-step perturbation method to capture
analytically the QP response and its modulation enve-
lope in systems exhibiting such a behavior. It is wor-
thy to notice that to capture the analytical dependence
of the modulation frequency of the QP response on
the amplitude of the excitation, the second-step pertur-
bation method should be performed to a higher-order
approximation.
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