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Abstract This paper is concerned with exponentially
projective and lag synchronization between general
complex networks via impulsive control. Presented
general complex networks are uncertain with time-
varying delays in both coupled and uncoupled terms.
Different dynamics for each node is taken into account
in order to cover the practical needs. Based on the
impulsive control theory, the global exponential syn-
chronization of complex networks is analyzed and
some new sufficient conditions are derived. Moreover,
two numerical examples are presented to demonstrate
the effectiveness of the proposed method, first one
is devoted to synchronization of networks with self-
excited attractor and second one is for networks with
hidden attractor.
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1 Introduction

Over the past decade, complex networks have gained
extensive attention from various fields of engineering
and applications, including social networks, biological
systems and global economic markets [1,2]. Synchro-
nization of complex networks is one of the most impor-
tant issues in this field. Recently, large variety of theo-
retical methods are presented for synchronizing com-
plex networks and dynamics such as adaptive control
[3–5], time delay feedback control [6] and sampled data
[7]. More recently, impulsive control theory and pin-
ning control have received increasingly attention due
to their efficiency in synchronization of complex net-
works and networks of networks [8–12]. In [13,14],
it has been shown that sampled-data systems can be
modeled by impulsive systems.

Impulsive control theory is a discrete method based
on impulsive differential equation, and there is a
tendency of synchronizing complex networks with
it. It is one of the most efficient methods of syn-
chronizing nonlinear dynamics and complex networks
with uncertainty. In this method, response network
receives small impulses from drive network in discrete
impulse instants, which considerably lowers the band-
width needed for transmitting data. This is the out-
standing attribute of impulsive control method, which
distinguishes it over other methods. This property
reduces the transmitted information intensively and
increases robustness of network against disturbances
[15,16].
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In the literature, “synchronization of complex net-
works” refers to two concepts: inner and outer synchro-
nization. The majority of recent works are focused on
inner synchronization, which concerns with synchro-
nization of nodes with each others [17,18]. The outer
synchronization refers to the synchronization of two or
more complex networks [19–21], which ismore impor-
tant in real world to be realized.

Projective synchronization is one of the most use-
ful issues in which complex network tracks target net-
work, using a scaling constant in definition of tracking
error. This paper mainly investigates outer projective
and lag synchronization due to their efficient applica-
tions. In addition, projective and lag synchronization
between complex networks with delay in both cou-
pled and uncoupled terms are a challenge, which is
not considered yet. These are considered in the cur-
rent work. Recently, some other methods are used to
achieve synchronization between networks with non-
identical nodes (like [22] and [23]); however, in almost
all of the existing researches which are concerned with
using impulsive criteria as a method for synchroniza-
tion, all nodes of the network are assumed to be iden-
tical ([24–28] to name a few). Here in this paper, dif-
ferent dynamics for each node is considered. This is
more realistic because nodes have different dynamical
behaviors in practical cases [29,30].

Recently, in some chaotic systems hidden attractors
were discovered, and it is shown that the existence of
hidden attractors may complicate the analysis of the
systems and significantly affect the synchronization
[31–33]. One more contribution provided in the cur-
rent work lies in the type of stability (or synchroniza-
tion). Unlike most of reports such as [8] and [25], in
which some sufficient conditions are proposed in order
to prove local synchronization, we have investigated
the problem of globally exponentially stability. This
paper is organized as follows: in Sect. 2, some prelim-
inaries and the complex dynamical network model are
presented. Section 3 has two parts, first part is devoted
to the projective synchronization of the presented net-
works and second one is devoted to lag synchroniza-
tion. For this, some new sufficient conditions based on
impulsive control theory are derived. In Sect. 4, the
effectiveness of results is illustrated via simulation on
complexnetworks composedof chaoticLur’e andChua
systems. In this Sect. 2 examples are considered: in first
one, Chua system has been considered with parameters
that lead to existence of self-excited attractor in it, and

in second one, we have considered Lur’e system’s para-
meters in a way that hidden attractor appears. Some
conclusions are drawn in Sect. 5.

2 Preliminaries and model description

In this paper, we consider a complex dynamical net-
work with N nodes. Each node is n-dimensional
dynamic system composed of linear and nonlinear
terms with multiple time-varying delays and uncertain-
ties. The state equation of the drive network is described
by the following differential equation

ẋi = (Ai + �Ai )xi (t) + fi (t, xi (t), xi (t − r1(t)),

. . . , xi (t − rm(t)))

+� fi (t, xi (t), xi (t − r1(t)), . . . , xi (t − rm(t)))

+
N∑

j=1, j �=i

gi j (t, x j (t), x j (t − r1(t)), . . . ,

x j (t − rm(t))) (1)

and the corresponding response network dynamic is
given by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

˙̃xi = (
Ai + �A′

i

)
x̃i (t)

+ fi (t, x̃i (t) , x̃i (t − r1 (t)) , . . . , x̃i (t − rm (t)))

+� f ′
i (t, x̃i (t) , x̃i (t − r1 (t)) , . . . , x̃i (t − rm (t)))

+∑N
j=1, j �=i gi j

(
t, x̃ j (t) , x̃ j (t − r1 (t)) , . . . ,

x̃ j (t − rm (t))
)
, t �= tk

�x̃i (t) = Bike
(
t−k
)

, t = tk
x̃i (t) = ∅i (t), − max

1<l<m
τl ≤ t ≤ 0

(2)

where i, j = 1, 2, . . . , N and N is the number
of network nodes. xi = [xi1, xi2, . . . , xin]T , x̃i =[
x̃i1, x̃i2, . . . , x̃in

]T ∈ Rn are the vectors of state
variables of the i th node, �Ai ,�A′

i ∈ R
n×n rep-

resent uncertainties in the linear parts and � fi =
[� fi1,� fi2, . . . ,� fin], � f ′

i = [
� f ′

i1,� f ′
i2, . . . ,

� f ′
in

] : R
n → R

n represent uncertainties in the non-
linear parts of the drive and response network systems,
respectively.

fi= [ fi1, fi2, . . . , fin] , gi j=
[
gi j1, gi j2, . . . , gi jn

] :
R
n → R

n and Ai ∈ R
n×n are constant functions and

matrices. The time delays ri may be unknown and time-
varying but assumed to be bounded by known con-
stant, i.e., 0 ≤ rl (t) ≤ τl , (τl are positive constants).
�x̃i

(
t+
) = limt→t+k

x̃i (t) .limh→0+ x (tk + h) =
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x̃
(
t+k
) = x̃

(
t−k
)
and limh→0+ x̃ (tk − h) = x̃ (tk)

imply that x̃ (t) is right continuous at t = tk . Thus,
by considering equation (1),(2) and x

(
t+k
) = x

(
t−k
)

the error network can be obtained as follows.

Remark 1 The time delays being considered in net-
work synchronization could be generated due to the
various reasons. Propagation delay is the one in signal
propagation between nodes within finite time period.
In addition, processing delay, as another type of it, is
caused by intrinsic response delay or processing delay
to external forcing, such as autapse connected to neu-
rons [34,35].

Remark 2 In practice, components of drive and
response complex networks are different. This fact is
considered in just few researches like [36]. Here, it is
considered in presented complex network models (1)
and (2) by taking �A′

i other than �Ai and � f ′
i other

than � fi .

Remark 3 Chaotic signals are considered to be
bounded by a positive constant χ , ‖xi‖ ≤ χ .

Remark 4 It is assumed that uncertainties in (1) and (2)
do not destroy chaotic behavior of complex network.

Note that the origin is not equilibrium point of
the following error dynamics, which implies that it
is impossible to achieve complete synchronization
between systems (1) and (2). Indeed, in some chaotic
dynamics such as Lorenz systems, complete synchro-
nization could be realized [37]. However, it should be
noted that complete synchronization may not be nec-
essarily satisfied in all conditions. As a result, we can
employ specific error bound, which is less restrictive
than complete synchronization but more realistic.

In this context, the goal is to derive some sufficient
conditions in order to find the impulsive controller gain
Bik and impulse distances tk such that drive and corre-
sponding response complex networks synchronize.

3 Main results

3.1 Exponentially impulsive projective
synchronization of between uncertain complex
networks

Definition 1 In projective synchronization, the error
of each node is defined as follows

ei (t) = x̃i (t) − σ xi (t)

inwhichσ �= 0 is a scaling constant. If limt→∞ ei (t) =
0, then projective synchronization is achieved. In spe-
cial cases, anti-synchronization and complete synchro-
nization are resulted with σ = −1 and σ = 1, respec-
tively.

Assumption 1 We assume that for each σ the follow-
ing terms are being satisfied

∥∥ fi z (t, x̃i (t) , x̃i (t − r1 (t)) , . . . , x̃i (t − rm (t)))

− σ fi z (t, xi (t) , xi (t − r1 (t)) , . . . , xi (t − rm (t)))
∥∥

≤ kiz ‖ei (t)‖ +
m∑

l=1

kizl ‖eil (t − rl (t))‖ (3)

∥∥gi j z (t, x̃i (t) , x̃i (t − r1 (t)) , . . . , x̃i (t − rm (t)))

− σgi j z (t, xi (t) , xi (t − r1 (t)) , . . . , xi (t − rm (t)))
∥∥

≤ wi j z ‖ei (t)‖ +
m∑

l=1

wi j zl ‖eil (t − rl (t))‖ (4)

and

∥∥� f ′
i z (t, x̃i (t) , x̃i (t − r1 (t)) , . . . , x̃i (t − rm (t)))

− σ� f ′
i z (t, xi (t) , xi (t − r1 (t)) , . . . , xi (t − rm (t)))

∥∥

≤ qiz ‖ei (t)‖ +
m∑

l=1

qizl ‖eil (t − rl (t))‖ (5)

also the following term is considered

∥∥� f ′
i z (t, xi (t) , xi (t − r1 (t)) , . . . , xi (t − rm (t)))

−� fi z (t, xi (t) , xi (t − r1 (t)) , . . . , xi (t − rm (t)))‖

≤ q ′
i z ‖xi (t)‖ +

m∑

l=1

q ′
i zl ‖xil (t − rl (t))‖ (6)

where kiz, kizl , wi j z, wi j zl , qiz, qizl , q ′
i z, q

′
i zl > 0 for

any x (t) , x (t − ri (t)) , e (t) , e (t − ri (t)) ∈ Rn

and, 1 ≤ z ≤ n , 1 ≤ l ≤ m.

Remark 5 In order to achieve less conservative con-
straints in following theorems,we consideredLipschitz
constant for each state of each node separately.

Lemma 1 (see [11]) The following inequality satisfies
for any real matrices X1, X2 and � = �

T > 0 :
XT
1 X2 + XT

2 X1 ≤ XT
1 �X1 + XT

1 �
−1X1

Lemma 2 (see [15]) Let 0 ≤ rl (t) ≤ τ , 

(t, u, u (t − r1 (t)) , . . . , u (t − rm (t))) :

R
+ ×

m+1︷ ︸︸ ︷
R × . . . × R → R be nondecreasing in ūl for
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each fixed (t, u, ū1, . . . , ūm) , l = 1, 2, . . . ,m and
�k : R → R be nondecreasing in u. Suppose that
v (t) , u (t) ∈ PC [[−τ,∞) , R] satisfy

{
D+u (t) ≤ 
 (t, u (t) , u (t − r1 (t)) , . . . , u (t − rm (t))) , t ≥ 0

u (tk) ≤ �k
(
u
(
t−k
))

, k ∈ N

{
D+v (t) ≥ 
 (t, v (t) , v (t − r1 (t)) , . . . , v (t − rm (t))) , t ≥ 0
v (tk) ≥ �k

(
v
(
t−k
))

, k ∈ N

Then u (t) ≤ v (t), for −τ ≤ t ≤ 0 implies u (t) ≤
v (t), for t ≥ 0.

Definition 2 The impulsive control input for synchro-
nization of drive and response complex networks is
considered as follows;

u (t) =
∞∑

k=1

Bke
(
t−k
) =

∞∑

k=1

IN ⊗ Bki e
(
t−k
)
, t = tk,

0 < tk − tk−1 < ∞, k = 1, . . . ,∞ (7)

One can rewrite impulsive networks (1), (2) in the fol-
lowing Kronecker product form, respectively

ẋ = (A + �A)x(t) + F (t, xi (t), xi (t − r1(t)),

. . . , xi (t − rm(t)))

+ �F(t, xi (t), xi (t − r1(t)), . . . , xi (t − rm(t)))

+G(t, x j (t), x j (t − r1(t)), . . . , x j (t − rm(t))) (8)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

˙̃x = (A + �A
′
)x̃(t) + F(t, x̃i (t), x̃i (t − r1(t)),

. . . , x̃i (t − rm(t)))

+ �F
′
(t, x̃i (t), x̃i (t − r1(t)), . . . , x̃i (t − rm(t)))

+G(t, x̃ j (t), x̃ j (t − r1(t)), . . . , x̃ j (t − rm(t))), t �= tk

x̃(t) = Bke(t
−
k ) = (IN ⊗ Bki )e(t

−
k ), t = tk

x̃(t) = ∅(t),− max
1<l<m

τl ≤ t ≤ 0

(9)

where

x (t) =
[
xT1 (t) , xT2 (t) , . . . , xTN (t)

]T

x̃ (t) =
[
x̃ T1 (t) , x̃ T2 (t) , . . . , x̃ TN (t)

]T

A = diag {A1, A2, . . . , AN }
�A = diag {�A1,�A2, . . . ,�AN }
�A′ = diag

{
�A′

1,�A′
2, . . . , �

′
N

}

F (. . .) =
[
f T1 (. . .) , f T2 (. . .) , . . . , f TN (. . .)

]T

�F (. . .) =
[
� f T1 (. . .) ,� f T2 (. . .) , . . . ,� f TN (. . .)

]T

G (. . .) =
⎡

⎢⎣

⎛

⎝
N∑

j=1

g1 j (. . .)

⎞

⎠
T

,

⎛

⎝
N∑

j=1

g2 j (. . .)

⎞

⎠
T

,

. . . ,

⎛

⎝
N∑

j=1

gN j (. . .)

⎞

⎠
T
⎤

⎥⎦

T

�F
′
(. . . ) = [� f

′T
1 (. . .),� f

′T
2 (. . .), . . . ,� f

′T
N (. . .)]T

∅ (t) = [∅′T
1 (t) ,∅′T

2 (t) , . . . ,∅′T
N (t)

]T
By consider-

ing equation (8),(9) and the fact that x
(
t+k
) = x

(
t−k
)

the error network can be obtain as follows

⎧
⎪⎪⎨

⎪⎪⎩

ė(t) = (A + �A
′
)e(t) + σ(�A

′ − �A)x(t)
+E1 + E2 + E3 + E4, t �= tk

�e = Bke(t
−
k ) = (IN ⊗ Bki )e(t

−
k ), t = tk

e(t) = ∅(t) − max1<l<mτl ≤ t ≤ 0

(10)

where

e (t) =
[
eT1 (t) , eT2 (t) , . . . , eTN (t)

]T

E1 = [
F (t, x̃ (t) , x̃ (t − r1 (t)) , . . . , x̃ (t − rm (t)))

− σ F (t, x (t) , x (t − r1 (t)) , . . . , x (t − rm (t)))]

E2 =
[
�F

′
(t, x̃(t), x̃(t − r1(t)), . . . , x̃(t − rm(t)), . . .)

− σ�F
′
(t, x(t), x(t − r1(t)), . . . , x(t − rm(t)))

]

E3 = [
G (t, x̃ (t) , x̃ (t − r1 (t)) , . . . , x̃ (t − rm (t)))

− σG (t, x (t) , x (t − r1 (t)) , . . . , x (t − rm (t))) ]

E4 = σ
[
�F ′ (t, x (t) , x (t − r1 (t)) , . . . , x (t − rm (t)))

−�F (t, x (t) , x (t − r1 (t)) , . . . , x (t − rm (t)))]

Theorem 1 Let δ = maxk∈N tk − tk−1The impulsive
distance and control gain are defined as (7). Positive
symmetric matrix � is considered such that the follow-
ing conditions hold:

‖1 + Bk‖ ≤ α, 0 < α < 1, k ∈ N (11)

ln α

δ
+ κ +

m∑

l=1

κl

α
< 0 (12)

Then, the origin of error system (10) is globally expo-
nentially stable in the following sense

‖e (t)‖ ≤ α−1e
−λ
2 t sup−τ≤s≤0 (‖φ (s)‖) , t ≥ 0 (13)

in which λ > 0 is a unique solution of

λ − a −
m∑

l=1

ble
λτl = 0 (14)
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where

κ =
∥∥∥
(
A + �A′)+ (

A + �A′)T

+ 2
(
K + Wj + Q

)+ 2χdξ −1 I + m�
−1
∥∥∥

κl =
∥∥∥
(
Kl + Wjl + Ql

)T
�
(
Kl + Wjl + Ql

)∥∥∥

bl = κl

α2

a = −2 ln α

δ
− 2κ;

d =
(∥∥∥∥∥Q

′ +
m∑

l=1

Q
′
l

∥∥∥∥∥

)
Q′

l + ∥∥�A′ − �A
∥∥

Proof Let V = eT (t) e (t) be a candidate Lyapunov
function. Its derivative along the solution of (10) yields

D+V = eT (t) ((A + �A
′
) + (A + �A

′
)T )e(t)

+ 2σeT (t)(�A
′ − �A)x(t)

+ 2eT (t) (E1 + E2 + E3) + 2eT (t) E4

In the case that ‖e‖ ≥ ξ , then ‖e‖ ≤ ξ −1eT e. From
(3)–(6) and Lemma 1, it yields

D+V ≤ eT (t)

((
A + �A

′)+
(
A + �A

′)T
)
e(t)

+2eT (t)

[
(K + Wj + Q)e(t)

+
m∑

l=1

(Kl + Wjl + Ql)el(t − rl(t))

]

+2 ‖e‖
(

χ |σ |
(∥∥∥∥∥Q

′ +
m∑

l=1

Q
′
l

∥∥∥∥∥

+
∥∥∥�A

′ − �A
∥∥∥
))

≤ eT (t)[(A + �A
′
) + (A + �A

′
)T

+2(K + Wj + Q)

+2χdξ−1 I + m�
−1]e(t)

+
m∑

l=1

el(t − rl(t))
T (Kl + Wjl + Ql)

T

�(Kl + Wjl + Ql)el(t − rl(t))

= κV (t, e(t)) +
m∑

l=1

κl V (t − rl(t))

where

K = diag {k11, k12, . . . , k1n, k21, k22, . . . , k2n,

. . . , kN1, kN2, . . . , kNn}
Kl = diag {k11l , k12l , . . . , k1nl , k21l , k22l , . . . , k2nl ,

. . . , kN1l , kN2l , . . . , kNnl}
Wj = diag

{
w1 j1, w1 j2, . . . , w1 jn, w2 j1, w2 j2,

. . . , w2 jn, . . . , wN j1, wN j2, . . . , wN jn
}

Wjl = diag
{
w1 j1l , w1 j2l , . . . , w1 jnl , w2 j1l , w2 j2l ,

. . . , w2 jn, . . . , wN j1, wN j2, . . . , wN jn
}

Q = diag {q11, q12, . . . , q1n, q21, q22, . . . ,
q2n, . . . , qN1, qN2, . . . , qNn}

Ql = diag {q11l , q12l , . . . , q1nl , q21l , q22l , . . . , q2nl ,
. . . , qN1l , qN2l , . . . , qNnl}

Q
′ = diag

{
q

′
11, q

′
12, . . . , q

′
1n, q

′
21, q

′
22, . . . , q

′
2n,

. . . , q
′
N1, q

′
N2, . . . , q

′
Nn

}

Q′
l = diag

{
q ′
11l , q

′
12l , . . . , q

′
1nl ,

q ′
21l , q

′
22l , . . . , q

′
2nl , . . . , q

′
N1l ,

q ′
N2l , . . . , q

′
Nnl

}

Also

V
(
t+k
) = eT

(
t−k
)
(I + Bk)

T (I + Bk) e
T (t−k )

≤ ‖(I + Bk)‖2 eT
(
t−k
)
eT (t−k )

≤ α2V
(
t−k
)
, t = tk, k ∈ N (15)

For any ε > 0, let v (t) be a unique solution of the
following impulsive delayed system
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

v̇ = κv (t, e (t)) +∑m
l=1 κlv (t − rl (t))

+ ε, t ≥ 0, t �= tk
v(tk) = α2v

(
t−k
)
, t = tk

v(t) = ‖∅(t)‖2 ,−max1<l<m τl ≤ t ≤ 0

(16)

Lemma 2 and the fact that V (t) = ‖∅ (t)‖2 for
−max1<l<m τl ≤ t ≤ 0 implies

V (t) ≤ v (t) , t ≥ 0

Ref [38] solved (16) as follows

v (t) = W (t, 0) v (0)

+
∫ t

0
W (t, s)

(
m∑

l=1

κlv (s − rl (s)) + ε

)
ds

(17)

where W (t, s) , 0 ≤ s ≤ t is the Cauchy matrix of the
following linear system
{

ϑ̇(t) = κϑ(t), t �= tk

ϑ(t+k ) = α2ϑ
(
t−k
)
, k ∈ N

(18)
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Considering the corresponding Cauchy matrix, since
0 < α < 1 and δ ≥ tk − tk−1, thus

W (t, s) = eκ(t−s)
∏

s<tk<t

α2 ≤ e

(
−a− 2 ln α

δ

)
(t−s)

α2( t−s
δ

−1)

= α−2e−a(t−s), for t ≥ s ≥ 0 (19)

Let� = α−2sup− max
1<l<m

τl≤s≤0 ‖φ (t)‖2. It obtains from
(17) and (19),

v (t) ≤ α−2e−at ‖φ (0)‖2

+
∫ t

0
α−2e−a(t−s)

(
m∑

l=1

κlv (s − rl (s)) + ε

)
ds

≤ Ωe−at +
∫ t

0
e−a(t−s)

(
m∑

l=1

blv (t − rl (t))

+ ε

α2

)
ds, t > 0 (20)

Since ε > 0, λ > 0, a −∑m
l=1 bl > 0 [from (16)] and

0 < α < 1, for −max1<l<m τl ≤ t ≤ 0, we have

v (t) < Ωe−λt

+ ε(
a −∑m

l=1 bl
)
α2

, for 0 ≥ t ≥ − max
1<l<m

τl

(21)

We need to prove that (21) holds for t > 0. If it is not
true, then there is t

′
> 0 that satisfying the following

inequalities

v
(
t ′
) ≥ Ωe−λt ′ + ε(

a −∑m
l=1 bl

)
α2

(22)

v (t) < Ωe−λt + ε(
a −∑m

l=1 bl
)
α2

, t < t ′ (23)

v(t) ≤ Ωe−at
′

+
∫ t

0
e−a(t

′−s)

(
m∑

l=1

blv(s − rl(s)) + ε

α2

)
ds

< e−at
′
[
Ω + ε(

a −∑m
l=1 bl

)
α2

+
∫ t

′

0
eas
(

m∑

l=1

blΩe−λ(s−rl (s))

+ ε
∑m

i=1 bi(
a −∑m

l=1 bl
)
α2

+ ε

α2

)
ds

]

≤ e−at
′
[
Ω + ε(

a −∑m
l=1 bl

)
α2

+
(

m∑

i=1

blΩeλτi

∫ t
′

0
e(a−λ)sds

+ aε(
a −∑m

l=1 bl
)
α2

∫ t
′

0
easds

)]

= Ωe−λt
′ + ε(

a −∑m
l=1 bl

)
α2

(24)

By (14), (20) and (23), we have
Obviously, (28) is in conflict with (26), so that (25)

holds for t > 0. Letting ε → 0, then we have

V (t) ≤ v (t) ≤ Ωe−λt , t ≥ 0.

3.2 Exponentially impulsive lag synchronization
between uncertain complex networks

Definition 3 In lag synchronization, the error of each
node is defined as follows

ei (t) = x̃i (t) − xi (t − L)

in which L ≥ 0 is a time delay. If limt→∞ ei (t) = 0,
then lag synchronization is achieved.

Assumption 2 We assume that for each σ the follow-
ing terms are being satisfied

‖ fi z (t, x̃i (t), x̃i (t − r1(t)), . . . , x̃i (t − rm(t)))

− fi z (t − L, xi (t − L), xi (t − L − r1(t − L)),

. . . , xi (t − L − rm(t − L)))‖
≤ k∗

i z ‖ei (t)‖ +
m∑

l=1

k∗
i zl ‖eil(t − rl(t))‖ (25)

∥∥gi j z(t, x̃i (t), x̃i (t − r1(t)), . . . , x̃i (t − rm(t)))

−gi j z(t − L, xi (t − L), xi (t − r1(t − L)),

. . . , xi (t − L − rm(t − L)))‖
≤ w∗

i j z ‖ei (t)‖

+
m∑

l=1

w∗
i j zl ‖eil(t − rl(t))‖ (26)

and
∥∥∥� f

′
i z(t, x̃i (t), x̃i (t − r1(t)), . . . , x̃i (t − rm(t)))

−� f
′
i z(t − L, xi (t − L), xi (t − L − r1(t − L)),

. . . , xi (t − L − rm(t − L)))‖
≤ piz ‖ei (t)‖ +

m∑

l=1

pizl ‖eil(t − rl(t))‖ (27)
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also the following term is considered
∥∥∥� f

′
i z (t − L, xi (t − L), xi (t − L − r1(t − L)),

. . . , xi (t − L − rm(t − L))) − � fi z (t

−L, xi (t − L), xi (t − r1(t − L)) ,

. . . , xi (t − L − rm(t − L)))‖
≤ p

′
i z ‖xi (t − L)‖ +

m∑

l=1

p
′
i zl ‖xil(t

−L − rl(t − L))‖ (28)

where k∗
i z, k

∗
i zl , w∗

i j z, w
∗
i j zl , piz, pizl , p

′
i z, p

′
i zl > 0 for

any x (t) , x (t − ri (t)) , e (t) , e (t − ri (t)) ∈ Rn

and , 1 ≤ z ≤ n , 1 ≤ l ≤ m.

By considering Eqs. (8) and (9), error network can be
obtained as follows
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ė(t) = (A + �A
′
)e(t)

+ (�A
′ − �A)x(t−L)

+ E∗
1 + E∗

2 + E∗
3 + E∗

4 , t �= tk
�e = Bke(t

−
k ) = (IN ⊗ Bki )e(t

−
k ), t = tk

e(t) = ∅(t) − max
1<l<m

τl ≤ t ≤ 0

(29)

where

e (t) =
[
eT1 (t) , eT2 (t) , . . . , eTN (t)

]T

E∗
1 = [

F (t, x̃ (t) , x̃ (t − r1 (t)) , . . . , x̃ (t − rm (t)))

− F (t − L, x (t − L) , x (t − L − r1 (t − L)) ,

. . . , x (t − L − rm (t − L)))]

E∗
2 =

[
�F

′
(t, x̃(t), x̃(t − r1(t)),

. . . , x̃(t − rm(t)), . . .) − �F
′
(t − L,

x(t − L), x(t − L − r1(t − L)),

. . . , x(t − L − rm(t − L)))]

E∗
3 = [

G (t, x̃ (t) ,

x̃ (t − r1 (t)) , . . . , x̃ (t − rm (t)))

−G (t − L, x (t − L) , x (t − r1 (t − L)) ,

. . . , x (t − L − rm (t − L))) ]

E∗
4 = [

�F ′ (t − L, x (t − L) , x (t − L − r1 (t − L)) ,

. . . , x (t − L − rm (t − L))) − �F (t

−L, x (t − L) , x (t − L − r1 (t − L)) ,

. . . , x (t − L − rm (t − L)))] .

Theorem 2 The impulsive distance and control gain
are defined as (7). Positive symmetric matrix�

∗ is con-
sidered such that the following conditions hold:

‖1 + Bk‖ ≤ α, 0 < α < 1, k ∈ N (30)

ln α

δ
+ κ∗ +

m∑

l=1

κ∗
L

α
< 0 (31)

Then, the origin of error system (29) is globally expo-
nentially stable in the following sense

‖e(t)‖ ≤ α−1e
−λ
2 t sup−τ≤s≤0(‖φ(s)‖), t ≥ 0 (32)

in which λ > 0 is a unique solution of

λ − a −
m∑

l=1

ble
λτl = 0 (33)

where

κ∗ =
∥∥∥
(
A + �A′)+ (

A + �A′)T

+ 2
(
K ∗ + W ∗

j + P
)

+ 2χdξ −1 I + m�
∗−1
∥∥∥

κ∗
l =

∥∥∥∥
(
K ∗
l + W ∗

jl + Pl
)T

�
∗ (K ∗

l + W ∗
jl + Pl

)∥∥∥∥

b∗
l = κ∗

l

α2

a = −2 ln α

δ
− 2κ∗;

d =
(∥∥∥∥∥P

′ +
m∑

l=1

P
′
l

∥∥∥∥∥ P
′
l + ∥∥�A′ − �A

∥∥
)

Proof Let V = eT (t) e (t) be a candidate Lyapunov
function. Its derivative along the solution of (29) yields

D+V = eT (t)((A + �A
′
) + (A + �A

′
)T )e(t)

+ 2σeT (t)(�A
′ − �A)x(t − L)

+ 2eT (t)(E∗
1 + E∗

2 + E∗
3 ) + 2eT (t)E∗

4

In the case that ‖e‖ ≥ ξ , considering (25)–(28) and
Lemma 1 it yields

D+V ≤ eT (t)((A + �A
′
) + (A + �A

′
)T )e(t)

+ 2eT (t)
[
(K ∗ + W∗

j + P)e(t)

+
m∑

l=1

(K ∗
l + W∗

jl + Pl )el (t − rl (t))

⎤

⎦

+ 2 ‖e(t)‖
⎛

⎝χ

⎛

⎝

∥∥∥∥∥∥
P

′ +
m∑

l=1

P
′
l

∥∥∥∥∥∥
+
∥∥∥�A

′ − �A
∥∥∥

⎞

⎠

⎞

⎠

≤ eT (t)
[
(A + �A

′
) + (A + �A

′
)T

+ 2(K ∗ + W∗
j + P) + 2χdξ−1 I + m�

∗−1
]
e(t)

+
m∑

l=1

el (t − rl (t))
T (K ∗

l + W∗
jl + Pl )

T
�(K ∗

l
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Fig. 1 Phase portrait of Lur’e system x(0) = −0.2, y(0) = −0.3, z (0) = 0.2

+W∗
jl + Pl )el (t − rl (t))

= κ∗V (t, e(t)) +
m∑

l=1

κ∗
l V (t − rl (t))

where

K ∗ = diag
{
k∗
11, k

∗
12, . . . , k

∗
1n, k

∗
21, k

∗
22,

. . . , k∗
2n, . . . , k

∗
N1, k

∗
N2, . . . , k

∗
Nn

}

K ∗
l = diag

{
k∗
11l , k

∗
12l , . . . , k

∗
1nl , k

∗
21l , k

∗
22l ,

. . . , k∗
2nl , . . . , k

∗
N1l , k

∗
N2l , . . . , k

∗
Nnl

}

W ∗
j = diag

{
w∗
1 j1, w

∗
1 j2, . . . , w

∗
1 jn, w

∗
2 j1, w

∗
2 j2,

. . . , w∗
2 jn, . . . , w

∗
N j1, w

∗
N j2, . . . , w

∗
N jn

}

W ∗
jl = diag

{
w∗
1 j1l , w

∗
1 j2l , . . . , w

∗
1 jnl , w

∗
2 j1l , w

∗
2 j2l ,

. . . , w∗
2 jnl , . . . , w

∗
N j1l , w

∗
N j2l , . . . , w

∗
N jnl

}

P = diag {p11, p12, . . . , p1n, p21, p22, . . . , p2n, . . . ,
pN1, pN2, . . . , pNn}

Pl = diag {p11l , p12l , . . . , p1nl , p21l , p22l ,
. . . , p2nl , . . . , pN1l , pN2l , . . . , pNnl}

P
′ = diag

{
p

′
11, p

′
12, . . . , p

′
1n, p

′
21, p

′
22, . . . , p

′
2n,

. . . , p
′
N1, p

′
N2, . . . , p

′
Nn

}

P ′
l = diag

{
p′
11l , p

′
12l , . . . , p

′
1nl , p

′
21l , p

′
22l ,

. . . p′
2nl , . . . , p

′
N1l , p

′
N2l , . . . , p

′
Nnl

}

Similar to proof Theorem 1, we can obtain Theorem 2.
In order to avoid the repetition, here we omit its com-
plete proof.

4 Numerical simulation

In this section, in order to demonstrate the effective-
ness of obtained conditions, numerical simulation for
synchronizing complex networks is presented.

Example 1 Two 100-node complex networks, com-
posed of Lur’e [6] andChua’s [39,40] systems, are con-
sidered in which coupled terms have nonlinear dynam-
ics. Moreover, there are time-varying delays in both
coupled and uncoupled terms aswell as different uncer-
tainties.

Dynamics of Lur’e system is given by (Fig. 1)
⎧
⎨

⎩

ẋ(t) = a(y(t) − h(x(t)))
ẏ(t) = x(t) − y(t) + z(t)
ż(t) = −by(t)

(34)

and dynamics of Chua’s system with time-varying
delays is represented by (Fig. 2)
⎧
⎨

⎩

ẋ(t) = a(y(t) − h(x(t))) − cx(t − τ1)

ẏ(t) = x(t) − y(t) + z(t) − cx(t − τ2)

ż(t) = −by(t) + c (2x(t − τ3)) − y(t − τ3))

(35)

with nonlinear characteristics:

h (x (t)) = m1x (t) + 1/2 (m0 − m1)

(|x (t) + 1| − |x (t) − 1|)
numerical parameters are considered as m0 = − 1

7 ,

m1 = 2
7 , a = 9, b = 14.28, c = .1 and τ1 =

.25 (sin t + 1) , τ2 = .2 (sin t + 1) , τ3 = .4 (sin t + 1) .

Consider complex networks containing 40 Lur’e
dynamic nodes ( f1 (. . .) , f2 (. . .) , . . . , f40 (. . .)) and
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Fig. 2 Phase portrait of Chua’s system with time-varying time delays x (0) = −0.2, y (0) = −0.3, z (0) = 0.2

60 Chua’s dynamic nodes ( f60 (. . .) , f61 (. . .) , , . . .

, f100 (. . .)) . We assumed coupling dynamics and
uncertainties as follows
N∑

j=1

gi j

=
⎡

⎣
.01x(i+20)2 (t) x(i+20)2 (t)
0
.1x(i+20)4 (t − r3)

⎤

⎦ for 1 ≤ i < 20,

N∑

j=1

gi j

=
⎡

⎣
.01x(i+20)1 (t) x(i+20)1 (t)
.1sin

(
x(i+20)1 (t)

)

0

⎤

⎦ for 20 ≤ i < 40,

N∑

j=1

gi j =
⎡

⎣
.1
(
x(i+20)2 (t) xi2 (t) + sin

(
x(i+20)4 (t − r1)

))

0
0

⎤

⎦ for 40 ≤ i < 60,

N∑

j=1

gi j

=
⎡

⎣
.01x(i+20)2 (t) xi2 (t)
0
.1x(i+20)4 (t − r2)

⎤

⎦ for 60 ≤ i < 80,

N∑

j=1

gi j

=
⎡

⎣
−.1sin

(
x(i−20)2 (t)

)

0
.1x(i−20)2 (t) sin (xi2 (t))

⎤

⎦ for 80≤ i≤100

� fi =
⎡

⎣
.9mxi1 (t)
.1m (xi1 (t) − xi1 (t) + xi1 (t))
0

⎤

⎦ for 1 ≤ i < 20,

� fi =
⎡

⎣
.9mxi1 (t) + .1mh (xi1 (t))
0
1.428mxi2 (t)

⎤

⎦ for 20 ≤ i < 40,

� fi =
⎡

⎣
0
0
0

⎤

⎦ for 40 ≤ i < 60,

� fi =
⎡

⎣
0
0
0

⎤

⎦ for 60 ≤ i < 80,

� fi =
⎡

⎣
0
.01mxi3 (t − r4)
0

⎤

⎦ for 80 ≤ i ≤ 100

where , r1, r2, r3, r4 = 1/2(sin t + 1). Considering
δ = 0.01, Bk = −0.9I , by simple computation
clearly conditions (11) and (12) are satisfied. Response
network’s uncertainties are similar to uncertainties in
derive network, except in r1, r2, r3, r4 = .3(sin t+1).
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Fig. 3 Error evolution between drive and response networks, σ = 1

Fig. 4 Lag synchronization errors (L = 0.004)

Figure 3 shows the error evolution between drive
and corresponding response networks. The initial con-
ditions are chosen randomly between −1 and 1. It is
demonstrated that states of drive network are similar
to states of response network. We observe that syn-
chronization error converges to a neighborhood of zero
and their magnitude is smaller than ξ = 0.1, and it
is impossible to achieve complete synchronization due
to differences of networks structure. Because of time
delays, synchronization error starts to converge to zero
after 1 s.

Similarly, the error evolution between drive and cor-
responding response networks when L = 0.004 is
shown in Fig. 4; synchronization errors converge to

smaller than ξ = 0.1. It is seen that lag synchroniza-
tion is realized.

Example 2 In this Example 2, two 100-node com-
plex networks, composed of Chua’s systems (36) and
Chua’s systems with time-varying delay, are consid-
ered in which coupled terms have nonlinear dynamics
as Example 1. Moreover, in this example we have con-
sideredChua’s systems parameters in away that hidden
attractor appears (Fig. 5).
⎧
⎨

⎩

ẋ(t) = a(y(t) − x(t) − h(x(t)))
ẏ(t) = x(t) − y(t) + z(t)
ż(t) = −by(t) − γ z(t)

h (x (t)) = m1x (t) + 1/2 (m0 − m1) (|x (t)

+ 1| − |x (t) − 1|) (36)
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Fig. 5 Hidden chaotic attractor

Fig. 6 Error evolution between drive and response networks

Numerical parameters for Chua’s systems are consid-
ered as the same as the parameters considered in [33].
m0 = −0.1768,m1 = −1.1468, a = 8.4562, b =
12.0732, γ = 0.0052 and

∑N
j=1 gi j = � fi = 0 for

f or 1 ≤ i < 40.

Figure 6 shows the error evolution between drive
and corresponding response networks for Example 2.
The initial conditions are chosen like Example 1. It is
demonstrated that states of drive network are similar
to states of response network; it shows the effective-
ness of this approach for synchronization of systems
with hidden attractor. We observe that synchronization
error converges to a neighborhood of zero and their
magnitude is smaller than ξ = 0.1.

5 Conclusion and outlook

This correspondence has investigated the issue of
impulsive projective and lag synchronization of uncer-
tain complexnetworkswith time-varyingdelays in both
coupled and uncoupled terms. Due to differences in
structures of drive and response networks and other
mismatches, considered uncertainties in model defini-
tion for drive network are different from response net-
work uncertainties. However, both coupled and uncou-
pled terms are taken under the circumstance of mul-
tiple time-varying delays. In contrast to conventional
models, nodes vary in terms of dynamical behavior.
Based on impulsive differential equation, some new
sufficient conditions are derived in order to globally
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2054 A. Bagheri, S. Ozgoli

exponentially synchronization of drive and response
complex networks. Less conservative conditions need
to be developed in future researches. Furthermore, “fac-
tor of synchronization” can be calculated by selecting
the statistical function to detect the synchronization
[41,42] in future researches. At the end, two examples
are given to verify the effectiveness of this approach
for systems with hidden attractor or self-excited one.
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