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Abstract This paper investigates a robust adaptive
backstepping neural networks control for spacecraft
rendezvous and docking with the coupled position and
attitude dynamics. Backstepping technique is applied
as the main control structure. The uncertainties of the
relative dynamics are compensated by using radial
basis function neural networks (RBFNNs). An adap-
tive switching controller is designed by combining a
conventional adaptive neural networks controller and
an extra robust controller. The conventional RBFNNs
dominate in the neural active region, while the robust
controller retrieves the transient outside the active
region. The controllers work together not only improv-
ing the control accuracy, but also reducing real-time
computing burden of the controller. Lyapunov theory is
employed to prove that the states are globally uniformly
ultimately bounded. Simulation example is given to
illustrate the effectiveness of the proposed control strat-
egy.

Keywords Spacecraft control · Rendezvous and
docking · Adaptive neural networks · Globally stable

K. Xia · W. Huo (B)
The Seventh Research Division, Science and Technology
on Aircraft Control Laboratory, Beihang University,
Beijing 100191, People’s Republic of China
e-mail: weihuo@buaa.edu.cn

K. Xia
e-mail: kwxia@buaa.edu.cn

1 Introduction

With the continuous increase in orbit activity, con-
trol technique for space autonomous rendezvous and
docking has become an important research topic. Typ-
ical applications that could use this include collect-
ing and removing space debris, servicing a malfunc-
tioning satellite, refueling a powerless satellite, or
installing improved technology. In order to achieve
control requirements of these missions with high preci-
sion of position and attitude tracking, the six degrees-
of-freedom (6-DOF) relative kinematics and relative
dynamics between pursuer and target spacecrafts with
highly nonlinear and strongly coupled should be taken
into account.

Several research works dealing with both relative
position and relative attitudemotions of orbiting space-
crafts have been conducted over the past decade. An
output feedback structured model reference adaptive
control law has been developed for spacecraft ren-
dezvous and docking problemswith integrated position
and attitude relative motions [1], ultimate boundedness
of the tracking errors is achieved in spite of paramet-
ric uncertainties, bounded disturbances, and measure-
ment noises. Subbarao et al. [2] consider the problem
of motion synchronization of free-flying robotic space-
craft and serviceable floating objects in space with
unknown but bounded disturbances, and an adaptive
control law is derived by feedback-linearization-based
approaches to ensure asymptotic stability of the track-
ing errors. Based on the model presented in [3], sev-
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eral control schemes are proposed. Kristiansen et al.
[4] utilize three nonlinear state feedback controllers,
involving passivity-based PD+ controller, sliding sur-
face controller, and integrator backstepping controller,
to solve the problem of tracking relative 6-DOFmotion
in a leader-follower spacecraft formation. Zhang et al.
[5] formulate a finite-time controller by using ter-
minal sliding mode technique for spacecraft relative
motion by designing a pre-determined trajectory, and
the thruster installation misalignment is also modeled.
Via backstepping theory, control input saturation prob-
lem [6] for spacecraft proximity operationwith thruster
installationmisalignment [7] is solved by introducing a
command filter. Shan [8] presents an adaptive synchro-
nization control scheme for desired attitude and posi-
tion tracking of spacecraft formation flying by intro-
ducing a synchronization error. Xin [9] presents a non-
linear optimal control solution of spacecraft to fin-
ish tumbling target approach by using the θ -D tech-
nique, and a further research [10] derives an optimal
controller with considering the modeling uncertain-
ties. A sliding mode control strategy with the adap-
tive gain and neural networks for a 6-DOF space-
craft formation flying control problem is solved in
[11]. A composite control scheme for the same prob-
lem is proposed in [12] with a feedforward compen-
sator based on a nonlinear disturbance observer tech-
nique.

The robust controller in the above literature has
a simple structure and low calculation which deals
with the unknown parameters and uncertainties well,
but it uses the upper bound of uncertainties which
leads to larger control power. The neural networks
controller can approximate uncertainties with arbi-
trary control accuracy. To satisfy the high accuracy,
the neural networks have to add more nodes when
the application range arises, which leads to a com-
plex structure and high calculation, which leads to real-
time computing burden of the controller. So construct-
ing the neural network with a large active region is
not necessary. Motivated by [13–15], a robust switch-
ing controller is introduced which utilizes an nth-
order smooth switching function to combine a con-
ventional RBFNN with a robust control. The con-
ventional RBFNN dominates in the neural active
region, while the robust control retrieves the tran-
sient outside the active region. The controllers work
together not only improving the control accuracy, but

also reducing real-time computing burden of the con-
troller.

In this paper, we consider the problem of driving a
pursuer spacecraft to approximate a target spacecraft
with respect to the target and synchronizing the space-
craft attitude with the attitude of the tumbling target.
A nonlinear and coupled mechanical model for 6-DOF
relative motion is expressed in the pursuer body-fixed
frame. The uncertainties of the dynamics are com-
pensated by using RBFNNs. A novel switching con-
troller is developed by combining direct adaptive con-
trol approach and backstepping technique, which con-
sists of a conventional adaptive neural controller dom-
inating in the neural active region and an extra robust
controller to pull back the transient outside the neural
active region. The smaller approximate errors should
be achieved by using RBFNNs in the active region
than using only robustmethod.Globally uniformly ulti-
mately bounded stability for the closed-loop system is
proved, and the performance of proposed controller is
demonstrated via a numerical example.

Through this paper, the main contributions are as
follows: (1) robust RBFNNs are utilized to estimate
and compensate for the uncertainties, so that the con-
trol accuracy is improved than only the robust method
is used; (2) the traditional RBFNNs are enhancedwith a
robust control via an nth-order smooth switching func-
tion, which consists of a conventional adaptive neural
controller dominating in the neural active region and an
extra robust controller to pull back the transient outside
the neural active region, so that the real-time comput-
ing burden of the controller is reduced and the stability
region is ensured to global.

This paper is organized as follows. In Sect. 2, some
preliminaries used throughout this paper are presented.
The relative dynamic model and control problem are
stated in Sect. 3. Then, a novel controller is developed
in Sect. 4. Section 5 proposes a numerical simulation
scenario. Finally, the conclusions are summarized in
Sect. 6.

2 Preliminaries

2.1 Notations

Throughout this paper, the following notations are
adopted. The skew symmetric matrix R(x) ∈ R3×3

derived from a vector x = [x1, x2, x3]T is defined as
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S(x) =
⎡
⎣

0 −x3 x2
x3 0 −x1

−x2 x1 0

⎤
⎦ .

For any vector x = [x1, x2, . . . , xn]T , |x| is defined
as |x| = [|x1|, |x2|, . . . , |xn|]T ; and | · | denotes the
absolute value of a scalar; ‖ · ‖ denotes the Euclidean
norm of a vector or the Frobenius norm of a matrix;
λmin(A) and λmax(A) denote the smallest and largest
eigenvalues of a square matrix A, respectively. For a
matrix X ∈ Rn×n , tr(X) denotes its trace with the
property tr(XT X) = ‖X‖2.

2.2 RBFNNs approximation

Suppose f (x): Rm → R is an unknown smooth nonlin-
ear functions and it can be approximated on a compact
set Ω ⊆ Rm by the following RBFNNs

f (x) = wTΦ(x) + ε

where ε is the approximation error which is bounded
over, namely |ε| ≤ ε̄, where ε̄ is an unknown constant.
w ⊆ Rl represents the weight vector, where the node
number of the neural networks is l. More nodes means
more accurate approximation [13]. w is defined by

w = argmin
ŵ

{
sup
x∈Ω

| f (x) − ŵ
T
Φ(x)|

}

where ŵ is the estimate of w, Φ(x) = [φ1(x), φ2(x),

. . . , φl(x)]T :Ω → Rl represents the radial basis func-
tion vector, its elements are selected as the Gaussian
functions

φi (x) = exp

(
−‖x − μi‖2

ηi 2

)
, i = 1, 2, . . . , l

where μi ∈ Rm are the centers and ηi > 0 are the
spreads of the Gaussian functions.

2.3 Definitions and lemmas

Definition 1 [14] For all x ∈ Rm and given constants
a and b satisfying 0 < a < b, the following nonlinear
switching function h̄a,b,n(x) ∈ Cn is defined as follow:

h̄a,b,n(x)

=

⎧⎪⎪⎨
⎪⎪⎩

0, ‖x‖ ≤ a

1 − cosn
(

π
2 sinn

(
π
2

‖x‖2−a2

b2−a2

))
, a < ‖x‖ < b

1, ‖x‖ ≥ b

In this paper, we choose n = 2, and if no confusion
arises, we always use h̄(x) instead of h̄a,b,n(x).

Definition 2 For any x ∈ R, the hyperbolic tangent
function tanh(x): R → R is defined as follows:

tanh(x) = ex − e−x

ex + e−x
.

Lemma 1 [16] The following inequality holds for any
η > 0 and x ∈ R:

0 ≤ |x | − x tanh

(
x

η

)
≤ δη

where δ = 0.2785 is a constant satisfying δ = e−(δ+1).

Definition 3 For any x = [x1, x2, . . . , xn]T ∈ Rn , the
hyperbolic tangent function matrix Tanh(x): Rn →
Rn×n is a diagonal matrix defined as

Tanh(x) = diag(tanh(x1), tanh(x2), . . . , tanh(xn)).

3 Problem formulation

3.1 Cartesian coordinate frames

The Earth-Centred Inertial (ECI) frame is denoted by
Fi = {Oi , xi , yi , zi } is fixed to the center of the Earth,
xi is along the direction of the vernal equinox, zi points
toward the north pole, and yi completes a right-handed
orthogonal frame. The spacecrafts are regarded as rigid
bodies. The body frames of target spacecraft and pur-
suer spacecraft are denoted by Ftb = {T, xtb, ytb, ztb}
and Fpb = {

P, xpb, ypb, z pb
}
, respectively. Body

frame Ftb is considered to coincide with the LVLH
frame, i.e., xtb is parallel to the vector r t and points
to the radial direction; ytb is along the opposite direc-
tion of docking port, and ztb is perpendicular to the
target orbit and threemutually perpendicular axes com-
plete the right-hand system; likewise, in frameFpb, xpb
points toward the docking port on the pursuer space-
craft and three mutually perpendicular axes coincident
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Fig. 1 Reference frames

with the principle axis of inertia. All the frames are
shown in Fig. 1, where r t is the inertial position of the
target spacecraft represented in the frame Ftb, while
r p is the inertial position of the target spacecraft rep-
resented in the frame Fpb.

3.2 The dynamics of target spacecraft

Suppose the target spacecraft is flying in an elliptical
orbit. According to [17], the target position signals are
governed by

v̇t = − μ

r3t
r t , r t = [rt , 0, 0]T , rt = a(1 − e2)

1 + e cos ν
,

where vt is the velocity of the target spacecraft with
respect toFi expressed inFtb,μ is the geocentric grav-
itational constant, a = rpa/(1 − e) is the semimajor
axis, rpa the perigee altitude, e is the eccentricity of the
elliptical orbit, ν is the true anomaly, and the rate of the
true anomaly is given by [18]

ν̇ = n(1 + e cos ν)2

(1 − e2)
3
2

,

where n = √
μ/a3 is the mean motion of the target.

The second-order derivative of ν is

ν̈ = −2n2e(1 + e cos ν)3 sin ν

(1 − e2)3
.

ωt is the angular velocity of the target spacecraft with
respect toFi expressed inFtb and its derivative ω̇t can
be obtained as

ωt = [0, 0, ν̇]T , ω̇t = [0, 0, ν̈]T .

Assumption 1 Consider cooperative rendezvous and
docking, the information of the target spacecraft are
known, so r t , v̇t , ωt , and ω̇t are available.

3.3 Relative attitude dynamics

The relative attitude kinematics of the two spacecrafts
can be expressed as [19]

σ̇ = G(σ )ω, (1)

G(σ ) = 1

4

[
(1 − σ T σ )I3 + 2S(σ ) + 2σσ T

]
(2)

where σ = [σ1, σ2, σ3]T ∈ R3 is the modified
Rodrigues parameters (MRP) vector used to denote the
relative attitude between the pursuer spacecraft and the
target spacecraft, and ω = ωp − R p

t ωt is the rela-
tive angular velocity between the frames Ftb and Fpb;
ωp denote the angular velocity of the pursuer with
respect to Fi expressed in frames Fpb. Then, the rota-
tion matrix from Ftb to Fpb is

R p
t = I3 − 4(1 − σ T σ )

(1 + σ T σ )
2 S(σ ) + 8S(σ )2

(1 + σ T σ )
2 (3)

Moreover, the relative attitude dynamics can be
expressed in the frame Fpb as

Jω̇ + Crω + nr = τ + τ d (4)

where J is the inertia matrix of the pursuer spacecraft;
τ = [τx , τy, τz]T is the control torque, and τ d ∈ R3 is
disturbance torques; Cr is a skew-symmetric Coriolis-
like matrix, nr is a nonlinear term, and

Cr = J S
(
R p
t ωt

) + S
(
R p
t ωt

)
J − S

(
J

(
ω + R p

t ωt
))

nr = S
(
R p
t ωt

)
J R p

t ωt + J R p
t ω̇t
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3.4 Relative position dynamics

The relative position vector between two frames Ftb

and Fpb represented in the frame Fpb is expressed as

r = r p − R p
t r t (5)

From the fundamental equation of the two-body prob-
lem with an assumption of small spacecraft massed
relative to the Earth, the nonlinear relative position
dynamics can be represented in the frame Fpb [5,7]

ṙ = v − S
(
ω + R p

t ωt
)
r (6)

mv̇ = −mS
(
ω + R p

t ωt
)
v − mμ

(
r + R p

t r t
)

∥∥r + R p
t r t

∥∥3
−mR p

t v̇t + f + f d (7)

where v denotes the relative velocity between the pur-
suer spacecraft and the target spacecraft; m is the mass
of the pursuer spacecraft; f = [ fx , fy, fz]T is control
force vector and f d ∈ R3 is disturbance force vector.

3.5 Problem formulation

Define the state vectors as x1 = [rT , σ T ]T and x2 =
[vT ,ωT ]T . Based on (1), (4), (6) and (7), the coupled
dynamics of the relative position and attitude for space-
craft rendezvous and docking can be expressed as

ẋ1 = Λx1 + Cx2 (8)

Mẋ2 = Dx2 + N + u + d (9)

where

Λ =
[−S(ω + R p

t ωt ) 0
0 0

]
, C =

[
I 0
0 G(σ )

]
,

M =
[
m I 0
0 J

]
,

D =
[−mS(ω + R p

t ωt ) 0
0 −Cr

]
,

N =
[

−mμ(r+Rp
t r t )

‖r+Rp
t r t‖3 − mR p

t v̇t

−S(R p
t ωt)J R

p
t ωt − J R p

t ω̇t

]
,

u =
[
f
τ

]
,

d =
[
f d
τ d

]
.

Assumption 2 Themassm, inertialmomentum J , and
disturbances d of the pursuer spacecraft are unknown
but bounded with unknown bounds.

The control objective in this paper is to design a
controller based on the system formulated by (8) and
(9) to drive the pursuer spacecraft to approximate the
target and keep its docking port facing the docking port
of the target.With themeasurement information r ,σ , v,
ω, r t , v̇t ,ωt , and ω̇t , we design a controller to make the
states x1, x2 globally uniformly ultimately bounded in
the presence of the external disturbance and parameter
uncertainties.

4 Controller design

In this subsection, detailed controller design proce-
dures for spacecraft rendezvous and docking maneuver
are presented. To achieve the control objective, a robust
adaptive neural networks control law via backstepping
technique is designed.

Step 1 Define auxiliary state variables

z1 = x1 (10)

z2 = x2 − α (11)

where α is a virtual control input to be designed later.
From (8) and (10), the derivative of z1 can be expressed
as

ż1 = ẋ1 = Λx1 + Cx2 = Λz1 + Cz2 + Cα (12)

Choose a Lyapunov function

V1 = 1

2
z1T z1 (13)

Taking its derivative along (12) and selecting the virtual
control α = −K 1CT z1, where K 1 > 0 is a symmetric
matrix, we can obtain

V̇1 = z1T ż1
= z1T (Λz1 + Cz2 + Cα)

= z1TΛz1 + z1TCz2 − z1TCK 1CT z1
= z1TCz2 − z1TCK 1CT z1 (14)

Step 2 Taking the derivative of (11), then from (9)
and (12), we have

Mż2 = Mẋ2 − Mα̇

= Dx2 + N + u + d + MK 1

(
Ċ
T
z1
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+CTΛz1 + CTCz2 + CTCα
)

= Dx2 + N1 + u + d (15)

where Ċ
T
is the derivative ofCT , N1 = MK 1(Ċ

T
z1+

CTΛz1 + CTCz2 − CTCK 1CT z1) + N .
Because m and J are not known exactly, we use D̂

and N̂1 to denote the estimate of D and N1, and the
estimate errors are D̃ = D̂ − D and Ñ1 = N̂1 − N1,
respectively. Then, Eq. (15) can be rewritten as

Mż2 = D̂x2 + N̂1 + u + d∗ (16)

where d∗ = d − D̃x2 − Ñ1.

Assumption 3 Here we assume that each component
of the uncertain dynamics d∗ are bounded, namely
|d∗

i | ≤ γ̄i , i = 1, 2, . . . , 6 and γ̄ = [γ̄1, γ̄2, . . . , γ̄6]T
is an unknown constant vector.

According to (16), d∗ are mainly from the relative
states r , σ , v, ω, and the true anomaly ν. Define χ =
[xT1 , xT2 , ν]T and the normalized input [20] vector y =
ι

χ
‖χ‖ , where ι is a positive scaling parameter. Consider
d∗ being approximately linear about y, then y can be
regarded as the input vector into the robust RBFNNs.

Remark 1 Both the estimation error and the calculation
time of the RBFNN can be reduced via the normalized
input [20,21].

Employ an RBFNNwith l nodes to approximate d∗,
namely

d∗ = WTΦ( y) + ε (17)

where W denotes the constant weight matrix with
Ŵ and W̃ = Ŵ − W as its estimate and esti-
mate error, Φ( y) is the radial basis function vector,
ε ∈ R6 is the error vector, each component of which
is bounded, namely, |εi | ≤ ε̄i , i = 1, 2, . . . , 6 and
ε̄ = [ε̄1, ε̄2, . . . , ε̄6]T is an unknown constant vector.

DefineΘ = [ε̄T , γ̄ T ]T , its estimate Θ̂ = [ε̂T , γ̂
T ]T

and estimate error Θ̃ = [ε̃T , γ̃ T ]T = Θ̂ − Θ , then a
Lyapunov function is constructed as

V2 = V1+ 1

2
zT2 Mz2+ 1

2
tr(W̃

T
Γ −1

1 W̃)+ 1

2
Θ̃

T
Γ −1

2 Θ̃

(18)

where Γ 1 = Γ T
1 > 0, Γ 2 = Γ T

2 > 0.
The derivative of (18) can be derived as

V̇2 = V̇1 + zT2 Mż2 + tr(W̃
T
Γ −1

1
˙̃W) + Θ̃

T
Γ −1

2
˙̃
Θ

= z1TCz2 − z1TCK 1CT z1 + zT2 ( D̂x2 + N̂1

+ u + d∗) + tr(W̃
T
Γ −1

1
˙̂W) + Θ̃

T
Γ −1

2
˙̂
Θ (19)

Design a control law

u = −CT z1 − K 2z2 − D̂x2 − N̂1

+ (1 − h̄( y))αan + h̄( y)αr (20)

where K 2 > 0 is a symmetric matrix, h̄( y) is defined

in Definition 1, αan = −Ŵ
T
Φ( y) − Tanh( z2

�
)ε̂, αr =

−Tanh( z2
�

)γ̂ . Substituting (20) into (19) yields

V̇2 = −z1TCK 1CT z1 − z2T K 2z2
+ zT2 [(1 − h̄( y))(αan + d∗) + h̄( y)(αr + d∗)]
+ tr(W̃

T
Γ −1

1
˙̂W) + Θ̃

T
Γ −1

2
˙̂
Θ

= −z1TCK 1CT z1 − z2T K 2z2

+ zT2
[
(1 − h̄( y))

(
−Ŵ

T
Φ( y)

− Tanh
( z2
�

)
ε̂ + d∗)

+ h̄( y)
(
−Tanh

( z2
�

)
γ̂ + d∗))

]

+ tr(W̃
T
Γ −1

1
˙̂W) + Θ̃

T
Γ −1

2
˙̂
Θ

= −z1TCK 1CT z1 − z2T K 2z2

+ (1 − h̄( y))zT2
(
−W̃

T
Φ( y) − Tanh

( z2
�

)
ε̃

−Tanh
( z2
�

)
ε̄ + ε

)
+ h̄( y)zT2

(
−Tanh

( z2
�

)
γ̃

−Tanh
( z2
�

)
γ̄ + d∗)

+ tr(W̃
T
Γ −1

1
˙̂W) + Θ̃

T
Γ −1

2
˙̂
Θ (21)

Using 0 ≤ h̄( y) ≤ 1, zT2 ε ≤ |z2|T ε̄ and zT2 d
∗ ≤

|z2|T γ̄ , we can have the following inequality

V̇2 ≤ −z1TCK 1CT z1 − z2T K 2z2

+ (1 − h̄( y))zT2
(
−W̃

T
Φ( y) − Tanh

( z2
�

)
ε̃
)

+ (1 − h̄( y))
(
|z2|T − zT2 Tanh

( z2
�

))
ε̄

+ h̄( y)(|z2|T − zT2 Tanh
( z2
�

)
)γ̄

− h̄( y)zT2 Tanh
( z2
�

)
γ̃ + tr(W̃

T
Γ −1

1
˙̂W)
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+ Θ̃
T
Γ −1

2
˙̂
Θ

= −z1TCK 1CT z1 − z2T K 2z2

− (1 − h̄( y))zT2 W̃
T
Φ( y) − Θ̃

T



+[|z2| − Tanh
( z2
�

)
z2]T [(1 − h̄( y))ε̄ + h̄( y)γ̄ ]

+ tr(W̃
T
Γ −1

1
˙̂W) + Θ̃

T
Γ −1

2
˙̂
Θ

= −z1TCK 1CT z1 − z2T K 2z2

+[|z2| − Tanh
( z2
�

)
z2]T [(1 − h̄( y))ε̄ + h̄( y)γ̄ ]

− tr(W̃
T
((1 − h̄( y))Φ( y)zT2 − Γ −1

1
˙̂W))

− Θ̃
T
(
 − Γ −1

2
˙̂
Θ) (22)

where
 =
[

(1 − h̄( y))Tanh( z2
�

)z2
h̄( y)Tanh( z2

�
)z2

]
. Design adapta-

tion laws for Ŵ and Θ̂ as

˙̂W = Γ 1((1 − h̄( y))Φ( y)zT2 − ϑŴ)

˙̂
Θ = Γ 2(
 − ϑΘ̂) (23)

where ϑ > 0 is a parameter to be designed.
By substituting (23) into (22), we can have the fol-

lowing inequality

V̇2 ≤ −z1TCK 1CT z1 − z2T K 2z2

+
[
|z2|−Tanh

( z2
�

)
z2

]T [(1−h̄( y))ε̄+h̄( y)γ̄ ]
−ϑ tr(W̃

T
Ŵ) − ϑΘ̃

T
Θ̂ (24)

From Schwartz inequality, the following inequalities
can be obtained

−ϑ tr(W̃
T
Ŵ) ≤ −ϑ‖W̃‖2

2
+ ϑ‖W‖2

2

−ϑΘ̃
T
Θ̂ ≤ −ϑ‖Θ̃‖2

2
+ ϑ‖Θ‖2

2
(25)

Hence, substituting (25) into (24), with Lemma 1, one
has the following inequality

V̇2 ≤ −z1TCK 1CT z1 − z2T K 2z2

− ϑ ˜‖W‖2
2

− ϑ ˜‖Θ‖2
2

+ ζ (26)

where ζ = δ�
∑

i=1,...,6 [(1 − h̄( y))ε̄i + h̄( y)γ̄i ] +
ϑ‖W‖2

2 + ϑ‖Θ‖2
2 .

Let z=[zT1 , zT2 ]T andλ1=λmin

([
CK 1CT 0

0 K 2

])
,

inequality (26) can be rewritten as

V̇2 ≤−zT
[
CK 1CT 0

0 K 2

]
z− ϑ ˜‖W‖2

2
− ϑ ˜‖Θ‖2

2
+ζ

≤ −λ1zT z − ϑ ˜‖W‖2
2

− ϑ ˜‖Θ‖2
2

+ ζ

≤ −k∗V2 + ζ (27)

where k∗ = min

(
λ1,

ϑ

2λmax(Γ
−1
1 )

, ϑ

2λmax(Γ
−1
2 )

)
. From

(19) and (27), it can be easily shown that

λ∗

2
zT z ≤ V2(t) ≤

(
V2(0) − ζ

k∗

)
e−k∗t + ζ

k∗ (28)

whereλ∗ = λmin

([
I 0
0 M

])
. So zwill eventually con-

verge to

Ω∗ =
{
z|‖z‖ ≤

√
2ζ

λ∗k∗

}
.

From (10) and (11), with the properties 0 ≤ σ T σ ≤ 1

and ‖G(σ )T ‖ = 1+σ T σ
4 , the following inequality can

be obtained

‖x1‖ = ‖z1‖ ≤ ‖z‖ ≤
√

2ζ

λ∗k∗ ,

‖x2‖ = ‖z2 + α‖ = ‖z2 − K 1CT z1‖

≤ (1 + ‖ − K 1CT ‖)‖z‖ ≤
(
1 + 3

2
λ2

) √
2ζ

λ∗k∗

where λ2 = λmax(K 1). The states x1 and x2 will ulti-
mately converge to the following regions, respectively

Ω∗
1 =

{
x1|‖x1‖ ≤

√
2ζ

λ∗k∗

}
,

Ω∗
2 =

{
x2|‖x2‖ ≤ (1 + 3

2
λ2)

√
2ζ

λ∗k∗

}
.

Which implies that the states x1 and x2 are bounded.
Then, the previous conclusions can be summarized as
the following theorem.

Theorem 1 For spacecraft rendezvous and docking
dynamic system (8) and (9) with Assumptions 1–3, the
proposed control law (20) and adaptation laws (23)
guarantee the relative states x1 and x2 globally uni-
formly converge to regions Ω∗

1 and Ω∗
2 , respectively.
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Fig. 2 Relative position,
relative velocity, and control
forces with controller gains
(29)
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Fig. 3 Relative attitude,
relative angular velocity,
and control torques with
controller gains (29)

0 10 20 30 40 50 60 70 80 90
−0.5

0

0.5

time(s)

σ

σx σy σz

0 10 20 30 40 50 60 70 80 90
−0.2

0

0.2

time(s)

ω
(r
ad

/s
) ωx ωy ωz

0 10 20 30 40 50 60 70 80 90
−1

0

1

time(s)

τ
(N

m
)

τx τy τz

Remark 2 The switching function h̄( y)plays an impor-
tant role in the control approach design, since it com-
bines the conventional RBFNN and a robust control
to avoid the invalidation of the RBFNN destroying
the stability of the closed-loop system outside the
neural active region. When h̄( y) = 0, it can be seen
that only the neural controller works inside the neural
active region, whereas only the robust controller works
can pull back the states from outside into the neural
active region. Since the smaller approximate errors
should be achieved by using RBFNNs in the active

region than using only robust method. The controllers
work together inside the neural active region not only
improving the control accuracy, but also reducing real-
time computing burden of the controller.

Remark 3 With appropriate controller parameters, the
ultimate convergent sets of relative states x1 and x2
can be tuned. Careful analysis indicates that increasing
K 1 and K 2 lead to larger k∗ and which contributes to
smaller ultimate bounds of x1. So the ultimate bound of
x1 can be arbitrarily small. Then choose the appropri-
ate λ2, sufficiently small ultimate bound of x2 can also
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Fig. 4 RBFNN
approximate errors
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Fig. 5 Relative position,
relative velocity, and control
forces with controller gains
(30)
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be obtained. We can know that the ultimate bounds of
σ and ω can be tuned according to the requirements of
the control accuracy. Moreover, larger controller gains
could contribute to faster convergence rate but larger
control power. So a compromise among the control
objectives should be made in practical problem.

5 Numerical simulations

In this section, a simulation scenario is considered to
show the effectiveness of the proposed control strat-

egy. The scenario describes a particular autonomous
rendezvous and docking maneuver in orbit. The target
spacecraft is in an elliptical orbit with a perigee alti-
tude of 400kmandeccentricity e = 0.3.Thegeocentric
gravitational constantμ = 3.986×1014 Nm2/kg. The
pursuer spacecraft has mass m = 60 kg, and moments
of inertia J = diag(4.350, 4.337, 3.664) kgm2 [4,7].
And we use the estimate values of mass m̂ = 52kg
and inertial moments Ĵ = diag(3, 6, 3) kgm2 in this
simulations. The disturbance force f d and disturbance
torque τ d are chosen as
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Fig. 6 Relative attitude,
relative angular velocity,
and control torques with
controller gains (30)
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Fig. 7 Comparison of r
between different controller
gains
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f d =
⎡
⎣

(1 + sin (nt) + cos (nt)) × 0.1
(1 + sin (nt) + cos (nt)) × 0.2
(1 + sin (nt) + cos (nt)) × 0.15

⎤
⎦N,

τ d =
⎡
⎣

(1 + sin (nt) + cos (nt)) × 0.1
(1 + sin (nt) + cos (nt)) × 0.2
(1 + sin (nt) + cos (nt)) × 0.15

⎤
⎦Nm.

The initial relative position, relative velocity, relative
attitude, and relative angular velocity are given as

r(0)=[20, 10,−10]Tm, v(0)=[0.5,−0.5, 0.1]Tm/s,

σ (0) = [−0.3,−0.4, 0.2]T , ω(0) = [0, 0, 0]T rad/m.

The neural networks active region is defined as Ωn1

Ωn1 = {r, v, σ ,ω, ν|‖r‖ ∈ [0, 15], ‖v‖ ∈ [0, 1.5],
‖σ‖ ∈ [0, 0.2], ‖ω‖ ∈ [0, 0.15], |ν| ∈ [0, 0.8π ]} .

And only the neural networks controller works in the
following region defined as Ωn2

Ωn2 = {r, v, σ ,ω, ν|‖r‖ ∈ [0, 5], ‖v‖ ∈ [0, 0.5],
‖σ‖ ∈ [0, 0.1], ‖ω‖ ∈ [0, 0.1], |ν| ∈ [0, 0.3π ]} .

Theneural networks controller and the robust controller
work together inΩn1−Ωn2.While the robust controller
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Fig. 8 Comparison of σ

between different controller
gains
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Fig. 9 Comparison of v

between different controller
gains
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works alone outside the neural networks active region
Ωn1.

The parameters of RBFNNs are given as follow

� = 0.01, l = 200,Γ 1

= diag(0.01I100×100, 0.1I100×100),

Γ 2 = 0.2I12×12, ϑ = 0.01, a = 5, b = 28, ι = 30.

In this maneuver, we use the controller given by (20)
with controller gains firstly

K 1 = diag(0.1, 0.1, 0.1, 5, 5, 5)

K 2 = diag(1.25, 1.25, 1.25, 5, 5, 5) (29)

Figure 2 shows the time histories of relative posi-
tion, velocity, and control force signals. Figure 3 illus-
trates the relative attitude, relative angular velocities,
and control torques. It can be seen that relative posi-
tion and relative attitude converge to a small neighbor
of zero within 60s with a good performance. The rela-
tive attitude converging to zero indicates the attitude of
pursuer is synchronized with the target’s. Small oscil-
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Fig. 10 Comparison of ω

between different controller
gains
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lations forces and torques are maintained as seen in
figures, because tracking the target motions and sup-
pressing the uncertainties require continuous control
efforts. In addition, Fig. 4 describes robust RBFNNs
approximation errors on each axis. It can be observed
that the robust RBFNNs are well adaptive to the uncer-
tain dynamics with boundedness.

To demonstrate the analysis shown in Remark 4, we
use the larger controller gains in this maneuver

K 1 = diag(0.2, 0.2, 0.2, 10, 10, 10)

K 2 = diag(2.5, 2.5, 2.5, 10, 10, 10) (30)

Figure 5 shows the time histories of relative posi-
tion, velocity, and control force signals. Figure 6 illus-
trates the relative attitude, relative angular velocities,
and control torques. Compared with the simulation
results with smaller K 1 and K 2, we can conclude that
larger feedback gains K1 and K2 in the proposed con-
troller (20) yield smaller relative errors, shorter tran-
sient response time but larger control efforts.

Thus,we can observe that the system states converge
to the equilibrium with a good performance. This con-
cludes that the coupled relative position and attitude
maneuver is successfully completed by the proposed
control strategy, despite of external disturbances and
uncertainties of mass and inertial moments (Figs. 7, 8,
9, 10).

6 Conclusion

This paper has presented a robust adaptive switching
controller for spacecraft rendezvous and docking with
the coupled position and attitude dynamics. In the back-
stepping framework, RBFNNs are introduced to esti-
mate and compensate the uncertainties of the relative
dynamics. The robust RBFNNs controller consists of a
conventional adaptive neural networks controller dom-
inating in the neural networks active region combined
with an extra robust controller to avoid the invalidation
of the RBFNNs destroying the stability of the system
outside the neural active region. The controllers work
together can improve the control accuracy and reduce
real-time computing burden of the controller. It has
been proven that with the proposed control approach,
the relative states of the closed-loop system are glob-
ally uniformly ultimately bounded. Numerical simu-
lations demonstrate the validity of the proposed con-
troller.
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