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Abstract The Noether theorem and its inverse the-
orem for the nonlinear dynamical systems with non-
standard Lagrangians are studied. In this paper, two
kinds of nonstandard Lagrangians, namely exponen-
tial Lagrangians and power-law Lagrangians, are dis-
cussed. For each case, the Hamilton principle based on
the actionwith nonstandard Lagrangians is established,
the differential equations of motion for the dynamical
systems with nonstandard Lagrangians are obtained,
and two basic formulae for the variation in Hamil-
ton action with nonstandard Lagrangians are derived.
The definitions and the criteria of the Noether symmet-
ric transformations and the Noether quasi-symmetric
transformations are given. The Noether theorem and its
inverse theoremare established,which reveal the intrin-
sic relation between the symmetry and the conserved
quantity for the systemswith nonstandardLagrangians.
Two examples are given to illustrate the application of
the results.
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1 Introduction

The Noether symmetry, namely the invariance of
Hamilton action under the infinitesimal transforma-
tions, is put forward for the first time by Noether [1]
in 1918. The presentation of the Noether symmetry
is a significant leap in physics. One can find a con-
served quantity from a Noether symmetry by using
the intrinsic relation between the conserved quantity
and the symmetry, which broke through the traditional
approaches for finding the conserved quantities by the
law of the conservation of energy of the system, the
law of the conservation of momentum, and the law of
the conservation of angular momentum. Afterward, the
theory of symmetry and conserved quantity is extended
and applied to various kinds of constrained mechanical
systems, such as holonomic nonconservative systems
[2,3], nonholonomic systems [3–6], fractional dynami-
cal systems [7–11], and dynamics with time delay [12–
15].But all these results are limited to the systemsbased
on standardLagrangians, and the systemswith nonstan-
dard Lagrangians have not been involved yet.

The nonstandard Lagrangians were entitled “non-
natural” by Arnold [16] in 1978, and they play an
important role in the nonlinear differential equations,
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such as the nonlinear second-order Riccati equations
[17] and the nonlinear differential equation with Lien-
ard type [18,19], and the dissipative systems [20,21].
In 1984, the nonstandard Lagrangians were applied
to the Yang–Mills field theory where they are used
to describe large-distance interactions in the region of
applicability of classical theory [22]. The nonstandard
Lagrangians have various forms, such as exponential
form and power-law function, and they completely dif-
fer from the standard Lagrangians which are expressed
as the difference between kinetic energy and poten-
tial energy terms. Recently, many scholars have stud-
ied the properties and the applications of nonstandard
Lagrangians, such as Musielak [23,24], El-Nabulsi
[25–32], Saha [33,34], and Dimitrijevic [35], but the
problem of the exploration and the application of non-
standard Lagrangians are still open and require deep
analysis.

In this paper, we will present the Noether theorem
and its inverse theorem for the systems based on two
kinds of actionwith nonstandardLagrangians, i.e., with
exponential Lagrangians and power-law Lagrangians.
The Hamilton principle of the systems is established,
the equations of motion of the systems are derived, and
the definitions and the criterions of the Noether sym-
metry and the Noether quasi-symmetry of the systems
are given. The intrinsic relation between the Noether
symmetry and the conserved quantity is established,
and two examples are given to illustrate the application
of the results.

2 Noether symmetry and conserved quantity for
the systems based on exponential Lagrangians

2.1 Hamilton principle and dynamical equations

Suppose that the configuration of a dynamical system is
determined by n generalized coordinates qk (k = 1, 2,
. . . , n), the standard Lagrangian of the system is L =
L (t, qk, q̇k), the actionwith an exponential Lagrangian
is defined by [26]

S =
∫ b

a
exp [L (t, qk, q̇k)]dt (1)

The isochronal variation principle

δS = 0 (2)

with commutative relation

dδqk = δdqk (k = 1, 2, . . . , n) , (3)

and fixed end-point conditions

δqk |t=a = δqk | t=b = 0 (k = 1, 2, . . . , n) (4)

can be called theHamilton principle based on the action
with exponential Lagrangian.

From the principle Eqs. (2)–(4), it is easy to obtain

exp (L)

(
∂L

∂qk
− d

dt

∂L

∂ q̇k
− ∂L

∂ q̇k

dL

dt

)

= 0 (k = 1, 2, . . . , n) (5)

Equation (5) is called the Euler–Lagrange equations
for the nonlinear dynamical system based on the action
with exponential Lagrangian [26].

2.2 Noether symmetry

Let us introduce the infinitesimal transformations of r -
parameter finite transformation group with respect to
time, generalized coordinates, and generalized veloci-
ties, i.e.,

t̄ = t+�t, q̄k
(
t̄
) = qk (t)+�qk (k = 1, 2, . . . , n)

(6)

and their expansion formulae

t̄ = t + εσ τσ (t, qs, q̇s) ,

q̄k
(
t̄
) = qk (t)+εσ ξσ

k (t, qs, q̇s) (k = 1, 2, . . . , n)

(7)

where εσ (σ = 1, 2, . . . , r) are the infinitesimal para-
meters, τσ , ξσ

k are the generators of the infinitesimal
transformations. Under the infinitesimal transforma-
tions, the action (1) will be transformed to

S (γ̄ ) =
∫ b̄

ā
exp

[
L

(
t̄, q̄k

(
t̄
)
, ˙̄qk

(
t̄
))]

dt̄ (8)

where γ̄ is a neighbor curve. The variation �S in the
action S is the principal linear part for ε in the difference
S (γ̄ ) − S (γ ), and we have

�S = δ

∫ b

a
exp (L)dt + exp (L)�t

∣∣∣ba (9)
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and

�S =
∫ b

a

{
� exp (L) + exp (L)

d

dt
�t

}
dt (10)

Then, we have

�S =
∫ b

a

{
d

dt

[
exp (L)�t + exp (L)

∂L

∂q̇k
δqk

]

+ exp (L)

(
∂L

∂qk
− d

dt

∂L

∂q̇k
− ∂L

∂q̇k

dL

dt

)
δqk

}
dt

(11)

and

�S =
∫ b

a
exp (L)

{
∂L

∂t
�t + ∂L

∂qk
�qk + ∂L

∂q̇k
�q̇k + d

dt
�t

}
dt

(12)

Substituting Eq. (7) into Eq. (11), and taking notice that

δqk = �qk − q̇k�t = εσ

(
ξσ
k − q̇kτ

σ
)
, (13)

we obtain

�S =
∫ b

a
εσ

{
d

dt

[
exp (L) τσ + exp (L)

∂L

∂q̇k

(
ξσ
k − q̇kτ

σ
)]

+ exp (L)

(
∂L

∂qk
− d

dt

∂L

∂q̇k
− ∂L

∂q̇k

dL

dt

) (
ξσ
k − q̇kτ

σ
)}

dt

(14)

The formulae (12) and (14) are the basic formulae for
the variation in the action (1).

Now, we give the definitions and the criterions of
theNoether symmetry and theNoether quasi-symmetry
for the nonlinear dynamical system based on the action
with exponential Lagrangians.

Definition 1 If the action (1) is an invariant under the
infinitesimal transformations (6) of group, i.e., for each
of the infinitesimal transformations, the formula

�S = 0 (15)

always holds, then the transformations (6) are called
the Noether symmetric transformations of the dynam-
ical system based on the action with exponential
Lagrangians.

By Definition 1 and formula (12), we can get the
following criterion.

Criterion 1 For the infinitesimal transformations (6)
of group, if the condition

exp (L)

(
∂L

∂t
�t + ∂L

∂qk
�qk + ∂L

∂q̇k
�q̇k + d

dt
�t

)
= 0

(16)

is satisfied, then the transformations (6) are theNoether
symmetric transformations for the dynamical system
based on the action with exponential Lagrangians.

The condition (16) can also be expressed as

exp (L)

(
∂L

∂t
τσ + ∂L

∂qk
ξσ
k + ∂L

∂ q̇k

(
ξ̇ σ
k − q̇k τ̇

σ
) + τ̇ σ

)

= 0 (σ = 1, 2, . . . , r) (17)

when r = 1, Eq. (17) is called the Noether identity for
the dynamical system based on the action with expo-
nential Lagrangians.

Using Criterion 1 or the Noether identity (17), one
can find the Noether symmetry of the system.

Definition 2 If the action (1) is a quasi-invariant under
the infinitesimal transformations (6) of group, i.e., for
each of the infinitesimal transformations, the formula

�S = −
∫ b

a

d

dt
(�G) dt (18)

always holds, where G = G (t, qk, q̇k), then the trans-
formations (6) are called the Noether quasi-symmetric
transformations for the dynamical system based on the
action with exponential Lagrangians.

By Definition 2 and formula (12), we can get the
following criterion.

Criterion 2 For the infinitesimal transformations (6)
of group, if the condition

exp (L)

(
∂L

∂t
�t + ∂L

∂qk
�qk + ∂L

∂ q̇k
�q̇k + d

dt
�t

)

= − d

dt
(�G) (19)

is satisfied, then the transformations (6) are theNoether
quasi-symmetric transformations for the dynamical
system based on the action with exponential
Lagrangians.
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The condition (19) can also be expressed as
∂L

∂t
τσ + ∂L

∂qk
ξσ
k + ∂L

∂q̇k

(
ξ̇ σ
k − q̇k τ̇

σ
) + τ̇ σ

= − exp (−L) Ġσ (σ = 1, 2, . . . , r) (20)

where�G = εσGσ .When r = 1, Eq. (20) is called the
generalized Noether identity for the dynamical system
based on the action with exponential Lagrangians.

UsingCriterion 2 or the generalizedNoether identity
(20), one can find the Noether quasi-symmetry of the
system.

2.3 Noether theorem

Under the Noether symmetric transformations, from
Eq. (15) and Eq. (14), we can get
d

dt

[
exp (L) τσ + exp (L)

∂L

∂q̇k

(
ξσ
k − q̇kτ

σ
)]

+ exp (L)

(
∂L

∂qk
− d

dt

∂L

∂q̇k
− ∂L

∂q̇k

dL

dt

) (
ξσ
k − q̇kτ

σ
)

= 0 (σ = 1, 2, . . . , r) (21)

Substituting Eq. (5) into Eq. (21), we obtain

d

dt

[
exp (L) τσ + exp (L)

∂L

∂q̇k

(
ξσ
k − q̇kτ

σ
)] = 0

(22)

Integrating (22), we obtain the Noether conserved
quantity

I σ
N = exp (L) τσ + exp (L)

∂L

∂q̇k

(
ξσ
k − q̇kτ

σ
)

= const. (σ = 1, 2, . . . , r) (23)

Therefore, we have

Theorem 1 For the dynamical system (5), which is
based on the action with exponential Lagrangians, if
the infinitesimal transformations (6) of group are the
Noether symmetric transformations in the sense of Def-
inition 1, then the system exists with r linearly indepen-
dent Noether conserved quantities (23).

Under the Noether quasi-symmetric transforma-
tions, from Eq. (18) and Eq. (14), we can get
d

dt

[
exp (L) τσ + exp (L)

∂L

∂q̇k

(
ξσ
k − q̇kτ

σ
) + Gσ

]

+ exp (L)

(
∂L

∂qk
− d

dt

∂L

∂q̇k
− ∂L

∂q̇k

dL

dt

) (
ξσ
k − q̇kτ

σ
)

= 0 (σ = 1, 2, . . . , r) (24)

Substituting Eq. (5) into Eq. (24), integrating it, we
have

I σ
N = exp (L) τσ + exp (L)

∂L

∂ q̇k

(
ξσ
k − q̇kτ

σ
) + Gσ

= const. (σ = 1, 2, . . . , r) (25)

Then, we have

Theorem 2 For the dynamical system (5), which is
based on the action with exponential Lagrangians, if
the infinitesimal transformations (6) of group are the
Noether quasi-symmetric transformations in the sense
of Definition 2, then the system exists with r linearly
independent Noether conserved quantities (25).

Theorems 1 and 2 are called the Noether theorem
for the dynamical system (5) based on the action with
exponential Lagrangians. The Noether theorem shows
that if one can find a Noether symmetric transforma-
tion or a Noether quasi-symmetric transformation of
the system, then one can obtain a conserved quantity
of the system.

2.4 Noether inverse theorem

Assume that the dynamical system (5) has r indepen-
dent first integrals

I σ (t, qk, q̇k) = cσ (σ = 1, 2, . . . , r) (26)

Let us find out the infinitesimal transformations (7) cor-
responding to the Noether quasi-symmetry of the sys-
tem.

Multiplying Eq. (5) by ξ̄ σ
k = ξσ

k − q̇kτσ and sum-
ming up the obtained results over k, we obtain

exp (L)

(
∂L

∂qk
− d

dt

∂L

∂ q̇k
− ∂L

∂ q̇k

dL

dt

)
ξ̄ σ
k = 0 (27)

Differentiating Eq. (26) with respect to t , we obtain

∂ I σ

∂t
+ ∂ I σ

∂qk
q̇k + ∂ I σ

∂ q̇k
q̈k = 0 (28)

By adding Eqs. (27) and (28), and let the coefficients
of q̈k equal to zero, we obtain

∂ I σ

∂ q̇k
− exp (L)

(
∂2L

∂ q̇ j∂ q̇k
+ ∂L

∂ q̇ j

∂L

∂ q̇k

)
ξ̄ σ
j

= 0 (k = 1, 2, . . . , n) (29)
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In order to make the transformations to be Noether
quasi-symmetric transformations, we need to make the
integral (26) equal to the Noether conserved quantity
(25), i.e.,

exp (L) τσ + exp (L)
∂L

∂ q̇k
ξ̄ σ
k + Gσ = I σ (30)

FromEqs. (29) and (30), one canfind theNoether quasi-
symmetric transformations. Therefore, we have

Theorem 3 For the dynamical system (5), which is
based on the action with exponential Lagrangian, if r
linearly independent first integrals (26) are given, then
the infinitesimal transformations determined by for-
mulae (29) and (30) are the Noether quasi-symmetric
transformations of the system.

2.5 Example

Consider a nonlinear dynamic system whose action
with an exponential Lagrangian is [26]

S =
∫ b

a
exp (qq̇t)dt (31)

The Eq. (5) give

tqq̈ + qq̇ + t q̇2 = −1

t
(32)

Try to study the Noether symmetry and the conserved
quantity of the system.

Firstly, the generalized Noether identity (20) gives

qq̇τ + t q̇ξ + tq
(
ξ̇ − q̇ τ̇

) + τ̇ = −e−tqq̇ Ġ (33)

Equation (33) has the following solutions

τ 1 = t, ξ1 = − 1

q
ln t,G1 = 0 (34)

τ 2 = (tqq̇ − 1) e−tqq̇ ,

ξ2 =
(
tqq̇2 − q̇ + 1

tq

)
e−tqq̇ ,G2 = ln t (35)

τ 3 = 1, ξ3 = q̇, G3 = −etqq̇ (36)

The generator (34) corresponds to the Noether sym-
metry of the system, and the generators (35) and (36)

correspond to the Noether quasi-symmetry of the sys-
tem. By the Noether theorem we obtained, the system
has the following conserved quantities

I 1 = etqq̇
(
t − t ln t − t2qq̇

)
= c1 (37)

I 2 = tqq̇ + ln t = c2 (38)

I 3 = 0 (39)

The conserved quantity (39) is trivial.
Secondly, by using the Noether inverse theorem, we

find out the Noether symmetry from a given integral.
Suppose that the system has the integral (37), then
Eqs. (29) and (30) give, respectively,

etqq̇ tq
(
t − t ln t − t2qq̇

)

+ etqq̇
(
−t2q

)
− etqq̇ (tq)2 (ξ − q̇τ) = 0 (40)

etqq̇ [τ + tq (ξ − q̇τ)] + G

= etqq̇
(
t − t ln t − t2qq̇

)
(41)

From Eq. (40), we get

ξ = q̇τ − 1

q
ln t − t q̇ (42)

Eqs. (41) and (42) are two algebraic equations with
respect to three variables τ, ξ,G, and so, their solutions
are not unique. Let

G = 0, (43)

then we have

τ = t, ξ = − 1

q
ln t (44)

The generator (44) corresponds to the Noether symme-
try of the system.

If we take

G = −etqq̇ , (45)

then we have

τ = t + 1, ξ = q̇ − 1

q
ln t (46)

The generator (46) corresponds to the Noether quasi-
symmetry of the system.
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3 Noether symmetry and conserved quantity for
the systems based on power-law Lagrangians

3.1 Hamilton principle and dynamical equations

The action with a power-law Lagrangian is defined by
[26]

A =
∫ b

a
L1+α (t, qk, q̇k) dt, α ∈ R (47)

The isochronal variation principle

δA = 0 (48)

with commutative relation

dδqk = δdqk (k = 1, 2, . . . , n) (49)

and boundary conditions

δqk |t=a = δqk | t=b = 0 (k = 1, 2, . . . , n) (50)

can be called theHamilton principle based on the action
with power-law Lagrangians.

By the principle Eqs. (48)–(50), it is easy to get
∫ b

a
(1 + α)Lα

(
∂L

∂qk
− d

dt

∂L

∂ q̇k
− α

L

dL

dt

∂L

∂q̇k

)

×δqkdt = 0 (51)

According to the arbitrariness of integral interval and
the independence of δqk (k = 1, 2, . . . , n), we have

(1 + α) Lα

(
∂L

∂qk
− d

dt

∂L

∂ q̇k
− α

L

dL

dt

∂L

∂q̇k

)
= 0 (52)

If α �= −1, then we have

∂L

∂qk
− d

dt

∂L

∂q̇k
− α

L

dL

dt

∂L

∂q̇k
= 0, (k = 1, 2, . . . , n)

(53)

Equations (52) and (53) are the Euler–Lagrange equa-
tions for the nonlinear dynamical system based on the
action with power-law Lagrangians [17]. If α = 0, then
Eqs. (52) are reduced to the classical Euler–Lagrange
equation [26].

3.2 Noether symmetry

Now, let us calculate the variation �A in the action
(47); we have

�A = δ

∫ b

a
L1+αdt + L1+α�t

∣∣∣ba (54)

and

�A =
∫ b

a

{
�L1+α + L1+α d

dt
�t

}
dt; (55)

then, we have

�A=
∫ b

a

{
d

dt

[
L1+α�t + (1 + α) Lα ∂L

∂q̇k
δqk

]

+ (1 + α) Lα

(
∂L

∂qk
− d

dt

∂L

∂q̇k
− α

L

dL

dt

∂L

∂q̇k

)
δqk

}
dt

(56)

and

�A=
∫ b

a

{
(1+α) Lα

(
∂L

∂t
�t+ ∂L

∂qk
�qk+ ∂L

∂ q̇k
�q̇k

)

+ L1+α d

dt
�t

}
dt (57)

Substituting Eqs. (7) and (13) into Eq. (56), we obtain

�A =
∫ b

a
εσ

{
d

dt

[
L1+ατσ + (1 + α) Lα ∂L

∂q̇k

(
ξσ
k − q̇kτ

σ
)]

+ (1 + α) Lα

(
∂L

∂qk
− d

dt

∂L

∂q̇k
− α

L

dL

dt

∂L

∂q̇k

) (
ξσ
k −q̇kτ

σ
)}

dt

(58)

The formulae (57) and (58) are the basic formulae for
the variation in the action (47).

Next, let us give the definitions and the criterions of
theNoether symmetry and theNoether quasi-symmetry
for the nonlinear dynamical system based on the action
with power-law Lagrangians.

Definition 3 If the action (1) is an invariant under the
infinitesimal transformations (6) of group, i.e., for each
of the infinitesimal transformations, the formula

�A = 0 (59)

always holds, then the transformations (6) are called the
Noether symmetric transformations of the dynamical
systembasedon the actionwith power-lawLagrangians.

By Definition 3 and formula (57), we can get the
following criterion
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Criterion 3 For the infinitesimal transformations (6)
of group, if the condition

(1 + α) Lα

(
∂L

∂t
�t + ∂L

∂qk
�qk + ∂L

∂q̇k
�q̇k

)

+ L1+α d

dt
�t = 0 (60)

is satisfied, then the transformations (6) are theNoether
symmetric transformations for the dynamical system
based on the action with power-law Lagrangians.

The condition (60) can also be expressed as

(1 + α) Lα

[
∂L

∂t
τσ + ∂L

∂qk
ξσ
k + ∂L

∂q̇k

(
ξ̇ σ
k − q̇k τ̇

σ
)]

+ L1+ατ̇ σ = 0, (σ = 1, 2, . . . , r) (61)

when r = 1, Eq. (61) is called the Noether identity for
the dynamical system based on the action with power-
law Lagrangians.

Definition 4 If the action (47) is a quasi-invariant
under the infinitesimal transformations (6) of group,
i.e., for each of the infinitesimal transformations, the
formula

�A = −
∫ b

a

d

dt
(�G) dt (62)

always holds, then the transformations (6) are called
the Noether quasi-symmetric transformations for the
dynamical system based on the action with power-law
Lagrangians.

Criterion 4 For the infinitesimal transformations (6)
of group, if the condition

∂L

∂t
�t + ∂L

∂qk
�qk + ∂L

∂q̇k
�q̇k + L

1 + α

d

dt
�t

= − 1

(1 + α) Lα

d

dt
(�G) (63)

is satisfied, then the transformations (6) are theNoether
quasi-symmetric transformations for the dynamical
systembasedon the actionwith power-lawLagrangians.

The condition (63) can also be expressed as

∂L

∂t
τσ + ∂L

∂qk
ξσ
k + ∂L

∂q̇k

(
ξ̇ σ
k − q̇k τ̇

σ
) + L

1 + α
τ̇σ

= − 1

(1 + α) Lα
Ġσ (σ = 1, 2, . . . , r) (64)

when r = 1, Eq. (64) is called the generalized Noether
identity for the dynamical system based on the action
with power-law Lagrangians.

Using Criterion 3 or the Noether identity (61), one
can find the Noether symmetry of the system. Using
Criterion 4 or the generalizedNoether identity (64), one
can find the Noether quasi-symmetry of the system.

3.3 Noether theorem

Under the Noether symmetric transformations, from
Eqs. (59) and (58), we can get

d

dt

[
L1+ατσ + (1 + α) Lα ∂L

∂ q̇k

(
ξσ
k − q̇kτ

σ
)]

+ (1 + α) Lα

(
∂L

∂qk
− d

dt

∂L

∂ q̇k
− α

L

dL

dt

∂L

∂ q̇k

)

× (
ξσ
k − q̇kτ

σ
) = 0 (σ = 1, 2, . . . , r) (65)

Substituting Eq. (52) into Eq. (65), we obtain

d

dt

[
L1+ατσ + (1 + α) Lα ∂L

∂ q̇k

(
ξσ
k − q̇kτ

σ
)] = 0

(66)

Integrating (66), we obtain Noether conserved quantity

I σ
N = L1+ατσ + (1 + α) Lα ∂L

∂ q̇k

(
ξσ
k − q̇kτ

σ
)

= const. (σ = 1, 2, . . . , r) (67)

Hence, we have

Theorem 4 For the dynamical system (52), which is
based on the action with power-law Lagrangians, if
the infinitesimal transformations (6) of group are the
Noether symmetric transformations in the sense of Def-
inition 3, then the system exists r linearly independent
Noether conserved quantities (67).

Under the Noether quasi-symmetric transforma-
tions, from Eqs. (62) and (58), we can get

d

dt

[
L1+ατσ + (1 + α) Lα ∂L

∂q̇k

(
ξσ
k − q̇kτ

σ
) + Gα

]

+ (1 + α) Lα

(
∂L

∂qk
− d

dt

∂L

∂ q̇k
− α

L

dL

dt

∂L

∂ q̇k

)

× (
ξσ
k − q̇kτ

σ
) = 0 (68)
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Substituting Eq. (52) into Eq. (68), and integrating it,
we have

I σ
N = L1+ατσ + (1 + α) Lα ∂L

∂q̇k

(
ξσ
k − q̇kτ

σ
) + Gσ

= const. (σ = 1, 2, . . . , r) (69)

Then, we have

Theorem 5 For the dynamical system (52), which is
based on the action with power-law Lagrangians, if
the infinitesimal transformations (6) of group are the
Noether quasi-symmetric transformations in the sense
of Definition 4, then the system exists r linearly inde-
pendent Noether conserved quantities (67).

Theorems 4 and 5 are called the Noether theorem
for the dynamical system (52) based on the action with
power-law Lagrangians.

3.4 Noether inverse theorem

Assume that the dynamical system (52) has r indepen-
dent first integrals

I σ (t, qk, q̇k) = cσ (σ = 1, 2, . . . , r) (70)

Let us find out the infinitesimal transformations (7) cor-
responding to the Noether quasi-symmetry of the sys-
tem.

Multiplying Eq. (52) by ξ̄ σ
k and summing up the

obtained results over k, we obtain

(1 + α) Lα

(
∂L

∂qk
− d

dt

∂L

∂ q̇k
− α

L

dL

dt

∂L

∂q̇k

)
ξ̄ σ
k = 0

(71)

Differentiating Eq. (70) with respect to t , we obtain

∂ I σ

∂t
+ ∂ I σ

∂qk
q̇k + ∂ I σ

∂q̇k
q̈k = 0 (72)

By adding Eqs. (71) and (72), and let the coefficients
of q̈k equal to zero, we obtain

∂ I σ

∂q̇k
− (1 + α) Lα

(
∂2L

∂q̇ j∂q̇k
+ α

L

∂L

∂q̇ j

∂L

∂q̇k

)
ξ̄ σ
j

= 0 (k = 1, 2, . . . , n) (73)

In order to make the transformations to be the Noether
quasi-symmetric transformations, we need to make the

integral (70) equal to the Noether conserved quantity,
i.e.,

L1+ατσ + (1 + α) Lα ∂L

∂ q̇k

(
ξσ
k − q̇kτ

σ
) + Gσ = I σ

(74)

According to Eqs. (73) and (74), one can find the
Noether quasi-symmetry transformations.

Theorem 6 For the dynamical system (52), which is
based on the action with power-law Lagrangians, if r
linearly independent first integrals (70) are given, then
the infinitesimal transformations determined by for-
mulae (73) and (74) are the Noether quasi-symmetric
transformations of the system.

3.5 Example

Consider a dynamical systemwhose actionwith power-
law Lagrangian is [26]

A =
∫ b

a
L1+α (t, q, q̇) dt (75)

where L = q̇ + e−q , α = 1. The equations (52) give

q̈ + e−2q = 0 (76)

The generalized Noether identity (64) gives

−e−qξ + ξ̇ − q̇ τ̇ + 1

2

(
q̇ + e−q) τ̇ = − 1

2
(
q̇ + e−q

) Ġ
(77)

Equation (77) has a solution

τ = −1, ξ = 0,G = 0 (78)

The generator (78) corresponds to the Noether symme-
try of the system. By Theorem 5, we obtain

I = q̇2 − e−2q = const. (79)

The conserved quantity (79) is caused by the Noether
symmetry (78).
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Next, let us study the inverse problem. Assume the
system has the first integral (79). Equations (73) and
(74) give

q̇ − (ξ − q̇τ) = 0 (80)(
q̇ + e−q)2 τ + 2

(
q̇ + e−q) (ξ − q̇τ) + G

= q̇2 − e−2q (81)

From Eq. (80), we have

ξ = (1 + τ) q̇ (82)

Substituting Eq. (82) into Eq. (81), we get

(
q̇ + e−q)2 τ + q̇2 + 2q̇e−q + e−2q + G = 0 (83)

If G = 0, then we have

τ = −1, ξ = 0 (84)

The generator (84) corresponds to the Noether symme-
try of the system. If G = − (

q̇ + e−q
)2, then we have

τ = 0, ξ = q̇ (85)

The generator (85) corresponds to the Noether quasi-
symmetry of the system.

4 Conclusions

Nonstandard Lagrangians can be used to describe the
nonlinear problem and the nonlinear differential equa-
tions. The study of nonstandard Lagrangians can find
some properties that standard Lagrangians do not have.
It provides a new modeling solution for the realistic
questions. It also presents a new vision for the dynam-
ics research. In this paper, the Hamilton principle for
two kinds of nonstandard Lagrangians is presented, the
equations of motion of the system are derived, and the
Noether theorems with nonstandard Lagrangians are
established. The method and results in this paper have
universal significance, and they can be applied to other
constrained mechanical systems.
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