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Abstract This paper investigates the nonlinear
dynamics of a parametrically excited doubly clamped
piezoelectric nanobeam, actuated by a combined AC
and DC loadings. Surface effects, intermolecular van
der Waals forces, and fringing effects are incorporated
in the nonlinear model. The governing equation of
motion is obtained using the extended Hamilton prin-
ciple. The reduced-order model equation (ROM) is
obtained based on the Galerkin method. The multiple-
scale method is applied directly to the nonlinear equa-
tion of motion and associated boundary conditions to
obtain the nanobeam response analytically under small
AC voltage loads. The influence of van der Waals
forces, piezoelectric voltages, and surface effects is
investigated on the natural frequencies, static equi-
libria, pull-in voltages, and principle parametric reso-
nance (subharmonic resonance of order one-half) of the
nanoresonator. It is shown the surface effect profoundly
affects the nontrivial parametric responses, trivial sta-
bility zones, and bifurcation point’s loci, and it is nec-
essary to consider the surface effects for accurate and

S. M. Pourkiaee · S. E. Khadem (B)
Department of Mechanical Engineering, Tarbiat Modares
University, P.O. Box 14115-177, Tehran, Iran
e-mail: Khadem@modares.ac.ir

S. M. Pourkiaee
e-mail: M.Pourkiaee@modares.ac.ir

M. Shahgholi
Department of Mechanical Engineering, Shahid Rajaee
Teacher Training University, Tehran, Iran
e-mail: Majid.Shahgholi@srttu.edu

exact investigation of the system response. The effect
of piezoelectric voltage to control the dynamic instabil-
ity region is also demonstrated. To validate analytical
results, ROM equation is integrated numerically. It is
seen that the perturbation results are in accordancewith
numerical results.
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1 Introduction

In recent years, nanoelectromechanical systems
(NEMSs) havebeen the focus of attentionof vastmajor-
ity of researchers. Thanks to their inherent character-
istics, NEMSs are being used in wide variety of appli-
cations such as capacitive sensors, actuators, narrow
band filtering, mass and force detection, and atomic
force microscopes. NEMS resonators excited electro-
statically and could experience different sources of
nonlinearity such as molecular interactions (Casimir
and van der Waals forces) and nonlinear electrosta-
tic forces. This reveals the importance of the nonlin-
ear dynamics in modeling a NEMS-based resonator
under electrostatic actuation. Parametric resonance, as
a nonlinear phenomenon, has received great attentions
in practice and the literature for its peculiar effects,
such as low sensitivity to damping, sharp transition
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between zero and nonzero responses, large resonant
responses, and hence, higher signal-to-noise ratios.
Compared to the conventional excitation techniques,
parametric excitations occur in the systems with time-
dependent (periodic) parameters. Many studies have
been carried out in the literature on the nonlinear behav-
ior of the NEMS/MEMS resonators. Carunta and Mar-
tinez [1] studied the parametric resonance of a MEMS
cantilever. Damping, voltage, and fringing effects on
the parametric response were reported. Rhoads et al.
[2] explored the nonlinear dynamics of an electro-
magnetically actuated microcantilever under paramet-
ric excitations. The fifth-order nonlinearity was investi-
gated using the perturbation methods. Abdel-Rahman
and Nayfeh [3] investigated secondary resonances of
electrically actuated resonant microsensors analyti-
cally using the method of the multiple scales. Non-
linear dynamics of NEMS-based sensors under super-
harmonic resonance was investigated by Kacem et al.
[4] using the method of multiple scales. They obtained
a way to retard the pull-in voltage by decreasing the
AC voltage. Ouakad and Younis [5] studied nonlinear
dynamics of an electrostatically actuated carbon nan-
otube (CNT) resonator. Primary and secondary reso-
nances were studied using shooting method [6,7]. Sev-
eral nonlinear phenomena have been reported such as
hysteresis [8,9], dynamic pull-in [10–12], hardening
behavior [11,13], and softening behavior [14]. In a
series of work [15–18], they investigated the nonlin-
ear dynamics of a CNT resonator in the presence of the
initial curvature. They studied the effect of DC elec-
trostatic force and the slack level on the CNT natural
frequencies and mode shapes. In Ref. [18], they pro-
vided a model to study the forced vibration response of
the CNTs under small DC and AC loads using the per-
turbation techniques. Rasekh and Khadem [19] inves-
tigated pull-in instability of a CNT cantilever using
direct numerical integration. Curvature and inertia non-
linearities were also taken into account. Hajnayeb and
Khadem [20,21] investigated in depth the stability and
the nonlinear vibrations of single-walled and double-
walled CNTs under electrostatic actuations. Primary
and secondary resonances and bifurcation points under
different values of DC and AC voltages were stud-
ied using the multiple-scale method. Nonlinear van der
Waals forces acting between the CNT and the ground
plane, due to the small gap, have been studied in Ref.
[20].Ouakad et al. [22], studied both static and dynamic
behaviors of a clamped–clamped CNT resonator using

a novel discretization technique: differential quadrature
method and finite difference method (DQM–FDM).
Different phenomena such as dynamic pull-in and fre-
quency veering were studied. Alibeigloo and Emte-
hani [23] performed a study on static and free vibra-
tion behavior of carbon nanotube-reinforced composite
(CNTRC)usingDQM.XuandYounis [24] investigated
the nonlinear dynamics of a CNT actuated under large
electrostatic forces. They expanded the nonlinear elec-
trostatic term into enoughnumber of termsof theTaylor
series. Also, many studies in the literature have focused
on the piezoelectric actuation, one of the common
sources of excitation of the NEMS-based resonators.
Asemi et al. [25] obtained a nonlinear continuum
model for the large-amplitude vibration of nanoelectro-
mechanical resonators using piezoelectric nanofilms
(PNFs) under external electric voltage. Alibeigloo and
Liew [26] studied bending and free vibration of a func-
tionally graded CNTRC beam, embedded in piezo-
electric layers using the DQM. Both the direct and
inverse piezoelectric effects were investigated. Ke et al.
[27] investigated the nonlinear vibration of the piezo-
electric nanobeams based on the nonlocal and Timo-
shenko beam theory using the DQM. They studied the
effect of nonlocal parameter and piezoelectric voltage
on the nanobeam behavior. Arani et al [28] performed
a study on the nonlinear dynamic stability of single-
layered graphene sheets (SLGSs) integrated with zinc
oxide (ZnO) actuators and sensors using the differen-
tial cubature method. They showed that magnetic field
and the external voltage are affecting parameters to
control the dynamic instability region. According to
the literature, almost every performed research, study-
ing the parametric resonance of the electromechanical
systems, is microsized problems. Furthermore, in most
of the valuable studies performed to analyze nonlin-
ear dynamics of NEMS resonators, the size-dependent
properties have been neglected, and there is no clear
distinction between those and microsized problems. It
is beneficial tomention that reducing size to nanoscales
leads to size-dependent behaviors of nanostructures
[29,30]. Moreover, large surface area-to-volume ratio
is an important consequence of the scale down. Large
surface-to-bulk ratio at nanoscales results in an increase
in the surface energy [31]. Therefore, surface ener-
gies could remarkably affect the static and the dynamic
behaviors of nanoscaled structures. Many studies have
been carried out by researchers to investigate the influ-
ence of the surface effects on nanostructures. Wang
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and Wang [32] studied the effect of surface energy on
free vibration of a cracked nanobeam. They showed
that the natural frequencies of the nanobeam have dra-
matic dependence on surface stresses. Eltaher et al. [33]
investigated the coupling effects of nonlocal and sur-
face energy on vibration of nanobeams using Galerkin
finite element technique. There are also numerous
papers in the literature which have reported the influ-
ence of surface energy on pull-in instability [34–36],
buckling [37,38], and free vibration [39] of nanostruc-
tures. It can be found that, based on the literature,
there are few articles in which dynamic analysis at
nanoscales considering the surface stresses have been
presented. Also, there is still lacking of strong theoret-
ical model in the literature which illustrates the surface
effects on the dynamic behavior of the nanoresonators.
Accordingly, it seems that studying principle paramet-
ric resonances of an electrostatically actuated piezo-
electric nanobeam gives out interesting results. This
study attempts to provide a realistic model to demon-
strate the static and dynamic responses of a piezoelec-
tric nanoresonator and the physical behaviors peculiar
to the nanosized systems. To this end, surface effects
and intermolecular van der Waals forces are taken into
account, due to the size effect at the nanoscale and the
small initial gap between the electrodes. Furthermore,
in-depth study of the nonlinear parametric resonances
of the nanobeam under small AC loads is presented
using the multiple-scale method. The effect of differ-
ent physical parameters on static pull-in, frequency–
response curves, and bifurcation points is investigated.
Numerical simulation is performed to validate pertur-
bation solutions.

2 Problem formulation

Figure 1 depicts the considered piezoelectric nanores-
onator and the xyz inertial coordinate system which
passes through the centroid of the cross section (y =
0, z = 0) and is located at the left clamped end of the
nanobeam. The vertical displacement of the nanobeam
centerline along the z-axis is denoted by w(x, t).

The movable nanobeam is of length L , width b,
and thickness h and is surrounded between two con-
ductive electrodes of different lengths. The piezoelec-
tric nanobeam is actuated by the electric load VDC +
VAC cos(Ωt) through the lower electrode and the VDC
load through the upper electrode where VDC is the DC

ld

g0

g0

h

L

lu

vDC+vAC cos(Ωt)

x

z
y

vDC

vp

Fig. 1 Schematic diagram of an electrically actuated clamped–
clamped piezoelectric nanobeam

bias voltage, and VAC andΩ are the amplitude and fre-
quency of the AC voltage, respectively. In addition, the
piezoelectric nanobeam is actuated by the direct cur-
rent polarization voltage VP, which is applied through
the thin electrodes at the nanobeam ends (the realis-
tic devices based on the current model are discussed
in Refs. [40,41]). The initial capacitor gap width g0 is
assumed to be under 20nm, such that the van derWaals
force becomes dominant as an intermolecular interac-
tion between the electrodes [42]. Van der Waals force
is given by:

FvdW = Ahb

6π (g0 − w(x, t))3
H1(x)

− Ahb

6π (g0 + w(x, t))3
H2(x) (1)

H1(x) = H

(
x − L − lu

2

)
− H

(
x − L + lu

2

)
(2)

H2(x) = H

(
x − L − ld

2

)
− H

(
x − L + ld

2

)
(3)

where Ah is the Hamker constant with values in the
range of [0.4 − 4] × 10−19 J [43], and H(x) is the
Heaviside function indicating the van der Waals force
distribution. The electrostatic force can be expressed
as:

Fes = 1

2
ε0

bCn [(VDC − VP) + VAC cos(Ωt)]2

(g0 − w(x, t))2
H1(x)

−1

2
ε0

bCn [VDC − VP]2

(g0 + w(x, t))2
H2(x) (4)

where ε0 is the permittivity of the gap medium, and
Cn = 1 + 1.9861 (g0/b)0.8258 is due to the fringing
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field effect [8]. It is worthy to note that the initial gap is
comparable to the nanobeam width; consequently, the
fringing field effect is considered.

2.1 Surface energy

To incorporate the surface effects, the Gurtin–Murdoch
surface elasticity model is utilized. It is assumed that
the elastic surface has a mathematically zero thickness
which is perfectly bonded to the bulkmaterial, and there
is no slipping between the bulk and the surface.Accord-
ing to the surface elasticity theory, surface stresses in
the x − z plane can be expressed as [44,45]:

τxx = τ0 + Esεx (5)

τxz = τ0
∂w(x, t)

∂x
(6)

where τ0 and Es are surface residual stress and surface
elastic modulus, respectively. It is noted that the unit of
the surface stresses (i.e., τ0, τxx , τxz) and the surface
elastic modulus (Es) in the SI system is N/m. In Eq.
(5), εx represents the nonlinear strain in the beam axial
direction, given by:

εx = ∂u0(x, t)

∂x
− z

∂2w(x, t)

∂x2
+ 1

2

(
∂w(x, t)

∂x

)2

(7)

where u0(x, t) denotes the axial displacement along
the x-axis. The surface strain energy in the deformed
surface area is given by:

US =
∫

Ā

γ d Ā, γ = τ0 + 1

2
Esε2x + 1

2
τxzεxz (8)

where Ā is the surface area of the nanobeam, and γ is
the strain energy density of the surface. Note that the
unit of the strain energy density (γ ), in the SI system,
is N/m, and all the terms are compatible according to
dimension unit. For a differential element of the surface
layer, it can be written as:

d Ā = dASds (9)

where dAS is the differential perimeter element, and ds
is the length of the deformed element, given by:

ds =
√(

1 + u′
0

)2 + (w′)2dx ≈
(
1 + u′

0 + w′2

2

)
dx

(10)

where the prime denotes derivative with respect to x .
Introducing Eqs. (9) and (10) into Eq. (8), the surface
energy can be found in the form of:

US =
∫ L

0

∮
∂AS

(
τ0 + Es

2

(
u′
0 + w′2

2
− zw′′

)2

+ 1

2
τ0

(
w′)2) (

1 + u′
0 + w′2

2

)
dASdx (11)

Noting that τxx is distributed along the entire perimeter
of cross section, and τxz is acting along the top and
bottom surfaces, the surface elastic energy up to the
second-order products yields to:

US = τ0A
s
∫ L

0

(
1 + u′

0 + w′2

2

)
dx

+ Es I s

2

∫ L

0

(
w′′)2 dx

+ Es As

2

∫ L

0

(
u′
0 + w′2

2

)2

dx

+τ0 Ā
s
∫ L

0

(
w′)2
2

dx (12)

where I s = ∮
∂As

z2dAs = (
bh2/2 + h3/6

)
is the

perimeter moment of inertia of the beam cross section
about the y-axis, As = 2 (b + h) is the perimeter of the
cross section, and Ās = 2b. Note that, here, the surface
energy of the nanobeam is obtained by neglecting the
piezoelectricity effects of the surface due to the lack
of strong and comprehensive theoretical model in the
literature.

2.2 Bulk energy

Piezoelectric materials are able to convert the applied
electrical potential load into mechanical displacements
(converse piezoelectric effect). To consider the electro-
mechanical behavior of the piezoelectric nanobeam, it
is assumed that the electric potential variation between
the top and the bottom surface layers is equal to VP,
and the piezoelectric nanobeam is polarized along the
z-direction; hence, the one-dimensional constitutive
law for the considered piezoelectric nanobeam can be
expressed as [46–48]:

σx = Eεx − ē31Ez

Dz = ē31εx + λ33Ez (13)
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where E is the Young’s modulus of the bulk (with the
unit N/m2), Ez = VP/h is the one-dimensional elec-
trical field vector, Dz is the one-dimensional electric
displacement, ē31 and λ33 are transversal piezoelectric
coefficient and permittivity constant, respectively. The
surface equilibrium relations are given by:

τ+
βi,β − σ+

i z = ρsa+
i

τ−
βi,β + σ−

i z = ρsa−
i (14)

where ( ),x represents the derivative with respect to
β, and “±” denotes the upper and the bottom sur-
faces, respectively. ρs is the mass density of surface
layer, τβi is the surface stress, and σi z is the surface
force per unit area (bulk stress). In Eq. (14), β = x, y
and i = x, y, z. Equation (14) first was introduced in
the literature by Gurtin and Murdoch. In the classical
beam theories, bulk stress σz is assumed to be zero.
This assumption violates the surface equilibrium, Eq.
(14). To satisfy equilibrium conditions on the surface
layer, this assumption is ignored. According to [49], it
is assumed that σz varies linearly through the thickness
of the nanobeam as follows:

σz = 1

2

(
σ+
z + σ−

z

) + 1

h

(
σ+
z − σ−

z

)
z (15)

where σ+
z and σ−

z are the stresses at the top and the
bottom layers, respectively. Substituting Eq. (15) into
Eq. (14), and noticing that the top and the bottom dis-
placements are identical, gives:

σz = 2z

h

(
τ0

∂2w(x, t)

∂x2
− ρs ∂2w(x, t)

∂t2

)
(16)

The total axial stress in the bulk material of the
nanobeam is:

σx = Eεx + νσz − ē31Ez (17)

where ν is the Poisson’s ratio of the nanobeam bulk
material. The stored strain energy in the bulk material
of the piezoelectric nanobeam can be obtained by [50]:

UB = 1

2

∫
V

σxεxdV − 1

2

∫
V

DzEzdV (18)

By substituting Eqs. (7), (13), and (17) into Eq. (18),
one can obtain:

UB = EA

2

∫ L

0

(
u′
0 + w′2

2

)2

dx

+1

2

(
EI − 2ν I τ0

h

) ∫ L

0

(
w′′)2 dx

+ν Iρs

h

∫ L

0
ẅw′′dx

−VPbē31
2

∫ L

0

(
w′)2 dx (19)

where I denotes the area moment of inertia of the cross
section of the nanobeam, A denotes the area of the cross
section, and the dot denotes the derivative with respect
to t .

2.3 Equation of motion

The total strain energy of the nanobeam which is com-
posed of the strain energies of the bulk and of the sur-
face layer can be found in the form of:

U = UB +US (20)

Similarly, the total kinetic energy of the nanobeam
which is composed of the kinetic energies of the bulk
and of the surface layer is defined as:

T = (ρA + ρs As)

2

∫ L

0
ẇ2dx (21)

The work done by the electrostatic and van der Waals
forces is equal to:

WNC =
∫ L

0

∫ w

0
(Fes + FvdW) dwdx (22)

The governing equation of the motion is obtained by
the extended Hamilton principle, which is defined as
follows:

∫ t2

t1
δHdt =

∫ t2

t1
δ (T −U + WNC ) dt = 0 (23)

Substituting Eqs. (20)–(22) into Eq. (23), and applying
the variational approach and grouping the terms, the
governing equation of motion is obtained as follows:
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(EI)eff
∂4w(x, t)

∂x4
+ (ρA)eff

∂2w(x, t)

∂t2

+ (ρ I )eff
∂4w(x, t)

∂x2∂t2
−

[
Fs + FP

+ (EA)eff

2L

∫ L

0

(
∂w(x, t)

∂x

)2

dx

]
∂2w(x, t)

∂x2

= 1

2
ε0

bCn (VD + VAC cos(Ωt))2

(g0 − w(x, t))2
H1(x)

− 1

2
ε0

bCnV 2
D

(g0 + w(x, t))2
H2(x)

+ Ahb

6π (g − w(x, t))3
H1(x)

− Ahb

6π (g + w(x, t))3
H2(x) (24)

where:

F = Fes + FvdW, (EI)eff = EI + Es I s

−2ν I τ0
h

, (EA)eff = EA + Es As,

(ρA)eff = ρA + ρs As, (ρ I )eff = 2ν Iρs

h
,

FS = τ0(4b + 2h), FP = −VPbē31,

VD = VDC − VP (25)

The nanobeam is clamped at both ends, and hence, the
boundary conditions are:

w(0, t) = w(L , t) = 0,
∂w(0, t)

∂x
= ∂w(L , t)

∂x
= 0

(26)

For the sake of simplicity, the following dimensionless
quantities are introduced:

w∗ = w

g0
, x∗ = x

L
, t∗ = t

t̃
, Ω∗ = Ω t̃ (27)

where t̃ (i.e., the characteristic time) is defined as:

t̃ =
√

(ρA)eff L4

(EI)eff
(28)

Substituting Eq. (27) into Eqs. (25) and (26), dropping
the stars for simplicity, the dimensionless equation of
motion by considering viscous damping and the asso-
ciated boundary conditions can be written as:

∂4w

∂x4
+ ∂2w

∂t2
− [α1 + α2 + α3Γ (w,w)]

∂2w

∂x2

+α4
∂4w

∂x2∂t2
+ α5

∂w

∂t

= α6
[VD + VAC cos(Ωt)]2

(1 − w)2
H1(x)

−α6
V 2
D

(1 + w)2
H2(x)

+α7
H1(x)

(1 − w)3
− α7

H2(x)

(1 + w)3
(29)

w(0, t) = w(1, t) = 0,
∂w(0, t)

∂x
= ∂w(1, t)

∂x
= 0

(30)

The function Γ and the nondimensional parameters
appearing in Eq. (29) are defined as:

Γ ( f1(x, t), f2(x, t)) =
∫ 1

0

∂ f1
∂x

· ∂ f2
∂x

dx,

α1 = FpL2

(EI)eff
, α2 = FSL2

(EI)eff
, α3 = (EA)effg0

2(EI)eff
,

α4 = 2ν Iρs

hL2(ρA)eff
, α5 = cL2

√
(ρA)eff(EI)eff

,

α6 = 1

2

εbCnL4

g30(EI)eff
, α7 = ÃbL4

6πg40(EI)eff
,

H1(x) = H

(
x − L − lu

2L

)
− H

(
x − L + lu

2L

)
,

H2(x) = H

(
x − L − ld

2L

)
− H

(
x − L + ld

2L

)

(31)

3 The reduced-order model

To generate the reduced-order model of the sys-
tem using the Galerkin discretization method, the
nanobeam deflection is approximated as:

w(x, t) =
n∑

i=1

qi (t)ϕi (x) (32)

where qi (t) is the i th time-dependent generalized
coordinate, and ϕi (x) is the i th eigenfunction of the
clamped–clamped linear undampednanobeam, consid-
ering the surface effects and axial load due to piezo-
electric actuation. Note here that ϕi (x) is normalized
such that

∫ 1
0 ϕiϕ jdx = δi j and satisfies the following

eigenvalue problem:
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ϕ I V
i = (α1 + α2)ϕ

′′
i + ω2

non,i (ϕi + α4ϕ
′′
i )

ϕi (x) = 0ϕ′
i (x) = 0 at x = 0 and x = 1 (33)

whereωnon,i is the i th dimensionless natural frequency
of the nanobeam. To include complete contribution of
the nonlinear electrostatic and van der Waals forces,
Eq. (29) ismultiplied byϕn

(
1 − w2

)3
. SubstitutingEq.

(32) into the resulting equation and using Eq. (33) to
eliminate ϕ I V

i , and integrating the outcome from x = 0
to 1, would reduce it to nonlinear differential equations
in terms of generalized coordinates, qi (t). According
to [5,8], it is sufficient to consider one mode to obtain
the discretized equation of NEMS systems. One-mode
approximation yields to:

(
q̈1 + α5q̇1 + ω2

1q1
) (

1 − 3q21

∫ 1

0
ϕ4
1dx

+ 3q41

∫ 1

0
ϕ6
1dx − q61

∫ 1

0
ϕ8
1dx

)

+
(
q̈1 + ω2

1q
) (

α4 − 3α4q
2
1

∫ 1

0
ϕ′′
1ϕ

3
1dx

+ 3α4q
4
1

∫ 1

0
ϕ′′
1ϕ

5
1dx − α4q

6
1

∫ 1

0
ϕ′′
1ϕ

7
1dx

)

−α3q
3
1Γ (ϕ1, ϕ1)

(∫ 1

0
ϕ′′
1ϕ1dx − 3q21

∫ 1

0
ϕ′′
1ϕ

3
1dx

+ 3q41

∫ 1

0
ϕ′′
1ϕ

5
1dx − q61

∫ 1

0
ϕ′′
1ϕ

7
1dx

)

= α6 (VD + VAC cos(Ωt))2
(∫ uba

lba
ϕ1dx

+ 2q1

∫ uba

lba
ϕ2
1dx − 2q31

∫ uba

lba
ϕ4
1dx

− q41

∫ uba

lba
ϕ5
1dx

)

−α6V
2
D

(∫ ubd

lbd
ϕ1dx − 2q1

∫ ubd

lbd
ϕ2
1dx

+ 2q31

∫ ubd

lbd
ϕ4
1dx − q41

∫ ubd

lbd
ϕ5
1dx

)

+α7

(∫ uba

lba
ϕ1dx + 3q1

∫ uba

lba
ϕ2
1dx

+ 3q21

∫ uba

lba
ϕ3
1dx + q31

∫ uba

lba
ϕ4
1dx

)

−α7

(∫ ubd

lbd
ϕ1dx − 3q1

∫ ubd

lbd
ϕ2
1dx

+ 3q21

∫ ubd

lbd
ϕ3
1dx − q31

∫ ubd

lbd
ϕ4
1dx

)
(34)

where:

lba = L − lu
2L

, uba = L + lu
2L

, lbd = L − ld
2L

,

ubd = L + ld
2L

(35)

Eq. (34) can be numerically integrated using the
Runge–Kutta technique to simulate the dynamic behav-
ior of the nanobeam.

4 Static deflection and the corresponding natural
frequencies

The nanobeam deflection under electrostatic excitation
is composed of the dynamic component u(x, t), due to
the AC voltage and the static component ws(x), due to
the DC voltage:

w(x, t) = ws(x) + u(x, t) (36)

To calculate the static deflection and boundary condi-
tions, all time-varying terms in Eqs. (29) and (30) are
set equal to zero, and the following results are obtained:

w I V
s (x) − [α1 + α2 + α3Γ (ws, ws)]w

′′
s

= α6
V 2
D

(1 − ws)
2 H1(x) − α6

V 2
D

(1 + ws)
2 H2(x)

+α7
H1(x)

(1 − ws)
3 − α7

H1(x)

(1 + ws)
3 (37)

ws(x = 0, 1) = 0 and w′
s(x = 0, 1) = 0 (38)

Tocalculate the static deflection,ws canbe expressed
as:

ws =
M∑
i=1

ciϕ
s
i (39)

where ϕs
i is a comparison function, and ci is an

unknown constant coefficient which can be obtained
using the Galerkin method. Substituting Eq. (39) in
Eq. (37) and multiplying the resulting equations by ϕs

n ,
and integrating the outcome from x = 0 to 1, results
in the system of M algebraic equations. The constant
coefficients are then obtained by solving these equa-
tions. According to the [5], one-mode approximation
is sufficient to obtain the static deflection. Substituting
Eq. (36) in Eq. (29) and using Eq. (37) to eliminate the
static equilibrium position, and expanding the electro-
static and dispersion forces around the stability point,
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yields to equations governing the dynamic behavior of
the nanobeam:

ü + α5u̇ + uIV − [α1 + α2 + α3Γ (ws, ws)] u
′′

− 2α3Γ (ws, u)u − 2α3Γ (ws, u)w′′
s − α3Γ (u, u)w′′

s

−α3Γ (u, u)u′′ + α4ü
′′

= α61

⎛
⎝

2V 2
D

(1−ws )
3 u + 3V 2

D

(1−ws )
4 u

2 + 4V 2
D

(1−ws )
5 u

3

+ 2VDVAC cos(Ωt)
(1−ws )

2 + 4VDVAC cos(Ωt)
(1−ws )

3 u

⎞
⎠

−α62

(
−2V 2

D

(1 + ws)
3 u + 3V 2

D

(1 + ws)
4 u

2 − 4V 2
D

(1 + ws)
5
u3

)

+α71

(
3

(1 − ws)
4 u + 6

(1 − ws)
5
u2 + 10

(1 − ws)
6 u

3
)

−α72

( −3

(1 + ws)
4 u + 6

(1 + ws)
5
u2 − 10

(1 + ws)
6 u

3
)

(40)

According to [51], V 2
AC is dropped due to the fact

V 2
AC � V 2

D . The linearized equation of the undamped
free vibration of the double clamped nanobeam can be
obtained by dropping the forcing, damping, and the
nonlinear terms of Eq. (40) as follows:

ü + uIV − [α1 + α2 + α3Γ (ws, ws)] u
′′

− 2α3Γ (ws, u)w′′
s + α4ü

′′

= α61
2V 2

D

(1 − ws)
3 u + α62

2V 2
D

(1 + ws)
3 u

+α71
3

(1 − ws)
4 u + α72

3

(1 + ws)
4 u (41)

The fundamental natural frequencies and the corre-
sponding mode shapes can be obtained by solving the
eigenvalue problem associated with Eq. (41). Letting
u = φn(x)eiωn t reduces Eq. (41) to:

φ I V
n − ω2

nφn + α4ω
2
nφ

′′
n − [α1 + α2 + α3Γ (ws, ws)]φ

′′
n

− 2α3Γ (ws, φn)w
′′
s

−α61
2V 2

D

(1 − ws)
3φn − α62

2V 2
D

(1 + ws)
3φn

−α71
3

(1 − ws)
4φn − α72

3

(1 + ws)
4φn = 0 (42)

where φn(x) is the nth mode shape, and ωn is the nth
nondimensional natural frequency.

5 Perturbation analysis

In order to determine approximate solution of the non-
linear distributed parameter system, the multiple-scale

method is directly applied to the partial differential
equation of motion and associated boundary condi-
tions. Therefore, the second-order uniform solution is
expressed in the form of [52]:

u(x, t; ε) = εu1(x, T0, T1, T2) + ε2u2(x, T0, T1, T2)

+ ε3u3(x, T0, T1, T2) + · · · (43)

where ε is a small dimensionless book keeping para-
meter and T0 = t , T1 = εt and T2 = ε2t are different
timescales. Using chain rule, time derivatives can be
written as:
d

dt
= D0 + εD1 + ε2D2 + · · ·

d2

dt2
= D0 + 2εD0D1 + ε2

(
D2
1 + 2D0D2

)
+ · · ·

(44)

where Dn = ∂/∂Tn . In order to investigate the princi-
ple parametric resonances of the system, the damping
coefficient and the excitation amplitude are scaled as:

C = ε2C, VAC = ε2VAC (45)

Substituting Eqs. (43)–(45) into Eq. (40) and equating
the terms of like powers of ε, the following results are
achieved:

O(ε) : L(u1) = D2
0u1 + uIV

1 + α4ü
′′
1

− [α1 + α2 + α3Γ (ws, ws)] u
′′
1 − 2α3Γ (ws, u1) w′′

s

− 2α61V 2
D

(1 − ws)
3 u1 − 2α62V 2

D

(1 + ws)
3 u1 − 3α71

(1 − ws)
4 u1

− 3α72

(1 + ws)
4 u1 = 0 (46)

O(ε2) : L(u2) = −2D0D1u1 − 2α4D0D1u
′′
1

+ 2α3Γ (ws, u1) u
′′
1 + α3Γ (u1, u1) w′′

s

+ 3α61V 2
D

(1 − ws)
4 u

2
1 − 3α62V 2

D

(1 + ws)
4 u

2
1 + 6α71

(1 − ws)
5
u21

− 6α72

(1 + ws)
5
u21 + 2P1(x) cos(ΩT0) (47)

O(ε3) : L(u3) = −2D0D1u2 − D2
1u1 − 2D0D2u1

−CD0u1 − α4
(
2D0D1u

′′
2 + 2D0D2u

′′
1 + D2

1u
′′
1

)
+ 2α3Γ (u1, u2) w′′

s + α3Γ (u1, u1) u
′′
1

+ 2α3Γ (ws, u1) u
′′
2 + 2α3Γ (ws, u2) u

′′
1

+ 6α61V 2
D

(1 − ws)
4 u1u2 − 6α62V 2

D

(1 + ws)
4 u1u2

+ 12α71

(1 − ws)
5
u1u2 − 12α72

(1 + ws)
5
u1u2 + 4α61V 2

D

(1 − ws)
5
u31
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+ 4α62V 2
D

(1 + ws)
5
u31 + 10α71

(1 − ws)
6 u

3
1

+ 10α72

(1 + ws)
6 u

3
1 + 4P2(x) cos(ΩT0) (48)

where

P1(x) = α61VDVAC
(1 − ws)

2 , P2 (x) = α61VDVAC
(1 − ws)

3 (49)

The boundary conditions are similar for all orders and
are given by:

u(x = 0, 1) = 0 and u′(x = 0, 1) = 0 (50)

The general solution of Eq. (46) and the associated
boundary conditions can be expressed as:

u1 = A(T1, T2)e
iωT0φ(x) + Ā(T1, T2)e

−iωT0φ(x)

(51)

where φ(x) and ω are the mode shape and the corre-
sponding natural frequency for the considered mode,
respectively. Substituting Eq. (51) into Eq. (47) and
considering the solvability condition, one realizes that
A is just the slow timescale complex-valued function,
i.e., A = A(T2), which can be obtained by applying the
solvability conditions at third order . By eliminating the
secular terms, the second-order equation reduces to:

L(u2) =
(
A2e2iωT0 + 2AĀ + Ā2e−2iωT0

)
h(x)

+2P1(x) cos(ΩT0) (52)

where h(x) is defined as follows:

h(x) = 2α3Γ (ws, φ) φ′′ + α3Γ (φ, φ)w′′
s

+ 3α61V 2
D

(1 − ws)
4φ2 − 3α62V 2

D

(1 + ws)
4φ2

+ 6α71

(1 − ws)
5
φ2 − 6α72

(1 + ws)
5
φ2 (53)

The solution of the second-order equation can be found
in the form of:

u2 = ψ1(x)A
2e2iωT0 + 2ψ2(x)AĀ + ψ1(x) Ā

2e−2iωT0

+ψ3(x)
(
eiΩT0 + e−iΩT0

)
(54)

whereψ1(x),ψ2(x), andψ3(x) are the solutions of the
following boundary value problems:

ψ I V
1 − 4ω2ψ1 − 4α4ω

2ψ ′′
1 − [α1 + α2

+ α3Γ (ws, ws)]ψ
′′
1 − 2α3Γ (ws, ψ1) w′′

s

− 2α61V 2
D

(1 − ws)
3ψ1 − 2α62V 2

D

(1 + ws)
3ψ1

− 3α71

(1 − ws)
4ψ1 − 3α72

(1 + ws)
4ψ1 = 2α3Γ (ws, φ) φ′′

+ α3Γ (φ, φ)w′′
s + 3α61V 2

D

(1 − ws)
4 φ2 − 3α62V 2

D

(1 + ws)
4 φ2

+ 6α71

(1 − ws)
5
φ2 − 6α72

(1 + ws)
5
φ2 (55)

ψ I V
2 − [α1 + α2 + α3Γ (ws, ws)]ψ

′′
2

− 2α3Γ (ws, ψ2) w′′
s

− 2α61V 2
D

(1 − ws)
3ψ2 − 2α62V 2

D

(1 + ws)
3ψ2 − 3α71

(1 − ws)
4ψ2

− 3α72

(1 + ws)
4ψ2 = 2α3Γ (ws, φ) φ′′

+ α3Γ (φ, φ)w′′
s + 3α61V 2

D

(1 − ws)
4 φ2 − 3α62V 2

D

(1 + ws)
4 φ2

+ 6α71

(1 − ws)
5
φ2 − 6α72

(1 + ws)
5
φ2 (56)

ψ I V
3 − Ω2ψ3 − α4Ω

2ψ ′′
3

− [α1 + α2 + α3Γ (ws, ws)]ψ
′′
3

− 2α3Γ (ws, ψ3)w′′
s

− 2α61V 2
D

(1 − ws)
3ψ3 − 2α62V 2

D

(1 + ws)
3ψ3 − 3α71

(1 − ws)
4ψ3

− 3α72

(1 + ws)
4ψ3 = P1(x) (57)

In the case of principle parametric resonance, in order
to show the nearness of the excitation frequency Ω to
twice of the natural frequency ω, detuning parameter
σ is described in the form of:

Ω = 2ω + ε2σ (58)

Substituting Eqs. (51), (54), and (58) into Eq. (48)
yields to:

L(u3) =
[
−iω

(
2A′ (φ + α4φ

′′) + ACφ
) + χ(x)A2 Ā

+ ξ(x) ĀeiσT2
]
eiωT0 + c.c. + NST (59)

where A′ is the derivative of A with respect to T2, and
c.c. denotes the complex conjugate of prior terms, and
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NST denotes nonsecular terms. The functionsχ(x) and
ξ(x) are defined in the “Appendix.” Since the corre-
sponding homogeneous problem of Eq. (59) is self-
adjoint (the adjoints are φ(x)e±iωT0), the solvability
conditions can be obtained by multiplying the right-
hand side of Eq. (59) by φ(x)e−iωT0 and integrating
the outcome from x = 0 to x = 1, as follows:

iω
(
2mA′ + μA

) + 8SA2 Ā − F ĀeiσT2 = 0 (60)

where

μ =
∫ 1

0
Cφ2(x)dx,

m =
∫ 1

0

(
φ2(x) + α4φ

′′(x)φ(x)
)
dx,

S = −1

8

∫ 1

0
χ(x)φ(x)dx, F =

∫ 1

0
ξ(x)φ(x)dx .

(61)

Expressing A in the polar form is as follows:

A = 1

2
a(T2)e

iβ(T2) (62)

where a and β are real-valued functions of T2 repre-
senting the amplitude and the phase of the response,
respectively. Substituting Eq. (62) into Eq. (60) and
separating the real and imaginary parts, and introduc-
ing γ = σT2 − 2β, the modulation equations can be
expressed as:

a′ = −1

2

μa

m
+ 1

2

Fa sin (γ )

ωm

aγ ′ = −2Sa3

ωm
+ Fa cos (γ )

ωm
+ σa (63)

The steady-state response can be determined using the
fact that a′ and γ ′ are constants in the steady state.
Hence, letting a′ = γ ′ = 0 in Eq. (63), one obtains
the fix points (a0, γ0) of the system. Consequently, the
frequency response function can be obtained by elimi-
nating γ0 from the achieved equations, as follows:

(
2Sa30 − σωma0

)2 + ω2μ2a20 = F2a20 (64)

According to Eq. (64), there are two possibilities of
solutions: trivial response (a0 = 0) and nontrivial
response (a0 �= 0). The stability of the nontrivial peri-
odic solutions of Eq. (64) can be determined by evalu-
ating the eigenvalues of the Jacobian matrix of Eq. (63)
at fixed points (a0, γ0), given by:

[
1
2
F sin(λ0)−ωμ

ωm
1
2
Fa0 cos(λ0)

ωm

− 4Sa0
ωm − F sin(λ0)

ωm

]
(65)

It is convenient to determine the stability of the trivial
fixed points from the Cartesian form of the modula-
tion equation rather than the Polar form. Introducing
A = 1

2 (p − iq) eiν(T2) into Eq. (60), and separating
the real and imaginary parts, modulation equation in
the Cartesian form can be obtained as:

p′ = S

ωm

(
p2q + q3

)
− 1

2

μp

m
−

(
1

2

F

ωm
− ν

)
q

q ′ = − S

ωm

(
p3 + pq2

)
− 1

2

μq

m
−

(
1

2

F

ωm
+ ν

)
p

(66)

where p and q are real-valued functions and ν = 1
2σ .

The stability of the trivial fixed points can be deter-
mined by evaluating the eigenvalues of the Jacobian
matrix of Eq. (66) at trivial state p0 = q0 = 0.

6 Results and discussion

In this section, the numerical results are presented.
The numerical simulations are performed for the case
study of the PZT-5H nanobeam, with physical prop-
erties listed in Table 1 (mechanical properties of the
surface layer were adopted from [53]).

Figure 2 shows the effect of the surface energy
on the variation in the normalized distance between
the nanobeam midpoint and the substrate versus the
applied DC voltage. The piezoelectric polarization
voltage is considered to be zero. As it can be seen, sur-
face effects can remarkably influence the pull-in volt-
ages. It is seen that in the presence of the surface effects
pull-in occurs at VDC ≈ 3.42 V, while in the absence
of the surface effects, pull-in occurs at VDC ≈ 2.32 V.

Table 1 Physical properties of the nanobeam

L = 1 nm Es = 7.56N/m

b = 6 nm ρs = 7.5 × 10−6 kg/m2

h = 4 nm lu = 80 nm τ0 = 1 N/m

ld = 20 nm ν = 0.31

g0 = 4 nm ē31 = −6.55 C/m2

E = 126 GPa ε0 = 8.854 × 10−12 F/m

ρ = 7500 kg/m3
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Fig. 2 Influence of the surface effects on the normalized mid-
point static deflection for various values of VDC; VP = 0 V

This result is based on the fact that the surface effect
increases the stiffness of the nanobeam. In addition,
the surface effect has also a significant influence on the
midpoint static deflection of the nanobeam. It can be
found that the central displacement of the nanobeam in
the presence of the surface effects is always less than
the central displacement in the absence of the surface
effects for any applied DC voltage prior to the pull-in
instability.

Figure 3 illustrates the gap between themidpoint and
the substrate while varying the DC voltage for the three
different piezoelectric actuation voltages. This figure
shows that piezoelectric actuation with positive polar-
ity increases the pull-in voltage, since it generates ten-
sile axial force and increases the nanobeam stiffness.
Negative polarity has just a diverse effect, since it gen-
erates compression axial load in the nanobeam. As it
can be seen, the piezoelectric actuation significantly
shifts the equilibrium manifolds and consequently the
pull-in voltages. For example, pull-in occurs at VDC ≈
3.81 V for the positive polarity VP = 0.2 V compared
to VDC = 3.02 V for the negative polarity equal to
VP = −0.2 V. It is noted that piezoelectric actuation
can be considered as a design parameter to control the
system pull-in instability.

Figure 4 depicts the effect of van derWaals forces on
the normalized maximum midpoint static deflection of
the nanobeam. This figure shows the obtained results
in the absence and presence of the van derWaals forces
for VP = 0 V, and two different initial gaps g0 = 4 nm
and g0 = 2 nm.As it can be seen, while g0 = 4 nm two
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Fig. 3 Normalized midpoint static deflection versus VDC, for
three different values of piezoelectric voltages
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Fig. 4 Influence of the van der Waals forces on the midpoint
normalized static deflection for various values of VDC;VP = 0 V

curves differ slightly from each other, hence, the van
derWaals forces do not provide considerable effects on
the equilibrium positions in this case. However, while
the gap width is equal to 2 nm, van der Waals forces
significantly affect the pull-in voltages and the equilib-
rium positions. As it is seen, by considering the van der
Waals forces, pull-in occurs atVDC ≈ 0.77 V;however,
by neglecting the van der Waals forces, pull-in occurs
at VDC ≈ 1.42 V. This remarkable influence can be
due to the fact that the van der Waals forces dominate
the midplane stretching for the smaller initial gaps. It
is worth mentioning that there exists rather too much
static deflection while no DC voltage is applied. This
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Fig. 5 Influence of the surface effects on the fundamental natural
frequency of the nanobeam for various values of VDC;VP = 0 V

deflection is due to the electrostatic interactions among
the magnetic dipoles at the atomic scales. It is worthy
to note that in the following results, the 4 nm initial gap
is used.

Figure 5 shows the influence of the surface effects
on the fundamental natural frequency of the piezoelec-
tric nanobeam for various values of the DC voltage.
The piezoelectric polarization voltage is considered to
be zero. As it can be seen, fundamental natural fre-
quency of the nanobeam decreases monotonically until
it suddenly reaches the zerowhere it escapes to the sub-
strate (i.e., pull-in instability). This Fig. 5 also indicates
that the surface effects have significantly influenced the
natural frequency and the pull-in voltage as they are
increased in the presence of the surface effects.

Figure 6 shows the influence of the piezoelectric
actuation on the fundamental natural frequency. Piezo-
electric actuation significantly affects the natural fre-
quency of the nanobeam. As the piezoelectric polar-
ity increases, the pull-in voltage and the fundamental
natural frequency increase. Fundamental natural fre-
quency decreases monotonically until it reaches the
pull-in point for all cases.

Figure 7 illustrates the frequency–response curve of
the piezoelectric nanobeam near the principal paramet-
ric resonance in the presence of the surface effects. The
response of nanoresonator is investigated for VDC =
1 V, VP = 0 V, VAC = 0.9 V, and the quality fac-
tor of Q = 1000. The damping coefficient is related
to the quality factor by Q = ω1/C , where ω1 is the
fundamental natural frequency of the nanobeam. The
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Fig. 6 Influence of the different piezoelectric actuation levels on
the fundamental natural frequency of the nanobeam for various
values of VDC
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Fig. 7 Frequency–response curve near principal parametric res-
onance; VDC = 1 V, VP = 0.0 V, and VAC = 0.9 V

parametric frequency–amplitude curve consists of one
trivial branch and two nontrivial steady-state branches.
It is seen that frequency–response branches are tilted to
the right, which represents a hardening-like behavior.

Figure 7 depicts a sharp transition between the
trivial response and the large-amplitude subharmonic
response due to the parametric excitation. For certain
values of the excitation frequency, there are multiple
stationary solutions. According to Fig. 7, in the region
I, the system has only one trivial stable solution. In
the second region, there exist two possibilities for the
solution, one unstable trivial solution and a stable non-
trivial solution. For excitations in the region III, the
system has a single stable trivial solution and two non-
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trivial solutions, one stable and one unstable. The sys-
tem may lay on either branches depending on the ini-
tial conditions. The existence of the stable and unsta-
ble manifolds in the multi-valued frequency–response
curves results in bifurcations in the system. As it is
seen, while the frequency is swept up, the response of
the system remains trivial until it reaches the super-
critical pitchfork bifurcation point A where the para-
metric response is activated. At this point, a new sta-
ble nontrivial branch appears in the response while the
trivial solution loses the stability. As sweeping con-
tinues, at subcritical pitchfork bifurcation point B, the
trivial solution turns stable and another unstable non-
trivial solution appears. Depending on the initial condi-
tions, response may lay on either the upper or the lower
branches. In addition, forward and backward frequency
sweeps result in jumps and hysteresis in the response.
For instance, a forward sweep passing point D results
in a jump to the lower stable branch and a backward
sweep passing point B results in a jump to the upper
stable branch. This region also indicates the hysteretic
response in the nanobeam. As it is seen, the numeri-
cal results are in good agreement with the perturbation
results.

Figure 8 shows the trivial state stability boundaries
as a function of AC voltage for two different values
of normalized damping parameters and VDC = 1 V,
VP = 0 V while considering the surface effects. The
region inside the wedge denotes the instability zone,
which along its boundaries, the catastrophic bifurca-
tions occur. Points A and B are the pitchfork bifurca-
tions corresponding to Fig. 7. As it is seen, increas-
ing the AC voltage results in increasing the instability
zone width. Note that the damping raises the instability
region, and it rounds off the V-shape region bottom, so
a nonzero voltage is needed for transition to instability.

Figure 9 illustrates the effect of surface energy on
the principal parametric resonance. It follows from the
figure that the influence of the surface effect is remark-
able. As it is seen, surface effect significantly reduces
the stable nontrivial manifold amplitude, whereas it has
slightly altered the unstable nontrivial manifold. Gen-
erally speaking, considering the surface effects leads
to a reduction in the parametric response. It is seen
that the trivial unstable response is triggered between
−0.125 < σ < 0.125 in the absence of the surface
effects compared to−0.07 < σ < 0.07 in the presence
of the surface effects. It is due to the fact that surface
effect increases the bending stiffness and amplifies the
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Fig. 8 Trivial state stability boundaries as a function of AC volt-
age for two different values of damping parameter; VDC = 1 V,
VP = 0 V
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Fig. 9 Influence of the surface effects on the parametric
frequency–response curves; VDC = 1 V, VP = 0 V and VAC =
0.9 V

geometric nonlinearity which reduces the parametric
response region. As Fig. 9 exhibits, the surface effect
significantly alters the locus of the bifurcation points
(significantly shifted toward the σ = 0) and the hys-
teresis region which can lead to serious consequences
on the stability of the nanoresonator. Tovalidate the per-
turbation results, numerical simulation is carried out,
and as it can be seen, analytical results are in excellent
agreement with those obtained by numerical simula-
tion.

Influence of different piezoelectric voltages on the
parametric resonance is investigated in Fig. 10. The
surface effect is considered for all cases. It is seen that
the frequency–response curves are of hardening type.
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Fig. 10 Frequency–response curves for different levels of the piezoelectric voltages representing hardening effect; VDC = 1 V,
VAC = 0.9 V, a VP = −0.2 V, b VP = 0.0 V, c VP = 0.2 V
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Fig. 11 Influence of the different DC voltages on the parametric
frequency–response curves; VP = 0 V and VAC = 0.9 V

According to Fig. 10, the parametric response region
and the bifurcation points’ loci are strongly affected
by the polarity of the piezoelectric actuation. As it
is seen, the negative polarity actuation enhances the
parametric response of the nanobeam and shifts the
frequency–response curve to the left (see Fig. 10(a)).
It also increases the zero-solution instability zone. As
the piezoelectric polarity increases, the nontrivial man-
ifold amplitude decreases. As mentioned before, it is
due to the fact that positive piezoelectric polarization
increases the system stiffness. The positive polarity
actuation just has the opposite effect and shifts the
frequency–response curve to the right of the frequency
axis (see Fig. 10c). In all cases, two jumps occur in the
system. It is worth mentioning that piezoelectric actu-
ation can be used as a possible method for improving
the signal-to-noise ratio and modulating the response.
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Fig. 12 Influence of the different AC voltages on the parametric
frequency–responce curves; VP = 0 V and VDC = 1 V

Figure 11 represents the frequency–response curves
near the principal parametric resonance for two differ-
ent levels of the DC voltage actuation and VP = 0 V,
VAC = 0.9 V. It can be found that increasing the DC
voltage load leads to the softening behavior of the
nanoresonator. Since, the softening effect of the elec-
trostatic nonlinearity dominates the hardening effect
of the geometric nonlinearity. This figure exhibits that
increasing the DC voltage decreases the stable and
the unstable nonzero solution manifold amplitudes. It
is seen that increasing the DC voltage level signifi-
cantly increases the trivial solution instability region
and affects the pitchfork bifurcation points’ loci. The
analytical results are in excellent agreement with those
obtained by numerical simulation.

Figure 12 shows the influence of the AC voltage
actuation on the parametric frequency–response curves
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Fig. 13 Influence of the surface effects on the force–response
curves; VDC = 1 V, VP = 0 V and σ = 0.05

for VDC = 1 V and VP = 0 V. As it is seen, increasing
the AC voltage actuation increases the stable nonzero
solutionmanifold amplitude and decreases the unstable
nonzero solution manifold amplitude. It also increases
the frequency band which the nanoresonator settles to
unstable zero-amplitude solution. It illustrates that, by
increasing the AC voltage load, the supercritical pitch-
fork bifurcation points significantly shift to lower fre-
quencies, whereas subcritical bifurcation points shift to
higher frequencies. According to this figure, numerical
simulation and the perturbation results are in excel-
lent agreement for VAC = 0.5 V and VAC = 1.5 v
while there is a slight difference between the analytical
and the numerical methods in predicting the response
amplitude for VAC = 2.5 V. As it is seen, perturba-
tion method fails to predict the system behavior for
higher levels of the AC voltage actuation. Hence, an
alternative technique such as the shooting method is

recommended to capture the precise global behavior of
the nanoresonator.

Figure 13 shows the influence of the surface effects
on the characteristic curves of the response amplitude
versus the excitation amplitude VAC corresponding to
static loading of Fig. 7 and σ = 0.05. As it is seen,
both curves are qualitatively similar. For instance, in the
absence of the surface effects and 0.16 < VAC < 0.39,
there are three solutions, one stable trivial solution and
two nontrivial solutions one of which is stable. There
appear two bifurcation points in the response, i.e., the
saddle-node bifurcation point A and the subcritical
pitchfork bifurcation point B. As VAC is increased, the
amplitude remains zero until it reaches the bifurcation
point B, as VAC is increased further, a sudden jump
takes place from point B to the upper stable branch. By
reversing this procedure, the solution decreases slowly
along the upper branch as it reaches the saddle-node
bifurcation point A, where it experiences a jump down
to the lower stable branch. It can be found that in the
presence of the surface effects, the parametric response
profoundly decreases and also the bifurcation points’
loci shift to the right.

Figure 14 shows force–response curves in the pres-
ence and absence of the surface effects for the para-
meters of Fig. 7 and σ = −0.05, respectively. As it
is seen, both diagrams are qualitatively similar. Differ-
ent detuning parameters lead to different solutions. For
instance, according to the Fig. 14a, when σ < 0.69,
there is just a stable zero solution. Above this thresh-
old (supercritical pitchfork bifurcation point), there are
two solutions: a stable nonzero solution and an unstable
zero solution.AsVAC is increased slowly, the amplitude
remains zero until it reaches the bifurcation point. As
VAC is increased further, the response amplitude grows

Fig. 14 Influence of the
surface effects on the
force–response
curves;VDC = 1 V,
VP = 0 V and σ = −0.05, a
considering the surface
effects, b neglecting the
surface effects
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along the upper stable branch. By reversing this pro-
cedure, the solution decreases slowly along the upper
stable nontrivial branch as it reaches the bifurcation
point and the zero amplitude. The system would expe-
rience neither a jump nor a hysteresis in this case. It
can be found that in the presence of the surface effects,
the parametric response profoundly decreases and also
the bifurcation point loci shift to the right.

7 Conclusions

In this paper, the parametric oscillations of an elec-
trostatically actuated clamped–clamped piezoelectric
nanoresonator considering surface effects were stud-
ied. The governing equation of motion was derived
using the extended Hamilton principle. The static equi-
libria of the nanobeam under DC voltage loads were
investigated using Galerkin method. Fundamental nat-
ural frequencies of the nanobeamwere calculated using
the ROM for different values of the DC voltages. It
was shown that the effect of the van der Waals force
on the static equilibria and the pull-in voltage was
remarkable for nanoresonators of very small gaps. The
results show that by neglecting the dissipative forces,
the pull-in voltage is overestimated. The results also
suggest that piezoelectric actuation can be used as a
design parameter to control the static response and
pull-in instability by changing the nanobeam bending
stiffness. This study revealed that surface effect pro-
foundly shifts the fundamental natural frequencies, sta-
tic equilibria, and pull-in voltages, and hence, it is nec-
essary to consider them for modeling and design of the
nanoresonators. Dynamic response of the nanobeam
near principle parametric resonance was studied using
the multiple-scale method. The results indicated a
reduction in parametric response amplitude and unsta-
ble trivial region in the presence of the surface effects.
This study revealed that surface effects significantly
shifts the pitchfork bifurcation points’ loci and affects
nonlinear phenomena such as jump and hysteresis.
Accordingly, it is needed to consider surface effects for
more accurate simulation andmodeling of the nanores-
onator. Frequency–response curves have been plotted
for different voltage loads. It was shown that increas-
ing the DC load decreases parametric response ampli-
tude and increases the unstable zero-solution region.
Moreover, it could lead to softening type behavior, as
the nonlinear electrostatic term dominates the geomet-

ric nonlinearity effect. It was showed that increasing
the AC voltage load enhances the parametric response
amplitude. The results revealed that piezoelectric actu-
ation could be used as a possible method for improving
the signal-to-noise ratio and modulating the response.
Numerical simulations have been performed to vali-
date the perturbation results. It has been found that the
results are in a goodagreementwith eachother for small
enough AC voltage amplitudes. The presented results
and modeling approach can be used in the design and
optimization of novel NEMS resonators.
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