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Abstract Wedevelop a new approach termed as a dis-
count free or partial Lagrangian method for construc-
tion of first integrals for dynamical systems of ordi-
nary differential equations (ODEs). It is shown how
one can utilize the Legendre transformation in a more
general setting to provide the equivalence between a
current value Hamiltonian and a partial or discount
free Lagrangian when it exists. As a consequence,
we develop a discount factor free Lagrangian frame-
work to deduce reductions and closed-form solutions
via first integrals for ODEs arising from economics by
proving three important propositions. The approach is
algorithmic and applies to many state variables of the
Lagrangian. In order to show its effectiveness, we apply
the method to models, one linear and two nonlinear,
with one state variable. We obtain new exact solutions
for the last model. The discount free Lagrangian natu-
rally arises in economic growth theory and many other
economic models when the control variables can be
eliminated at the outset which is not always possible
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in optimal control theory applications of economics.
We explain our method with the help of few widely
used economic growth models. We point out the dif-
ference between this approach and the more general
partial Hamiltonian method proposed earlier for a cur-
rent value Hamiltonian (Naz et al. in Commun Non-
linear Sci Numer Simul 19:3600–3610, 2014) which
is applicable in a general setting involving time, state,
costate and control variables.
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1 Introduction

At the heart of economic analysis is the concept of
optimization under constraints, and the most common
application is through dynamic optimization. There are
in essence three major approaches, viz. that of dynamic
programming, calculus of variations and its extension
which is optimal control theory (see, for example, Chi-
ang [1]).

Many of themodels utilize theLagrangian or its gen-
eralization, and the current value Hamiltonian when-
ever the integrand function contains a discount factor.
These models range from the simplest to those of neo-
classical economic growth [2,3], the optimal firm-level
investment [4] and human capital and earnings [5]mod-
els.
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The Euler–Lagrange equations give necessary con-
ditions for extremal values of the functional which
has the Lagrangian as its integrand. This involves
the time variable, the state variables and its deriv-
atives up to some finite order. Many of the prob-
lems give rise to a Lagrangian which is of the first
order. Thus, in this case one obtains a dynamical
system of the second order. Further advances have
led to the development of optimal control theory
(see, for example, [1]) which in addition to the time
and state variables also incorporates the control and
costate variables. In the latter approach, Pontryagin’s
maximum principle provides necessary conditions for
the resolution of the continuous time optimal con-
trol problem which has a current value Hamiltonian,
and therefore, a first-order system of dynamical ODEs
is formulated for the control, state and costate vari-
ables.

There are several dynamic economic models which
pervade the existing literature. Different approaches
have been advocated to deal with these models. Pre-
dominantly qualitative theory and linear approxima-
tions around steady states (see [6–10]) have been
applied to analyze these model. Numerical meth-
ods too have been utilized to solve the nonlinear
dynamical systems at hand (see, for example, [11]).
Notwithstanding analytical solutions as well as exis-
tence and uniqueness, theorems have proved beneficial
in the analysis of such models (see, for example, [12–
18]).

A separate strand of the literature has looked at the
first integrals or conservation laws for differential equa-
tions (see, for example, [19–26]). Kara and Mahomed
[20] developed the partial Lagrangian approach to con-
structing conservation laws for partial differential equa-
tions (PDEs). All different approaches to constructing
conservation laws for PDEs are discussed by Naz et al.
[21]. Gan and Qu [22] studied the approximate con-
servation laws of perturbed PDEs. Kara et al. [23] pro-
vided the methodology to establish the first integrals
for ODEs. A review of different approaches to deriving
first integrals for ODEs is provided by Naz et al. [24].
The approximate first integrals for nonlinear oscillators
are discussed in [25,26]. Dorodnitsyn and Kozlov [27]
analyzed the invariance andfirst integrals of continuous
and discrete Hamiltonian equations. In a recent study
[28,29], the authors proposed a partial Hamiltonian
approach for many state, costate and control variables
which takes into account the intrinsic and desirable cur-

rent value Hamiltonian to unearth first integrals and
reductions of the economic models under study. This
approach provides a general and algorithmic procedure
for the search for reductions and solutions of such type
of nonlinear economic equations. The characterization
of Hamiltonian symmetries and their first integrals is
given in [30].

Significant contributions have been made in the
analysis and solutions of nonlinear dynamical systems
of economic models.

In the present study, we focus on a simple approach
which yields first integrals, reductions and closed-form
solutions (if there are sufficient operators) for dynam-
ical systems of ODEs arising in economic growth the-
ory. We utilize a partial Lagrangian or what we call a
discount free Lagrangian framework for several state
variables. This approach is applicable if one is able
to construct a partial or discount free Lagrangian for
the underlying dynamical system. We point out that
this is not always possible as a system of first-order
ODEs which is a consequence of optimal control the-
ory may not in general be cast as a second-order sys-
tem. Therefore, the method we invoke is applicable
to an arbitrary system of ODEs provided that a par-
tial or discount free Lagrangian exist. The utility of
this method lies in the fact that the control variables,
which occurs in the case of the partial Hamiltonian
approach, do not arise in the unfolding analysis as the
discount free Lagrangian is independent of these con-
trol variables from the outset.We apply this approach to
a system of two ODEs which involves time, one state
variable and its first derivative to show its effective-
ness.

The outline of the paper is as follows. In Sect. 2,
we provide the overviews of the partial Hamiltonian
approach for what follows. The partial or discount free
Lagrangian approach for dynamical systems is devel-
oped in Sect. 3. Herein we show how it naturally arises
from the partial Hamiltonian by means of the par-
tial Legendre transformation. Definitions and propo-
sitions are provided on the notion of discount fac-
tor free Lagrangians with the third one providing an
algorithm on finding first integrals corresponding to
this discount free Lagrangian in a simple manner. In
Sect. 4, we provide examples using this approach of
three fundamental Economic growth models. We com-
pare our results with the partial Hamiltonian method to
show its utility. Concluding remarks are finally given
in Sect. 5.
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2 Preliminaries

Let t be the independent variable which is usually
time and (q, p) = (q1, . . . , qn, p1, . . . , pn) the phase
space coordinates. In the applications to equations
of economics, q1, . . . , qn are the state variables and
p1, . . . , pn the costate variables. We provide here the
overview of partial Hamiltonian approach. The follow-
ing definitions and results are adapted from [1,27–29].

Definition 1 The Euler operator δ/δqi and the varia-
tional operator δ/δpi are defined as

δ

δqi
= ∂

∂qi
− D

∂

∂q̇i
, i = 1, 2, . . . , n, (1)

and

δ

δpi
= ∂

∂pi
− D

∂

∂ ṗi
, i = 1, 2, . . . , n, (2)

where

D = ∂

∂t
+ q̇ i

∂

∂qi
+ ṗi

∂

∂pi
+ · · · (3)

is the total derivative operator with respect to the time t .
The summation convention applies for repeated indices
here and in the sequel.

The variables t, q, p are independent and connected
by the differential relations

ṗi = D(pi ), q̇i = D(qi ), i = 1, 2, . . . , n. (4)

In economic analysis, the optimal control problem
is stated as (see, for example, [1])

Maximize F =
∫ T

0
F(t, q, c) e−ρt dt

subject to q̇i = f i (t, q, c), i = 1, . . . , n, (5)

where c is the control vector c = (c1, . . . , cm), m ≤ n
or m > n as well as appropriate boundary conditions
imposed. The integrand contains the discount factor
e−ρt . We can have minimization problems as well.

Definition 2 The present value Hamiltonian is defined
as

H̄ = F(t, q, c)e−ρt + p̄i f
i (t, q, c). (6)

The current value Hamiltonian H(t, q, p, c) (see, for
example, [1]) is

H = F(t, q, c) + pi f
i (t, q, c), (7)

where the following relations hold, viz.

pi = p̄ie
ρt , H = H̄eρt , qi = q̄i , ci = c̄i . (8)

This current valueHamiltonian is independent of the
discount factor and deemedmore desirable in economic
analysis [1].

The maximum principle gives necessary conditions
for optimal control for H̄

∂ H̄

∂ c̄i
= 0,

∂2 H̄

∂ c̄i 2
< 0

¯̇qi = ∂ H̄

∂ p̄i
,

¯̇pi = −∂ H̄

∂ q̄i
, i = 1, . . . , n. (9)

and these conditions in terms of the current value
Hamiltonian H defined in (7) satisfy the system

∂H

∂ci
= 0,

∂2H

∂ci 2
< 0

q̇i = ∂H

∂pi
,

ṗi = −∂H

∂qi
+ Γi , i = 1, . . . , n, (10)

where we take Γi as a nonzero function of t, pi , qi in
general. Note that each Γi is mostly taken as a linear
function of pi in economic applications in the earlier
literature of optimal control theory in which the func-
tional maximized contains the discount factor e−ρt in
the integrand [1] and this is known as constant time
preferences in economic growth theory. For endoge-
nous time preferences, Γi is taken more generally. The
sufficiency conditions relate the pi and ci . In correspon-
dence to mechanics, they deal with non-conservative
forces if the Γi are nonzero.

We have that the operator X given by

X = ξ(t, q, p)
∂

∂t
+ ηi (t, q, p)

∂

∂qi
+ ζi (t, q, p)

∂

∂pi
(11)

is a generator of point symmetry of the current value
Hamiltonian system of ODEs (10) if the following
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determining system involving the coefficient functions
ξ , ηi and ζi , viz.

η̇i − q̇i ξ̇ − X

(
∂H

∂pi

)
= 0,

ζ̇i − ṗi ξ̇ + X

(
∂H

∂qi
− Γi

)
= 0, i = 1, . . . , n (12)

identically holds on the system (10).

Definition 3 (see [28]). An operator X of the form (11)
is said to be a partial Hamiltonian operator correspond-
ing to a current value Hamiltonian H(t, q, p, c) which
satisfies (7), if there exists a function B(t, q, p, c) such
that

ζi
∂H

∂pi
+ pi D(ηi ) − X (H) − HD(ξ)

= D(B) +
(

ηi − ξ
∂H

∂pi

)
(−Γi ) (13)

holds.
Note that it is important to point out that if H is

a present value Hamiltonian, then Eq. (12) becomes
the usual determining equation for symmetries of the
Hamiltonian action since Γi = 0 in this case. Also in
this case (13) with Γi = 0 (see [27]), the Hamiltonian
action with gauge term is invariant with respect to the
group generated by operator X of (11).

The following theorem is essential for the construc-
tion of first integrals for the system (10).

Theorem 1 (see [28]). The first integral correspond-
ing to the system (10) associated with a partial Hamil-
tonian operator X of the current value Hamiltonian
H(t, q, p, c) is determined from

I = piη
i − ξH − B, (14)

where B(t, p, q, c) is a gauge-like function.
IfΓi = 0 and B = B(t, p, q), then this formula (14)

is valid as well for an invariant Hamiltonian action up
to divergence [27].

3 A partial Lagrangian approach for dynamical
systems

We provide the connection between a partial Hamil-
tonian and what we term a partial or discount free
Lagrangian when it exists. The dynamic optimization
problems can be treated by the calculus of variation

techniques and the optimal control theory. In the defin-
ition given below, we define the optimal control prob-
lem stated in (5) in terms of the calculus of variation
problem.

Definition 4 The optimal control problem stated in (5)
can be re-cast as the following calculus of variations
problem

Maximize F =
∫ T

0
F(t, q, q̇) e−ρt dt (15)

under the conditions of invertibility given by pi =
gi (t, qi , q̇i ) and the relationship between the control
vector c and costate vector p which arises from the
sufficient conditions of optimal control from the maxi-
mum principle yielding ci = hi (pi ). Also appropriate
boundary conditions are imposed.

Next, we define the partial Legendre transforma-
tion in the more general setting with pi = ∂L/∂q̇i

which relates the current value Hamiltonian and what
we define as a partial or discount free Lagrangian when
it exists.

Proposition 1 (Partial Legendre transformation) If H
is the current value Hamiltonian, then under condi-
tions of invertibility given by pi = gi (t, qi , q̇i ) and the
relationship between the control vector c and costate
vector p which arises from the sufficient conditions of
optimal control from the maximum principle yielding
ci = hi (pi ), there exists the partial or discount free
Lagrangian L(t, qi , q̇i ) satisfying

L
(
t, qi , q̇i

)
= pi q̇

i − H
(
t, qi , pi , ci

)
. (16)

The relation (16) is called a partial Legendre transfor-
mation.

Proof The Legendre transformation [31] connects a
standard Lagrangian L̄ and canonical Hamiltonian H̄
as

L̄
(
t, qi , q̇i

)
= p̄i q̇

i − H̄
(
t, qi , p̄i , ci

)
. (17)

The coordinate transformation pi = p̄ieρt , H =
H̄eρt , qi = q̄i , ci = c̄i , L = L̄eρt , directly trans-
forms (17) to the partial Legendre transformation (16).
We term L as a partial or discount free Lagrangian and
H is the current value Hamiltonian. ��
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Proposition 2 (Partial Euler–Lagrange equations) If
H is the current value Hamiltonian, then under con-
ditions of invertibility given by pi = gi (t, qi , q̇i )
and the relationship between the control vector c and
costate vector p which arises from the sufficient con-
ditions of optimal control from the maximum principle
yielding ci = hi (pi ), there exists the discount factor
independent Lagrangian L(t, qi , q̇i ) or discount free
Lagrangian via the partial Legendre transformation
(16) which satisfies

δL

δqi
= −Γi . (18)

We call Eq. (19) the partial Euler–Lagrange equations
motivated by Kara and Mahomed [20] and Kara et al.
[23].

Proof Indeed, the action of the variational operator
δ/δpi on the partial Legendre transformation pi q̇i −H
(16) after use of (10) yields δL/δpi = 0. Further,
if one acts with the Euler operator δ/δqi on the par-
tial Legendre transformation (16), then one straight-
forwardly obtains −∂H/∂qi − ṗi . The latter is equal
to −Γi as a consequence of the second set of (10). We
precisely arrive at

δL

δqi
= −Γi (19)

provided one can invert for the costate vector pi =
gi (t, qi , q̇i ) andmoreover, one requires that the control
variables ci be determined explicitly in terms of t, qi

and q̇i as H in the partial Legendre transformation (16)
has explicit c in it. Note that there is a relation between
the variables c and p due to the sufficient conditions
for optimal control for the maximum principle. This
completes the proof. ��

Remark 1 We have an alternative proof of Proposition
2. The standard Lagrangian for the calculus of varia-
tions problemas stated in (15) is L̄ = F(t, qi , q̇i ) e−ρt .
If one acts with the Euler operator δ/δqi = 0 on L̄ and
using the fact that δ L̄/δqi = 0, one can easily arrive at

δF

δqi
= −ρ

∂F

∂q̇i
. (20)

Setting L = −F , pi = ∂L
∂q̇i

and Γi = ρpi Eq. (20) pro-
vides the partial Euler–Lagrange equations (19). Then,
L = −F is the partial or discount free Lagrangian.

The relation (19) to be valid, we must have that L
exists as a function of the time, the state variables and
their derivatives only. In this case, we say that L is a
partial Lagrangian corresponding to the partial Hamil-
tonian H with the equivalence being provided by the
partial Legendre transformation (16).

In the same way that the current value Hamiltonian
(which is the partial Hamiltonian) which is free of the
discount factor is desirable, the partial or discount free
Lagrangian that is defined by means of (19) also dis-
plays the same advantages. It is independent of time.
We call it a discount free Lagrangian.

We therefore have the following important result
for discount factor free Lagrangians that arise in eco-
nomics.

Proposition 3 Suppose that the Lagrangian L which
is a discount free Lagrangian corresponding to the cur-
rent value Hamiltonian H satisfies the partial Euler–
Lagrange equation (19) and X as given by

X = ξ
∂

∂t
+ ηi

∂

∂qi
+ ζ it

∂

∂q̇i
, (21)

where ζ it = Dηi − q̇i Dξ , is a partial Noether operator
corresponding to L. Then, X satisfies

X (L) + LD(ξ) = D(B) + (ηi − ξ q̇i )(−Γi ),

i = 1, . . . , n (22)

and the corresponding first integral associated with L
is obtained by the explicit formula

I = ξL +
(
ηi − ξ q̇i

) ∂L

∂ q̇i
− B, (23)

for a suitable gauge term B(t, qi , q̇i ).

Proof The partial Hamiltonian operator determining
Eq. (13) with the help of partial Legendre transforma-
tion (16) yields

ζi q̇
i + pi Dηi − ζi q̇

i − piζ
i
t + XL

− pi q̇
i Dξ + LDξ = DB +

(
ηi − ξ q̇i

)
(−Γi )

(24)

which easily results in (22) after replacing ζ it with
Dηi − q̇i Dξ . For the first integral I , Eq. (14) with the
aid of partial Legendre transformation (16) yields
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I = ηi
∂L

∂q̇i
− ξ

(
q̇i

∂L

∂q̇i
− L

)
− B, (25)

and this is (23). Note that we have pi = gi (t, q, q̇) in
view of Definition 4 and thus Γi and B are in terms of
the variables t, qi , q̇i . This completes our proof. ��

The approach presented here is termed as a “partial
or discount free Lagrangian approach for dynamical
systems.” This provides a direct methodology to con-
struct first integrals for first-order dynamical or Hamil-
tonian systems arising from optimal control problems.
These types of systems arise naturally in economics.
The partial or discount free Lagrangian is always of
first order. The partial Lagrangian approach [20,23] can
have first-order and higher-order partial Lagrangians.
Moreover, it works for even-ordered differential equa-
tions or systems of differential equations. One can
apply it to odd-ordered differential equations or sys-
tems of differential equations by increasing the order
of differential equation to an even order.

Remark 2 The partial Hamiltonian approach devel-
oped in [28] and the partial Lagrangian approach pre-
sented here both are applicable provided the dynamic
optimization problem can be stated in optimal con-
trol as well as in the calculus of variations form. This
depends on invertibility conditions of the control vari-
ables.We cannot apply the partial Lagrangian approach
if the problem cannot be stated in the calculus of vari-
ations form, but we can solve those dynamic optimiza-
tion problems by utilizing the more generalized partial
Hamiltonian approach.

We discuss two typical examples of control prob-
lems in economics. One can be expressed as a problem
in the calculus of variations in a simple way, and in
the second, it is quite cumbersome and the problem
is better treated in its original formulation by using a
Hamiltonian.

1. Maximize

∫ ∞

0

[
αq − βq2 − αu2 − γ u

]
e−r tdt (26)

subject to

q̇ = u, (27)

where α, β, γ are positive constants, r a constant dis-
count factor, q(t) the state variable, and u(t) is the con-

trol variable. It is easy to observe that we can state this
problem equivalently as an infinite-horizon problem in
the calculus of variations as
Maximize

∫ ∞

0

[
αq − βq2 − αq̇2 − γ q̇

]
e−r tdt (28)

by simply expressing u in terms of q̇ through Eq. (27).
This problem can be further simplified by eliminating
the discount factor using the present formulation of a
discount free Lagrangian. Here both the partial Hamil-
tonian and partial Lagrangian approaches are applica-
ble.

2. In the model of Lucas–Uzawa [14,15], the repre-
sentative agents utility function is defined as

Maxc,u

∫ ∞

0

c1−σ − 1

1 − σ
e−ρt , σ �= 1 (29)

subject to the constraints of physical and human capital:

k̇(t) = γ kβ(uh)1−β − πk − c, k0 = k(0),

ḣ(t) = δ(1 − u)h, h0 = h(0), (30)

where 1/σ is the constant elasticity of intertemporal
substitution, ρ > 0 is the discount factor, β is the elas-
ticity of output with respect to physical capital, γ > 0
is the technological levels in the goods sector, δ > 0 is
the technological levels in the education sector, k is the
level of physical capital, h is the level of human cap-
ital, c is per capita consumption, and u is the fraction
of labor allocated to the production of physical capital.
Herewe see that it is quite cumbersome to express c and
u in terms of the state variables and their derivatives.
Thus, we cannot easily cast this problem in the calculus
of variations as its description is unduly complicated.
Here we can utilize the partial Hamiltonian approach
to finding the first integrals and closed-form solution.

We invoke our approach in the next section and
demonstrate their usefulness in a simple way.

4 Applications to economics

In this section, we explain our method via three eco-
nomic growth models: capitalists decision model of
endogenous growth, the Ramsey growth model and a
one-sector economic growth model with logarithmic
utility preferences. First we solve a simple capitalists
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decision model of endogenous growth to demonstrate
how our approach works. Then, we solve the Ram-
sey growth model and a one-sector economic growth
model with logarithmic utility preferences. Moreover,
we compare our results for the Ramsey model derived
in [28] by the partial Hamiltonian approach.

4.1 Capitalists decision model of endogenous growth

Consider the one-sector capitalists decision model of
endogenous growth presented in [32]. The decision
problem faced by capitalists is

Maxc

∫ ∞

0
e−ρt c

1−θ − 1

1 − θ
dt, θ > 0, θ �= 1 (31)

subject to

c(t) + i(t) = [1 − τk]rk(t) + τkδk(t), (32)

k̇ = i(t) − δk(t), (33)

where ρ is the constant rate of time preference, 1/θ is
the intertemporal elasticity of substitution, c(t) is the
consumption per worker, i(t) is investment, k(t) is the
physical capital per worker, r is rental rate of capital to
competitive firms, τk is tax rate for gross rental income,
and δ is the depreciation rate of capital. Equations (32)
and (33) yield

k̇ = (1 − τk)(r − δ)k − c. (34)

The initial and transversality conditions are of the fol-
lowing form:

c(0) = c0, k(0) = k0, (35)

and

lim
t→∞ e−ρt c(t)−θk(t) = 0. (36)

The analogue problem in the calculus of variations can
be formulated by expressing c in terms of k and k̇ from
Eq. (34) and substituting this into Eq. (31). The opti-
mal control problem (31) and (34) in the calculus of
variations takes the following form:

Maxk

∫ ∞

0
e−ρt

[−k̇+(1−τk)(r − δ)k
]1−θ − 1

1 − θ
dt,

k(0) = k0. (37)

We utilize the partial Lagrangian approach to deriv-
ing first integrals for this problem as the partial
Lagrangian is time independent, i.e., independent of
the discount factor. The desirable partial Lagrangian
for our model is

L =
[−k̇ + (1 − τk)(r − δ)k

]1−θ

θ − 1
+ 1

1 − θ
. (38)

It is worthy to re-iterate here that the partial Lagrangian
is autonomous.ThepartialEuler–Lagrange equationby
Eq. (19) is

δL

δk
= −ρ

[−k̇ + (1 − τk)(r − δ)k
]−θ

. (39)

The partial Noether operators determining Eq. (22) in
terms variables t and k results in

XL + LDt (ξ) = Dt (B) + (η − ξ k̇)
δL

δk
, (40)

where X is the first-order prolonged operator given by

X = ξ(t, k)
∂

∂t
+ η(t, k)

∂

∂k

+
[
ηt + k̇(ηk − ξt ) − k̇2ξk

] ∂

∂ k̇
. (41)

Equation (40) for the partial Lagrangian (38) results
in

−(1 − τk)(r − δ)η + ηt + k̇(ηk − ξt ) − k̇2ξk

+ 1

θ − 1
[−k̇ + (1 − τk)(r − δ)k][ξt + k̇ξk]

+ 1

1 − θ
(ξt + k̇ξk)[−k̇ + (1 − τk)(r − δ)k]θ

= (Bt + k̇ Bk)
[−k̇ + (1 − τk)(r − δ)k

]θ
+ (η − ξ k̇)(−ρ), (42)

where B(t, k) is the gauge term. Separation of Eq. (42)
with respect to powers of k̇ provides

[−k̇+(1−τk)(r − δ)k
]θ : Bt = 1

1 − θ
ξt , ξk = Bk,

(43)

k̇2 : ξk = 0, (44)

k̇ : ηk − ξt
θ

θ − 1
− ρξ = 0, (45)

k̇0 : −(1 − τk)(r − δ)η + ηt

+ 1

θ − 1
(1 − τk)(r − δ)kξt + ηρ = 0. (46)
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Equations (43)–(45) yield

ξ = a1(t), η =
[
− θ

1 − θ
ȧ1 + ρa1

]
k + a2(t),

B = 1

1 − θ
a1(t). (47)

Equation (46) with ξ, η, B from (47) gives rise to

k : θ ä1−
[
(1−τk)(r−δ)(1−θ)−ρ(1−θ)−θ(n−ρ)

]
ȧ1

− ρ(1 − τk)(r − δ)(θ − 1) + ρ2(θ − 1)a1 = 0, (48)

k0 : ȧ2 − 1 − τk)(r − δ)a2 + ρa2 = 0. (49)

Equations (47)–(49) lead to the following partial
Noether operators and gauge terms:

ξ = c1e
−ρt + c2e

ρ(1−θ)−(1−τk )(r−δ)(1−θ)

θ
t ,

η = ρ

1 − θ
c1ke

−ρt

+ (1 − τk)(r − δ)c2ke
ρ(1−θ)−(1−τk )(r−δ)(1−θ)

θ
t

+ c3e
((1−τk )(r−δ)−ρ)t ,

B = 1

1 − θ

[
c1e

−ρt + c2e
ρ(1−θ)−(1−τk )(r−δ)(1−θ)

θ
t
]

. (50)

The following first integrals corresponding to the oper-
ators and gauge terms given in (50) are established from
Eq. (23):

I1 = e−ρt [−k̇ + (1 − τk)(r − δ)k]−θ k

×
[

ρ + (θ − 1)(1 − τk)(r − δ)

(1 − θ)

]

− θ

1 − θ

[−k̇ + (1 − τk)(r − δ)k
]1−θ

e−ρt ,

I2 = θ

θ − 1

[−k̇ + (1 − τk)(r − δ)k
]1−θ

e
ρ(1−θ)−(1−τk )(r−δ)(1−θ)

θ
t

I3 = [−k̇ + (1 − τk)(r − δ)k]−θ e−(ρ−(1−τk )(r−δ))t . (51)

The partial Lagrangian approach yielded three first
integrals. Now we utilize these first integrals to find
closed-form solution for k(t). We can utilize either any
one of these first integrals or any two first integrals to
construct closed-formsolution for k(t). Setting I3 = B,
we have

(−k̇ + (1 − τk)(r − δ)k
)−θ

e−(ρ−(1−τk )(r−δ))t = B,

(52)

where B is an arbitrary constant. Equation (52) yields
first-order ODE in k(t)

−k̇ + (1 − τk)(r − δ)k = B− 1
θ e− (ρ−(1−τk )(r−δ))t

θ (53)

and this can be solved to obtain closed-form solution
for k(t). We can make use of I1 to directly obtain k(t)
without solving ODE (53). We set I1 = A to arrive at[−k̇+(1−τk)(r−δ)k

]−θ
k [ρ+(θ−1)(1−τk)(r−δ)]

− θ
[−k̇ + (1 − τk)(r − δ)k

]1−θ = A(1 − θ)eρt ,

(54)

where A is an arbitrary constant. After some simplifi-
cations, equation (54) with the help of (53) gives fol-
lowing solution for capital stock k(t)

k(t) = θB− 1
θ e− ρ−(1−τk )(r−δ)

θ
t + A

B (1 − θ)e(1−τk )(r−δ)t

ρ − (1 − θ)(1 − τk)(r − δ)
.

(55)

The consumption is c(t) = −k̇ + (1− τk)(r − δ)k and
thus

c(t) = B− 1
θ e− (ρ−(1−τk )(r−δ))t

θ . (56)

Equation (32), with the aid of Eqs. (55) and (56), finally
gives closed-form solution for investment i(t). Nowwe
make use of initial conditions in order to specify values
of arbitrary constant A and B. The initial conditions
c(0) = c0, k(0) = k0 give

A = k0c
−θ
0

1 − θ
[ρ − (1 − θ)(1 − τk)(r − δ)]

− θ

1 − θ
c1−θ
0 , B = c−θ

0 . (57)

Next we check whether the derived closed-form solu-
tions for c(t) and k(t) satisfy the transversality condi-
tions or not. The transversality condition (36), with the
aid of Eqs. (55) and (56), becomes

lim
t→∞

θB1− 1
θ e− ρ−(1−θ)(1−τk )(r−δ)

θ
t + A(1 − θ)

ρ − (1 − θ)(1 − τk)(r − δ)
= 0,

(58)

and it goes to zero provided ρ−(1−θ)(1−τk )(r−δ)
θ

> 0
and A = 0. Equation (57) for A = 0 yields

ρ − (1 − θ)(1 − τk)(r − δ)

θ
= c0

k0
. (59)

Now substituting A = 0, B = c−θ
0 into (55) and (56),

we obtain following final form of solution for k(t) and
c(t)
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k(t) = k0e
− ρ−(1−τk )(r−δ)

θ
t , c(t) = c0e

− ρ−(1−τk )(r−δ)

θ
t ,

(60)

provided parameter restriction (59) holds. The growth
rates for capital and consumption are given by

ċ

c
= k̇

k
= (1 − τk)(r − δ) − ρ

θ
. (61)

4.2 Ramsey neoclassical growth model with CRRA
utility function

We consider the followingRamsey neoclassical growth
model [6], where the representative consumer’s utility
maximization problem is defined as

Maxc

∫ ∞

0
e−r t c1−σdt, σ �= 0, 1 (62)

subject to the capital accumulation equation

k̇(t) = kβ − δk − c, k(0) = k0, 0 < β < 1, (63)

where c(t) is the consumption per person, k(t) is the
capital labor ratio, and β, δ, r are the capital share,
depreciation rate, rate of time preferences, respectively.
The intertemporal elasticity of substitution is given by
1/σ and k0 is the initial capital stock. The optimal con-
trol problem (62) and (63) in the calculus of variations
takes the following form:

Maxk

∫ ∞

0
e−r t [kβ − δk − k̇

]1−σ
dt, k(0) = k0.

(64)

The partial Lagrangian for this model is

L = − [
kβ − δk − k̇

]1−σ
(65)

which is free of the discount factor and the partial
Euler–Lagrange equation is

δL

δk
= −r(1 − σ)

[
kβ − δk − k̇

]−σ
. (66)

The partial Noether operators determining Eq. (22) for
the partial Lagrangian (65) yields

η(σ −1)(βkβ−1−δ)+
[
ηt+k̇(ηk−ξt )−k̇2ξk

]
(1−σ)

− (ξt + k̇ξk)
[
kβ − δk − k̇

]
= (Bt + k̇ Bk)[kβ − δk − k̇]σ + (η − ξ k̇)r(σ − 1),

(67)

where B(t, k) is the gauge term.By separating equation
(67) with respect to powers of k̇, we easily have
[
kβ − δk − k̇

]σ : Bt = 0, Bk = 0, (68)

k̇2 : ξk = 0, (69)

k̇ : (1 − σ)ηk + σ ξ̇ − r(1 − σ)ξ = 0, (70)

k̇0 : η(σ − 1)(βkβ−1 − δ) + ηt (1 − σ)

− ξ̇ (kβ − δk) + r(1 − σ)η = 0. (71)

The solution of equations (68)- (71) yield the following
partial Noether operator and gauge terms

X = eδβ(1−σ)t ∂

∂t
− δeδβ(1−σ)t k

∂

∂k
, B = 0, (72)

with σ satisfying

σ = r + δ

βδ
. (73)

The first integral corresponding to the partial Noether
operator and gauge terms given in (72) is

I = eδβ(1−σ)t
[
−σ

[
kβ − δk − k̇

]1−σ + (σ − 1)

[
kβ − δk − k̇

]−σ
kβ

]
. (74)

Naz et al. [28] derived the following first integral by
utilizing the partial Hamiltonian approach

I = eδβ(1−σ)t [−σc1−σ + (σ − 1)c−σ kβ ]. (75)

A closer look at the first integrals given in (74) and (75)
shows that both first integrals are identical by replacing

c = kβ − δk − k̇ (76)

in it. These lead to the solution of the underlying model
as shown in [28] and are given by

c(t) =
(
1 − βδ

r + δ

)
kβ, (77)

k(t) =
[

β

r + δ
+

(
k1−β
0 − β

r + δ

)
e−(1−β)δt

] 1
1−β

.

(78)
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The steady state for this model is

k̄ =
(
r + δ

β

) 1
β−1

(79)

and

c̄ =
(
1 − βδ

r + δ

)
k̄β. (80)

In order to determine the dynamics of the system, we
now differentiate (77) with respect to t

ċ

c
= β

k̇

k
. (81)

From (81), we have the growth rate of capital and con-
sumption is the same as for β > 0. The growth rate of
capital is given by

k̇

k
=

−δ
(
k1−β
0 − β

r+δ

)
e−(1−β)δt

β
r+δ

+
(
k1−β
0 − β

r+δ

)
e−(1−β)δt

(82)

or

k̇

k
= δ

[(
k

k̄

)β−1

− 1

]
, (83)

where k̄ =
(
r+δ
β

) 1
β−1

. From (83), clearly the growth

rate of capital decreases over time and goes to zero as
the steady state is reached for t �→ ∞. The growth rate
of consumption also decreases over time as the steady
state is approached. For the case when the capital’s
share is equal to the reciprocal of the intertemporal
elasticity of substitution studied by [33], the growth
rate of capital decreases over time, but the growth rate
of consumption grows linearly with capital stock.

Secondly, the gross saving rate s = 1 − c/kβ for
this model is constant and is given by

s = βδ

r + δ
= σ. (84)

4.3 Economic growth model with logarithmic utility
function

We consider the following neoclassical growth model
[6], where the representative consumer’s utility maxi-
mization problem is defined as

Maxc

∫ ∞

0
e−r t ln(c)dt, (85)

subject to the capital accumulation equation

k̇(t) = kβ−(δ−A)k−c, k(0) = k0, 0 < β < 1, (86)

where c(t) is the consumption per person, k(t) the cap-
ital labor ratio, A > 0 the marginal product of capital,
β the capital share, δ the depreciation rate, and r is the
rate of time preferences. In the capital accumulation
equation (86), we consider a Cobb–Douglas version of
the A-K technology: y = kβ + Ak. The current value
Hamiltonian for this model is

H = ln(c) + λ(kβ − (δ − A)k − c) (87)

where λ is the costate variable. The necessary first-
order conditions for optimal control are

λ = 1

c
, (88)

k̇(t) = kβ − (δ − A)k − c, (89)

λ̇ = −(βkβ−1 − δ + A − r)λ, (90)

and the growth rate of consumption is

ċ =
(
βkβ−1 − δ + A − r

)
c. (91)

We do not apply the partial Hamiltonian approach to
solving this model. We solve this model by the partial
Lagrangian approach, and first we transform the prob-
lem to an equivalent calculus of variations problem.

The optimal control problems (85) and (86) in the
calculus of variations can be expressed as

Maxk

∫ ∞

0
e−r t ln

(
kβ−δk+Ak−k̇

)
dt, k(0) = k0.

(92)

The partial Lagrangian for this model is

L = − ln

(
kβ −δk+Ak−k̇

)
= ln

(
1

kβ −δk+Ak−k̇

)

(93)

and the partial Euler–Lagrange equation is

δL

δk
= −r

(
kβ − δk + Ak − k̇

)−1

. (94)
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For the partial Lagrangian (93), the partial Noether
operators determining Eq. (22) results in

−η(βkβ−1 − δ + A) + ηt + k̇(ηk − ξt ) − k̇2ξk

+ (ξt + k̇ξk)(k
β − δk + Ak − k̇) ln

×
(

1

kβ − δk + Ak − k̇

)

= (Bt + k̇ Bk)(k
β − δk + Ak − k̇) − r(η − ξ k̇),

(95)

where B(t, k) is the gauge term. The term (ξt +
k̇ξk)(kβ −δk+Ak− k̇) ln(kβ − δk + Ak − k̇)−1 in Eq.
(95) after power series expansion in k̇ contains higher
powers of k̇ and thus yields ξk = 0, ξt = 0. Now sep-
arating the rest of the terms in Eq. (95) with respect to
powers of k̇, we have

k̇2 : Bk = 0, (96)

k̇ : ηk + Bt − rξ = 0, (97)

k̇0 : −η(βkβ−1 − δ + A) + ηt − Bt
(
kβ − δk + Ak

)
+ rη = 0. (98)

The solution of Eqs. (96)–(98) yields the following par-
tial Noether operator and gauge terms

ξ = c1, η = rc1k

1 − β
, B = c1βtr

β − 1
+ c2, (99)

with β satisfying

β = r + δ − A

δ − A
. (100)

The first integral corresponding to the partial Noether
operator and gauge terms given in (96) under the para-
meter restriction (100) is

I = βr t

β − 1
+ ln(kβ − δk + Ak − k̇)

+ kβ(kβ − δk + Ak − k̇)−1 − 1. (101)

We set this integral to be a constant as

I = βr t

β − 1
+ ln

(
kβ − δk + Ak − k̇

)

+ kβ
(
kβ − δk + Ak − k̇

)−1 − 1 = e1 (102)

in which e1 is an arbitrary constant. From this equation
(102), we deduce k which is written in terms of the
control variable c as

k = [(e1 + 1 − ln c + δβt − Aβt)c]
1
β . (103)

Now Eq. (91) after substitution of the value of k in
(103) becomes

ċ + (δ − A)βc

= βc [(e1 + 1 − ln c + δβt − Aβt) c]
β−1
β . (104)

We set S = c exp(δ − A)βt . Then, (104) becomes

Ṡ = βS(e1 + 1 − ln S)
β−1
β S

β−1
β exp(−r t) (105)

which is integrable by quadratures

∫
dS

βS
2β−1

β (e1 + 1 − ln S)
β−1
β

= −1

r
exp(−r t) + e2,

(106)

where e2 is another arbitrary constant. This is a new
solution.

5 Concluding remarks

We have developed a new approach termed as a par-
tial or discount free Lagrangian approach for dynami-
cal systems. We have shown how a partial Lagrangian
approach provides solutions for a range of equations of
economics. This naturally arises from the allied notion
of a current value Hamiltonian via the partial Legendre
transformation in a generalized settingwhen the costate
and control variables can be expressed in terms of the
state variables and their derivatives. This approach,
when it works, is simpler than the more general partial
Hamiltonian approach as the control variables do not
enter into the calculations which are therefore much
more simplified. Notwithstanding, the partial or dis-
count free Lagrangian that arises is independent of the
discount factor which makes it desirable in the same
way as the current value Hamiltonian is desirable for
not having the discount factor.

Weworked out threemodel examples, one linear and
two nonlinear, using this approach. We have demon-
strated the simplicity of this method as compared to
the worked out example of [28] which involves more
variables in the form of the control variables. In the
third example, we derived a first integral and the new
exact solutions for the agents maximization problem
with logarithmic time preference.

The utility of the method advocated here for eco-
nomic models is thus advantageous when a discount
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free Lagrangian exists. This is indeed the case for a
number of economic models which need investigation
in future research. It is worthy to mention here that
for the case of more control variables it is sometimes
convenient to apply the more generalized approach of
partial Hamiltonians.
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