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Abstract In this article, an eco-epidemiological
model with strong Allee effect in prey population
growth is presented by a system of delay differential
equations. The time lag in terms of the delay parame-
ter corresponds to the predator gestation period. We
inspect elementary mathematical characteristic of the
proposed model such as uniform persistence, stability
and Hopf bifurcation at the interior equilibrium point
of the system. We execute several numerical simula-
tions to illustrate the proposedmathematical model and
our analytical findings. We use basic tools of nonlinear
dynamic analysis as first returnmaps, Poincare sections
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andLyapunov exponents to identify chaotic behavior of
the system.We observe that the system exhibits chaotic
oscillation due to the increase of the delay parame-
ter. Such chaotic behavior can be suppressed by the
strength of Allee effect.
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1 Introduction

The research on eco-epidemiology is the investiga-
tion into ecological systems with the impact of epi-
demiological parameters. Hadeler Freedman [34] first
modeled the spread of disease among predator–prey
interacting populations. Chattopadhyay and Arino [13]
coined the term eco-epidemiology for such systems.
Since then, the research on eco-epidemiology as well
as its biological importance has gained great attention
[5,6,14,15,37,68,90,95].

In recent times, significant research has been done
on the development of the concept for Allee effect,
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which corresponds to the positive correlation between
population size/density and per-capita growth rate at
lowpopulation density [1,17,49,60,62]. Empirical evi-
dence of Allee effects has been reported in many nat-
ural populations including plants [29,33], insects [47],
marine invertibrates [83], birds andmammals [20]. Few
mechanisms behind this Allee effect are due to compli-
cations in finding mates, reproductive facilitation, pre-
dation, environment conditioning, inbreeding depres-
sion, etc. [22,42,53,71,80–82]. Allee effects mainly
classified into two broad categories: strong Allee effect
and weak Allee effect [21,64,65,92]. There is a thresh-
old population level for the strong Allee effect such
that the species become extinct below this threshold
population density [27]. On the other hand, the weak
Allee effect occurs when the growth rate reduces but
remains positive at low population density. Ecologists
paid significant attention on this topic as it relates to
species extinction [3,8,26,72,88]. Recently, Saha et al.
[66], analyzed the time series of two herring popula-
tions from the Icelandic and Canadian regions from the
Global Population dynamics database with GPDD ID
1765,1759 [59] and observed the presence of strong
Allee effect. Furthermore, disease has been considered
as one of the main cause for species disappearance,
and if it is connected with the Allee effects, the inter-
action between them has substantial biological impor-
tance in nature [38]. Recently, many researchers have
been done in Allee effects on interacting population
[e.g., see [43,45,94]] as well as Allee effects with
disease in the population [38,39,69,70,89,99]. Many
species suffer from Allee effect and disease. For exam-
ple, the combined effects of disease and Allee effect
has been observed in the African wild dogs [11,19]
and the island fox [4,18]. Thus, understanding the com-
bined impact of Allee effects and disease on population
dynamics of predator–prey interactions can enrich us
to have better knowledge on species abundance and
disease outbreak.

Many ecological and men-made activities in biol-
ogy, and medicine can be better interpreted with the
help of time delays[56,67,91,96]; the classical books
such as MacDonald [54], Gopalsamy [32] and Kuang
[46] discussed detail topics on the relevance of time
delays in practical models. There have been extensive
research activities on the dynamical behaviors, periodic
oscillation, persistence, bifurcation and chaos of pop-
ulation with retarded systems [7,23–25,28,50,51,58,
63,73,74,76–79,84–86,100,102]. Since ignoring time

delays means ignoring reality, thus without delays,
dynamical models become a worse conjecture of real-
ity. [16,30–32,46,52,93,97] tell us that for digesting
food the predator requires some time as time delay.
As far as our knowledge, there are very few works
on time-delayed population dynamics in the presence
of Allee effect [9,10,12,61,98,101]. According to the
authors, this is the first noble attempt of considering the
time delay effects for eco-epidemic models with strong
Allee in the prey.

Recently, Kang et al. [44] studied a model of a
predator–prey interaction with infected prey, and prey
is subjected to the strong Allee effects. In this paper,
we have considered the same model with a more real-
istic assumption that the predator takes some time to
digest food before having further activities to take
place. In addition to the above assumption, we have
also considered that the predator population captures
only infected prey which contributes toward its posi-
tive growth. We like to mention that Lafferty and Mor-
ris [48] experimentally established that the predation
rate on infected population is thirty- one times higher
than the susceptible one. Thus, based on this experi-
mental result, we ignore the predation on susceptible
one.

The rest of the article is organized as follows:
Sect. 2 deals with the development of the model; in
Sect. 3, we discuss the dynamics of the model with
no time delay. Detailed mathematical analysis of the
time delay model, its boundedness of solutions, exis-
tence of switching stability, persistence and perma-
nence, the direction and stability of Hopf bifurcation
are discussed in the Sect. 4. Dynamical behavior of the
model without Allee effect is studied in 5. Sensitiv-
ity analysis and numerical simulations are presented
in the Sect. 6. The article ends with a discussion in
Sect. 7.

2 The model

In this paper, we have considered the model studied
by Kang et al. [44] with the following two important
realistic assumptions:

1. We have neglected the predation on susceptible
prey by the predator population; thus, in our model,
predator feeds only on infected prey. This assump-
tion is supported by the experimental evidence by
Lafferty and Morris [48]; they evaluated that the

123



Delayed predator–prey model with strong Allee effects 1571

predation rate on infected fish, on an average, is
thirty-one times higher than the predation rate on
susceptible fish. In addition, we have assumed that
the consumption of infected prey contributes posi-
tive growth to the predator population.

2. After consumption of prey by predator, some
amounts of energy in the form of prey biomass
converted into predator biomass through a very
complicated internal process in the predators digest
system. The whole transformation process requires
time; thus, we have taken a constant time lag
τ > 0 for the gestation of predator [16,30–32,46,
52,93,97].

Thus, a delayed predator–prey model with suscep-
tible prey, infected prey and predator, with the strong
Allee effects on susceptible prey, is described by the
following set of nonlinear differential equations:

dS

dt
= S [(1 − S − I )(S − θ) − β I ]

dI

dt
= I [βS − a P − μ]

dP

dt
= γ a P(t − τ)I (t − τ) − d P

= αP(t − τ)I (t − τ) − d P (1)

Here the infected population does not contribute to
the reproduction but compete for resources with sus-
ceptible one. We have considered disease transmitted
through mass action law, and predator follows Holling
type I functional response [40]. All the variables and
parameters are positive. The variables and parameters
used in Model (1) are presented in the Table 1.

The initial conditions for the system (1) take the
form

S(φ) = ψ1(φ), I (φ) = ψ2(φ), P(φ) = ψ3(φ),

− τ ≤ φ ≤ 0,

where ψ = (ψ1, ψ2, ψ3)
T ∈ C+ such that ψi (φ) ≥ 0

(i = 1, 2, 3), ∀ φ ∈ [−τ, 0], and C+ denotes the
Banach space C+

([−τ, 0], R
3+
)
of continuous func-

tions mapping the interval [−τ, 0] intoR
3+ and denotes

the norm of an element ψ in C+ by

‖ψ‖ = sup
−τ≤φ≤0

{
|ψ1(φ)|, |ψ2(φ)|, |ψ3(φ)|

}
.

For biological feasibility, we further assume that
ψi (0) > 0, for i = 1, 2, 3.

3 Mathematical analysis of the system (1) with no
time lag (τ = 0)

We first study the system (1) with no time lag. The
system (1) without delay for gestation of predator can
be written as

dS

dt
= S [(1 − S − I )(S − θ) − β I ]

dI

dt
= I [βS − a P − μ]

dP

dt
= P [α I − d] (2)

The system (2) has the following boundary equilibria:

E0 = (0, 0, 0), Eθ = (θ, 0, 0), E1 = (1, 0, 0),

E2 =
⎛

⎝μ

β
,

(
μ
β

− θ
) (

1 − μ
β

)

μ
β

+ β − θ
, 0

⎞

⎠ .

The system (2) has two interior equilibria E∗
1 =(

S∗
1 , I ∗

1 , P∗
1

)
and E∗

2 = (
S∗
2 , I ∗

2 , P∗
2

)
, where I ∗

1 =
d
α

= I ∗
2 , P∗

1 = 1
a

(
βS∗

1 − μ
)
, P∗

2 = 1
a

(
βS∗

2 − μ
)
and

S∗
1 , S∗

2 are the roots of the quadratic equation
(
S∗)2 − B

(
S∗)+ C = 0;

thus,

S∗
1 = B − √

B2 − 4C

2
<

B

2
and

S∗
2 = B + √

B2 − 4C

2
>

B

2
,

where B = (
θ + 1 − d

α

)
and C = (

1 − d
α

)
θ + β d

α
.

Proposition 1 [Local stability of equilibria for the
Model (2)] The local stability of equilibria for the
Model (2) is summarized in Table 2.

Detailed proof is given in the “Appendix” section.

3.1 Disease-free case for the system (2)

In the absence of disease, the system (2) has only three
boundary equilibria (0, 0, 0), (θ, 0, 0) and (1, 0, 0)
where the predator also can not survive, since preda-
tor feeds only on infected prey. In this case, (0, 0, 0)
and (1, 0, 0) are locally asymptotically stable, whereas
(θ, 0, 0) is always unstable. Existence of the predator
population depends on the persistence of the disease
among the prey population. If the prey species is dis-
ease free, then the system is predator free also. Thus,
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Table 1 Variables and parameter description with PRCC values of different parameters with the response variable P (Predator density)
for the model (1)

Variables Biological meaning Parameters
Parameter ranges PRCC valuesa

Min Max For N = 100 For N = 1000

S Density of susceptible prey – – – –

I Density of infected prey – – – –

P Density of predator – – – –

θ Allee threshold 0.08 0.24 −0.036 −0.108*

β Rate of infection 0.35 0.45 0.378∗ 0.245*

α Net gain to P by consuming I 0.70 0.80 0.123 0.084***

μ Death rate of I 0.04 0.05 −0.300∗ −0.025

a Attack rate of predator 0.08 0.15 −0.716∗ −0.745*

d Natural death rate of P 0.04 0.12 −0.241** −0.172*

τ Gestation period of P 1.01 19.86 −0.208** −0.087***

a Asterisks indicate the significance of a nonzero PRCC with respect to the corresponding p value * p value below 0.001, ** p value
below 0.05 and *** p value below 0.01; N is the sample size

Table 2 The local stability of equilibria for the Model (2)

Boundary
equilibria

Existence condition Stability condition

E0 Always exists Always stable

E1 Always exists LAS if β < μ

Eθ Always exists Unstable

E2 1 <
β
μ

< 1
θ

LAS if 1 <
β
μ

< min
{
1
θ
,

β−θ+
√

β2−βθ+β

β+βθ−θ2

}
and

α

(
μ
β

−θ
)(

1− μ
β

)

μ
β

+β−θ
< d

E∗
1 S∗

1 >
μ
β
and θ + 1 − d

α
> 0,

(
1 − d

α

)
θ + β d

α
> 0 Unstable

E∗
2 S∗

2 >
μ
β
and θ + 1 − d

α
> 0,

(
1 − d

α

)
θ + β d

α
> 0 Always LAS when it exists

LAS Locally asymptotically stable

the infection in prey population is responsible for the
survival of the predator.

Remarks Thus, the system (2) is infection free in the
following three situations:

1. Extinction of all the three populations if S(0) < θ ,
then limt→∞ (S(t), I (t), P(t)) = E0.

2. Only susceptible prey is able to survive if β
μ

< 1.
In this case, both the boundary equilibria E0 and
E1 are locally asymptotically stable. The system
(2) goes to the boundary equilibrium E1, if initial
conditions start from the basin of attraction of E1;
otherwise, it goes to the extinction equilibrium.

3. Disease driven extinction : if β
μ

> 1
θ
and α(1−θ)

d ≤
1, then the system (2) converges to the extinc-
tion equilibrium E0, for any initial conditions in
R
3+ [44]. The biological explanation for such sit-

uation is that the transmission of disease is large
enough so that the susceptible population density
drops below its threshold density (which is known
as Allee threshold [27]), and eventually susceptible
population goes to extinction, which drive the other
populations to extinction.

Allee effect makes the system prone to extinction,
and initial conditions are significant characteristics
for the existence of susceptible prey as well as other
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Delayed predator–prey model with strong Allee effects 1573

species. If initial condition for susceptible prey popu-
lation is less than Allee threshold (S(0) < θ ), then prey
population extinct and, consequently, predator popula-
tion also goes to extinction. Now if μ > β, i.e., death
rate of infected prey is higher than disease transmission
rate, then disease does not persist in the system. In con-
trast, ifμ < β and β

μ
< 1

θ
, then disease starts to persist

in the system, and the systemconverges to predator-free
equilibrium. We observe that all the species coexist if
S∗
2 >

μ
β
, i.e., βS∗

2 > μ and α > d. Here βS∗
2 rep-

resents per-capita infection rate and μ represents the
per-capita death rate. Therefore, all the species persist
in the system if the per-capita infection rate is higher
than the per-capita death rate of infected prey and the
net gain to P by consuming I is greater than the natural
death rate of predator.

4 Mathematical analysis of the system (1)

In this section, we have studied the delay model (1).
Herewe have performed local stability analysis of equi-
libria, permanence, and existence of switching stability
of the delay differential Eq. (1).

4.1 Local stability analysis

Let Ẽ = (
S̃, Ĩ , P̃

)
be any equilibrium point of the

system (1). The linearized system of the system (1) at
Ẽ = (

S̃, Ĩ , P̃
)
is

ẋ(t) = S̃
(
1 + θ − Ĩ − 2S̃

)
x(t) + S̃

(
θ − β − S̃

)
y(t),

ẏ(t) = β Ĩ x(t) − a Ĩ z(t),

ż(t) = y (t − τ) α P̃ + z (t − τ) α Ĩ − dz(t). (3)

So, the characteristic equation of the delayed system (1)
around any equilibrium point Ẽ = (S̃, Ĩ , P̃) is given
by

det

⎡

⎢⎢⎢
⎢
⎣

S̃
(
1+θ− Ĩ −2S̃

)−λ S̃
(
θ−β− S̃

)
0

β Ĩ −λ −a Ĩ

0 e−λτ α P̃ e−λτ α Ĩ − d − λ

⎤

⎥⎥⎥
⎥
⎦

=0.

(4)

The following transcendental equation represents the
characteristic equation at the interior equilibrium E∗

2 =(
S∗
2 , I ∗

2 , P∗
2

)
of the dynamical system (1):

λ3 + B1λ
2 + B2λ + B3=

[
B4λ

2+B5λ + B6

]
e−λτ ,

(5)

where

B1 = −S2
∗ (1 + θ − I2

∗ − 2S2
∗)+ d,

B2 = −S2
∗ (1 + θ − I2

∗ − 2S2
∗) d

−βS2
∗ I2

∗ (θ − β − S2
∗) ,

B3 = −βS2
∗ I2

∗ (θ − β − S2
∗) d,

B4 = α I2
∗,

B5 = −α I2
∗S2

∗ (1 + θ − I2
∗ − 2S2

∗)− aα I2
∗ P2

∗,
B6 = −βα I2

∗S2
∗ I2

∗ (θ − β − S2
∗)

+ aαS2
∗ I2

∗ P2
∗ (1 + θ − I2

∗ − 2S2
∗) . (6)

For the delay-induced system (1), it is known that if
all the roots of the corresponding characteristic Eq. (5)
have negative real parts, then the equilibrium point E2

∗
will be asymptotically stable. But, we cannot use the
classicalRouth–Hurwitz criterion to investigate the sta-
bility of the dynamical system. We need the sign of the
real parts of the roots of the characteristic Eq. (5), to
determine the nature of the stability.

Let λ(τ) = ζ(τ ) + iρ(τ) be the eigenvalue of the
characteristic Eq. (5); substituting this value in Eq. (5),
we obtain real and imaginary parts, respectively, as

ζ 3 − 3ζρ2 + B1

(
ζ 2 − ρ2

)
+ B2ζ + B3

=
[{

B4(ζ
2 − ρ2) + B5ζ + B6

}
cos ρτ (2B4ζρ ,

+ ρB5) sin ρτ ] e−ζ τ , (7)

and

3ζ 2ρ − ρ3 + 2B1ζρ + B2ρ

=
[
(2B4ζρ + B5ρ) cos ρτ −

{ (
ζ 2 − ρ2

)
B4ζ B5

+ B6

}
sin ρτ

]
e−ζ τ . (8)

A necessary condition for a stability changes of E2
∗ is

that the characteristic Eq. (5) should have purely imagi-
nary solutions.We set ζ = 0 in (7) and (8). Then,weget

B3−B1ρ
2=

(
−B4ρ

2+B6

)
cos ρτ +ρB5 sin ρτ, (9)

B2ρ − ρ3= B5ρ cos ρτ −
(
−B4ρ

2+B6

)
sin ρτ. (10)

Eliminating τ by squaring and adding the Eqs. (9) and
(10), we get the algebraic equation for determining ρ as

ρ6 +
(

B2
1 − 2B2 − B2

4

)
ρ4

+
(

B2
2 − 2B1B3 − B2

5 + 2B4B6

)
ρ2

+
(

B2
3 − B2

6

)
= 0. (11)

123
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Substituting ρ2 = θ in Eq. (11), we obtain a cubic
equation given by

k(θ) = θ3 + σ1θ
2 + σ2θ + σ3 = 0, (12)

where

σ1 =
(

B2
1 − 2B2 − B2

4

)
,

σ2 =
(

B2
2 − 2B1B3 − B2

5 + 2B4B6

)
,

σ3 =
(

B2
3 − B2

6

)
.

Now σ3 < 0 implies that (12) has at least one pos-
itive root. The next theorem gives a criterion for the
switching in the stability behavior of E2

∗.

Theorem 1 Suppose that E∗
2 exists and is locally

asymptotically stable for (1) with τ = 0. Also let
θ0 = ρ2

0 be a positive root of (12).

1. Then, there exists τ = τ ∗ such that the interior
equilibrium point E2

∗ of the delay system (1) is
asymptotically stable when 0 ≤ τ < τ ∗ and unsta-
ble for τ > τ ∗.

2. Furthermore, the system will undergo a Hopf bifur-
cation at E2

∗ when τ = τ ∗, provided Z(ρ)X (ρ)−
Y (ρ)W (ρ) > 0.

Proof We already know that ρ0 is a solution of the
Eq. (11), i.e. the characteristic Eq. (5) has a pair of
purely imaginary roots ±iρ0. From Eqs. (9) and (10),
we have that τ ∗

p is a function of ρ0 for p = 0, 1, 2, . . .,
which is given by

τ ∗
p = 1

ρ0
arccos

×
[

(B1B4 − B5) ρ4
0+(B2B5−B1B6−B3B4) ρ2

0 +B3B6

(B5ρ0)
2+(B6−B4ρ

2
0

)2

]

+ 2πp

ρ0
. (13)

Now, the system will be locally asymptotically stable
around the interior equilibrium point E2

∗ for τ = 0,
if the condition (27) holds. In that case by Butler’s
lemma [30], E2

∗ will remain stable for τ < τ ∗, such
that τ ∗ = min

p≥0
τ ∗

p .

Also, we can verify the following transversality con-
dition

d

dτ
[Re{λ(τ)}]τ=τ∗ > 0.

Differentiating Eqs. (7) and (8), with respect to τ and
then put ζ = 0, we obtain

X (ρ)
dζ

dτ
+ Y (ρ)

dρ

dτ
= Z(ρ),

−Y (ρ)
dζ

dτ
+ X (ρ)

dρ

dτ
= W (ρ), (14)

where

X (ρ) = −3ρ2 + B2 + τ {cosρτ(−ρ2B4 + B6)

+ ρB5sinρτ } − B5cosρτ − 2ρB4sinρτ,

Y (ρ) = −2ρB1 + τ sinρτ(−ρ2B4 + B6)

+ 2ρB4cosρτ − B5sinρτ − τρB5cosρτ,

Z(ρ) = −ρ(−ρ2B4 + B6)sinρτ + ρ2B5cosρτ,

W (ρ) = −ρ2B5sinρτ − ρcosρτ(−ρ2B4 + B6).

(15)

Solving the above system, we have d
dτ

[Re
{λ(τ)}]τ=τ∗,ρ=ρ0 = Z(ρ)X (ρ)−Y (ρ)W (ρ)

X2(ρ)+Y 2(ρ) τ=τ∗,ρ=ρ0
,

which shows that d
dτ

[Re{λ(τ)}]τ=τ∗,ρ=ρ0 > 0 if
Z(ρ)X (ρ) − Y (ρ)W (ρ) > 0. Therefore, Hopf bifur-
cation occurs at τ = τ ∗ as the transversality condition
is satisfied. This proves the theorem.

Remark For the system (1), at most finite number of
stability switching is possible.

We rewrite characteristic Eq. (5) in the form as

M(λ) + N (λ)e−λτ = 0, (16)

where

M(λ) = λ3 + B1λ
2 + B2λ + B3,

N (λ) = −
[

B4λ
2 + B5λ + B6

]
.

In our system (1), M(λ) = λ3 + B1λ
2 + B2λ + B3,

N (λ) = −[B4λ
2 + B5λ + B6].

Now, we have the following results:

1. M(λ) and N (λ) have no common imaginary root
and both analytic functions in Re(λ) > 0.

2. M(−iy) = M(iy), N (−iy) = N (iy) ∀ y.
3. M(0) + N (0) = B3 − B6 �= 0.

4. lim sup
|λ|→+∞

∣∣∣
N (λ)

M(λ)

∣∣∣ = 0 < 1.

5. Ψ (y) = |M(iy)|2−|N (iy)|2 = y6+σ1y4+σ2y2+
σ3 = 0, which is a cubic expression in y2, where
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Delayed predator–prey model with strong Allee effects 1575

σ1 = B2
1 −2B2−B2

4 , σ2 = B2
2 −2B1B3−2B4B6−

B2
5 andσ3 = B2

3−B2
6 . Sinceσ3 is negative, soΨ (y)

must have at least one positive root.

FromKuang [46], we conclude that at most finite num-
ber of stability switching is possible for the system (1).

4.2 Uniform persistence of the system

In this section, we present the conditions for uniform
persistence of the system (1). We denote by R

3+ =
{(S, I, P) ∈ R

3 : S ≥ 0, I ≥ 0, P ≥ 0} the nonnega-
tive quadrant and by int(R3+) =

{
(S, I, P) ∈ R

3 : S >

0, I > 0, P > 0
}
.

Definition System (1) is said to be uniformly persis-
tent if a compact region D ⊂ int (R3+) exists such that
every solution Ξ(t) = (S(t), I (t), P(t)) of the system
(1)with initial conditions eventually enters and remains
in the region D.

4.3 Boundedness of the solution of the delayed
system (1)

The first equation of the system (1) can be written as

dS

S
= [(1 − S − I ) (S − θ) − β I ] dt.

Integrating between the limits 0 and t , we have

S(t)= S(0) exp

{∫ t

0
[(1−S− I ) (S−θ)−β I ] ds

}
.

Similarly, from the second and the third equations of
the system, we have

I (t) = I (0) exp

{∫ t

0
[βS − a P − μ] ds

}
,

and

P(t) = P(0) exp

{∫ t

0

[
α I (s − τ)P(s − τ)

1

P(s)

−d

]
ds

}
,

where S(0) = S0 > 0, I (0) = I0 > 0 and P(0) =
P0 > 0. Therefore, S(t) > 0, I (t) > 0 and P(t) > 0.

Proposition 2 All the solutions of the system (1) start-
ing in int(R3+) are uniformly bounded with an ultimate
bound.

Proof We know that (for detailed proof, please see the
reference Kang et al. [44])

lim sup
t→∞

{S(t) + I (t)} ≤ 1.

Define a function V1 = 1
a I (t − τ) + 1

α
P(t).

Taking its time derivative along the solution of the
system (1), we get

V̇1 ≤ βS(t − τ)I (t − τ) − μ

a
I (t − τ) − d

α
P(t),

≤ β − min{μ, d}V1.

So,

lim
t→∞ P(t) ≤ M,

where M = β
min{μ,d} .

4.4 Permanence

In order to prove permanence of the system (1), we
use the uniform persistence theory for infinite dimen-
sional systems [35]. Let X be a complete metric space.
Suppose that X0 is open and dense in X and X0 ∩
X0 = Φ. Assume that T (t) is a C0 semigroup on X
satisfying

T (t) : X0 → X0, T (t) : X0 → X0. (17)

Let Tb(t) = T (t)
∣∣

X0
and let Ab be the global attractor

for Tb(t). To investigate the permanence of the system
(1), the following lemmas are useful.

Lemma 1 [35] If T (t) satisfies (17) and we have the
following:

(i) there is a t0 ≥ 0 such that T (t) is compact for
t ≥ t0;
(ii) T (t) is a point dissipative in X;
(iii) Âb = ∪x∈Abω(x) is isolated and thus has an
acyclic covering M̂, where M̂ = {M1, M2, . . . , Mn};
(iv) W s(Mi ) ∩ X0 = Φ for i = 1, 2, . . . , n.

Then, X0 is a uniform repeller with respect to X0,
i.e., there is an ε > 0 such that for any x ∈ X0,
lim

t→∞ in f d(T (t)x, X0) ≥ ε, where d is the distance of

T (t)x from X0.

Lemma 2 [95] Consider the following differential
equation:

ẋ(t) = Ax(t − τ) − Bx(t)

where A, B, C, τ > 0; x(t) > 0, for −τ ≤ t ≤ 0.
Then, we have
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(i) if A < B, then lim
t→∞ x(t) = 0;

(ii) if A > B, then lim
t→∞ x(t) = +∞.

Theorem 2 [Permanence of the model (1)] System (1)
is permanent, provided

(i)
(
1 − μ+aε1

β

) (
μ+aε1

β
− θ

)
> 0, where ε1 is suf-

ficiently small and

(ii) α(I2 − ε2) > d where I2 =
(

μ
β

−θ
)(

1− μ
β

)

μ
β

+β−θ
.

Wehave given the detailed proof of the above perma-
nence conditions for the model (1) in the “Appendix”
section.

4.5 The direction and stability of Hopf-bifurcating
periodic solutions

We already know that the system (1) will undergo Hopf
bifurcation at endemic equilibrium E∗ = (S∗, I∗, P∗)
when τ passes through τ ∗ (for our convenience, we
assume that E∗ = E∗

2 ). In this section, we investigate
the direction, stability and period of Hopf-bifurcating
solutions at τ = τ ∗ for system (1) by using the tech-
niques of normal form theory and center manifold the-
orem introduce by Hassard et al. [36].

We have given the detailed analysis for the direction
and stability of the Hopf bifurcation in the “Appendix”
section. From the detailed analysis, we can compute
the following quantities, which determine the direc-
tion, stability and the periods of the bifurcating periodic
solutions of Hopf bifurcation.

We can compute the following quantities (please see
in the “Appendix” section):

C1(0)= i

2ρ0τ ∗

(
g20g11−2|g11|2− 1

3
|g02|2

)
+ 1

2
g21,

μ2 = −Re{C1(0)}
Re{λ́(τ ∗)} ,

β2 = 2Re{C1(0)},
τ2 = − Im{C1(0)} + μ2Im{λ́(τ ∗)}

ρ0τ ∗ .

It is well known that μ2 and β2 determine the direc-
tion of Hopf bifurcation and stability of bifurcating
periodic solutions. If μ2 > 0 (< 0), and β2 < 0 (> 0),
which imply that the Hopf bifurcation is supercritical

(subcritical), bifurcating periodic solutions are exist for
τ > τ ∗ (τ < τ ∗) and are orbitally stable (unstable).
Moreover, τ2 determines the periods of the bifurcating
periodic solutions and the period increases (decreases)
if τ2 > 0 (< 0).

5 Mathematical analysis of the system (1) with no
Allee effect

Without Allee effect, the system (1) reduces to

dS

dt
= S [(1 − S − I ) − β I ] ,

dI

dt
= I [βS − a P − μ] ,

dP

dt
= αP(t − τ)I (t − τ) − d P, (18)

Xiao and Chen [95] already discussed similar kind of
model. In this section, we only mention the dynamical
features of the system (18).

5.1 Mathematical analysis of the system (18) with no
time delay

The system (18) with out delay parameter can be writ-
ten as

dS

dt
= S [(1 − S − I ) − β I ] ,

dI

dt
= I [βS − a P − μ] ,

dP

dt
= P [α I − d] . (19)

The system (19) has the following boundary equilibria:

E0=(0, 0, 0), E1=(1, 0, 0), E2=
(

μ

β
,
1− μ

β

β+1
, 0

)

.

The system (19) has one interior equilibria E∗
3 =(

S∗
3 , I ∗

3 , P∗
3

)
, where I ∗

3 = d
α
, P∗

3 = 1
a

(
βS∗

3 − μ
)
and

S∗
3 = 1− (β + 1) d

α
. Here, E2 exists if 1− μ

β
> 0, and

E∗
3 exists if β

(
1 − (β + 1) d

α

)
> μ.

Proposition 3 [Local stability of equilibria for the
Model (19)] The local stability of equilibria of the
Model (19) is summarized in Table 3.

Proof We omit the proof here, as it is easy to verify.
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Table 3 The local stability of equilibria for the Model (2)

Boundary
equilibria

Existence condition Stability condition

E0 Always exists Always unstable

E1 Always exists Stable if β < μ

E2 β > μ Stable when it exists

E∗
3

(
1 − (β + 1) d

α

)
>

μ
β

Stable if α > (β + 1)

5.2 Mathematical analysis of the system (18)

The characteristic equation of the delayed system (18)
at the interior equilibrium E3

∗ = (S3∗, I3∗, P3
∗) is

given by

λ3 + C1λ
2 + C2λ + C3=

(
C4λ

2 + C5λ + C6

)
e−λτ .

(20)

Where

C1 = S3
∗ + d,

C2 = S3
∗d − β(β + 1)S3

∗ I3
∗,

C3 = −β(β + 1)S3
∗ I3

∗d,

C4 = α I3
∗,

C5 = α I3
∗S3

∗ − aα I3
∗ P3

∗,
C6 = −βα(β + 1)I3

∗S3
∗ I3

∗ − aαS3
∗ I3

∗ P3
∗. (21)

Let λ(τ) = iρ(τ) be the eigenvalue of the character-
istic Eq. (20). Substituting this value in Eq. (20) and
proceeding as the Sect. 4, we give a criterion for the
switching in the stability behavior of E3

∗.

Theorem 3 Suppose that E3
∗ exists and is locally

asymptotically stable for (18) with τ = 0.

1. Then, there exists a τ = τ∗ such that the interior
equilibrium point E3

∗ of the delay system (18) is
asymptotically stable when 0 ≤ τ < τ∗ and unsta-
ble for τ > τ∗.

2. Furthermore, the system will undergo a Hopf bifur-
cation at E3

∗ when τ = τ∗, provided Z1(ρ)X1(ρ)−
Y1(ρ)W1(ρ) > 0.

Where

X1(ρ) = −3ρ2 + C2

+ τ
{
cos ρτ(−ρ2C4 + C6) + ρC5 sin ρτ

}

− C5 cos ρτ − 2ρC4 sin ρτ,

Y1(ρ) = −2ρC1 + τ sin ρτ
(
−ρ2C4 + C6

)

+ 2ρC4 cos ρτ − C5 sin ρτ − τρC5 cos ρτ,

Z1(ρ) = −ρ
(
−ρ2C4 + C6

)
sin ρτ + ρ2C5cosρτ,

W1(ρ) = −ρ2C5 sin ρτ − ρ cos ρτ(−ρ2C4 + C6).

(22)

6 Sensitivity analysis and numerical simulation for
the model (1)

In this section, we try to find the parameters having sig-
nificant impact upon the predator density, the response
of interest. The extent of impact of the input parame-
ter on response are measured by partial rank corre-
lation coefficients (PRCC) along with their p values,
calculated using Latin Hypercube sampling scheme
described in Marino et al. [55]. First step is to assume
a suitable prior distribution on the parameters. An uni-
form prior over a biologically feasible range for each
parameters is appropriate. The PRCC values and their
significance are given in the adjoining Table 1. We set
the dimension of the sample in LHS to N = 100
and N = 1000 with the time points 20,000h. The
model output chosen for P is predator density. Our
PRCC analysis suggests that predator density is mainly
affected by the parameter a.

6.1 Numerical simulations

In this section, we give the time series diagram, phase
plane diagram and bifurcation diagram of the system
(1) to compare the results and to support our analytical
findings for different values of τ . Extensive numeri-
cal simulations have been performed for various values
of parameters to determine the global dynamics. This
study is not only provide local stability and Hopf bifur-
cation but also demonstrate the feasibility of differ-
ent complex dynamical behavior, including limit cycles
and chaos.

Consider the set of the parameter asβ = 0.395; μ =
0.05; d = 0.1; a = 0.1; α = 0.85; and θ = 0.1. For
the above set of parameter values, we obtain the inte-
rior equilibrium point E∗

1 = (0.16, 0.11, 0.15) which
is an unstable equilibrium and E∗

2 = (0.82, 0.12, 2.73)
is a stable focus as we see that all the trajecto-
ries initiating inside the region of attraction approach
toward the equilibrium point E∗

2 = (0.82, 0.12, 2.73)
(see Fig. 1). We choose different initial densities

123



1578 S. Biswas et al.

0
0.2

0.4
0.6

0.8
1

0
0.2

0.4
0.6

0.8
0

1

2

3

4

 S I

 P

 E2
*  (0.8176, 0.1176, 2.7295)

 E1
*  (0.1648, 0.1176, 0.1508)

Fig. 1 Stability of the interior equilibrium for the nondelayed
model (2), when β = 0.395, μ = 0.05, d = 0.1, a = 0.1,
α = 0.85 and θ = 0.1, with different initial conditions

of [S(0), I (0), P(0)] as [0.5, 0.1, 0.2], [0.3, 0.4, 0.6],
[0.8, 0.1, 2], [0.2, 0.2, 0.5] and draw the phase portrait
of the system (2) in Fig. 1.

From our analytical findings, it is observed that E∗
2

is locally asymptotically stable for τ < τ ∗ = 5.39.
Figure 2 shows the simulation result for the model sys-
tem (1) with τ = 1 < τ ∗. Interior equilibrium point E∗

2
looses its stability as τ passes through its critical value
τ > τ ∗, and the system (1) experiences Hopf bifurca-
tion as d

dτ
[Re{λ(τ)}]τ=τ∗, ρ=ρ0 = 0.0030 > 0. From

4.5, the nature of the stability and direction of the peri-
odic solution bifurcating from the interior equilibrium
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Fig. 3 The system (1) showsHopf bifurcation behavior and exis-
tence of stable supercritical bifurcating periodic solution around
the interior equilibrium E∗

2 at τ = 5.5. The other parameter
values are kept same as in Fig. 1

E∗
2 at the critical point τ ∗ can be computed. Through

simulations, we compute that

C1(0) = −0.0734 + 0.0731i, μ2 = 24.4156,

β2 = −0.1469, τ2 = 0.1272

It shows the existence of bifurcating periodic solu-
tion, and it is supercritical and stable as evident from
Fig. 3. Figure 3 shows that the limit cycle is stable
around the coexisting equilibrium point E∗

2 . The solu-
tions starting from two different initial values converge
to the limit cycle oscillation, while τ = 5.5. Figure 4
shows the limit cycle oscillations for τ = 10 with same

Fig. 2 The figure depicts
local stability of the interior
equilibrium for the delayed
system (1), with the time
delay τ = 1 (< τ ∗ = 5.39),
when β = 0.395, μ = 0.05,
d = 0.1, a = 0.1, α = 0.85
and θ = 0.1, with the initial
value [S(0), I (0), P(0)] =
[0.3, 0.2, 5]. The first row
left figure is the time series
for the susceptible prey; the
first row right figure is the
time series for the infected
prey; the second row left
figure is the time series for
the predator; and the second
row right figure is the 3D
phase portrait of the stable
interior of (1)
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Fig. 4 Existence of
periodic solution around the
interior equilibrium E∗

2 for
the delayed system (1), with
the time delay
τ = 10 (> τ ∗ = 5.39),
where the other parameter
values are same as in Fig. 1
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Fig. 5 Existence of two
periodic solution around the
interior equilibrium E∗

2 for
the delayed system (1), with
the time delay
τ = 15 (> τ ∗ = 5.39),
where the other parameter
values are same as in Fig. 1
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parameter values as in Fig. 1 and initial conditions have
been fixed to S(0) = 0.8, I (0) = 0.1, P(0) = 2.2.
Further, we increase the value of time delay (τ ) and
observe that the system (1) shows two periodic solu-
tions for τ = 15 (see Fig. 5) and chaotic oscillations
for τ = 28 (see Fig. 6). A Poincare map of a typi-
cal chaotic region is shown in Fig.7a for τ = 28. The
scattered distribution of the sampling points implies the

chaotic behavior of the system.We also draw the return
map for the system (1) in 7(b). Here we plot Pmax(n)

versus Pmax(n + 1). The data fall on a smooth one-
dimensinal map. We observe that the map is unimodal,
like the logistic map.

We plot the Lyapunov exponents with time delay
τ in Fig. 8a, with the parameter values β = 0.395,
μ = 0.05, d = 0.1, a = 0.1, α = 0.85 and θ = 0.1.
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Fig. 6 The delayed system
(1) is chaotic with the time
delay τ = 28
(> τ ∗ = 5.39), where the
other parameter values are
same as in Fig. 1
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Fig. 7 Poincare section and return map for the delayed model (1). a Poincare plot {S=0.82} in the I–P plane for the delayed system
(1). b Return map of the delayed system (1).

We use Wolf algorithm and [75] to calculate Lyapunov
exponents. Here the red-colored Lyapunov exponent is
positive for τ ≥ 20 (for clear visualization, see Fig. 8b),
green is approximately zero and other two Lyapunov
exponents are always negative. So, we can conclude
that the system (1) is chaotic for 28 ≥ τ ≥ 20.

To make it straightforward, we draw the bifurcation
diagram with respect to time delay τ for 0 < τ ≤ 28.

The bifurcation diagram with respect to time delay τ

drawn in Fig. 9 represents the complex dynamical fea-
ture from the limit cycle to chaos in our proposedmodel
(1). For the gradual increase in the delay parameter, the
system (1) switches its stability from stable focus to
limit cycle oscillation to chaotic oscillation. Figure 9
shows that for τ ∈ [0, 5.39) the interior equilibria E∗
are stable; for τ ∈ (5.39, 18.4], it shows limit cycle
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Fig. 8 Variation in Lyapunov exponents with the time delay τ , for the model (1). a Chaotic behavior of the delayed system (1) with
respect to τ . b Magnified diagram of a for τ = 19 to τ = 28
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Fig. 9 Bifurcation diagrams with respect to τ for the system (1),
when the other parameters are fixed as β = 0.395, μ = 0.05,
d = 0.1, a = 0.1, α = 0.85 and θ = 0.1. a Bifurcation diagram

for the susceptible prey; b bifurcation diagram for the infected
prey; and c bifurcation diagram for the predator
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Fig. 10 Bifurcation diagrams with respect to θ for the system (1). When the other parameters are fixed as above and τ = 20.
a Bifurcation diagram for the susceptible prey; b bifurcation diagram for the infected prey; and c bifurcation diagram for the predator
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Fig. 11 Waveform plot and
phase plane for the delayed
system (18), with the time
delay τ = 1.75
(< τ∗ = 3.62), with the
initial value [S(0), I (0),
P(0)] = [0.8, 0.1, 2.2].
The first row left figure is
the time series for the
susceptible prey; the first
row right figure is the time
series for the infected prey;
the second row left figure is
the time series for the
predator and the second row
right figure is the 3D phase
portrait of the stable interior
of (18)

0 500 1000
0.75

0.8

0.85

0.9

0.95

Time
S

0 500 1000
0.05

0.1

0.15

0.2

0.25

Time

I

0 500 1000
2

2.5

3

3.5

Time

P

0.7 0.8 0.9
0

0.1
0.2

2

3

4

SI

P

oscillations; and for τ ∈ (18.4, 28], it exhibits higher
periodic and chaotic oscillations.

Next, we draw the bifurcation diagram with respect
to the parameter θ for θ ∈ (0, 0.42] where τ is fixed
at 20. The complex dynamic behavior including chaos
of the delayed system with respect to θ is evident from
Fig. 10. We observe that for θ ∈ (0, 0.12] the system
(1) shows chaotic and higher periodic oscillations. As
θ crosses its threshold value 0.12, the system (1) shows
limit cycle behavior for θ ∈ (0.12, 0.32] and the sys-
tem becomes stable for θ ∈ (0.32, 0.42]. The changes
in the bifurcation diagrams suggest that chaos may be
reduced/removed with the changes in the strength of
Allee effect.

Time delay plays a similar kind of role in the model
(18) like (1). We give a numerical example to sup-
port the Theorem 3 about the switching of stability at
the coexistence equilibrium E∗

3 . Keeping the parame-
ter values fixed as β = 0.395, μ = 0.05, d = 0.1,
a = 0.1 and α = 0.85 with the initial values as
S(0) = 0.8, I (0) = 0.1, P(0) = 2.2, we draw the
figures for the model (18). We observe that the system
(18) undergoes local Hopf bifurcation at τ = 3.62. We
notice that for τ = 1.75 (< τ∗ = 3.62) the coexistence
equilibrium E∗

3 is locally stable (Fig. 11). When delay
parameter τ crosses τ∗ the system exhibits limit cycle.
Figure 12 depicts periodic oscillation for the system
at τ = 4.5 > τ∗. Chaotic behavior for the system is
observed at τ = 60 (Fig. 13).

7 Discussion

In this article, wemake an attempt to discuss the impact
of a time delay parameter τ in the model described by
Kang et al. [44]. The model (1) has two interior equi-
libria E∗

1 and E∗
2 , while the secondmodel (18) has only

one interior equilibria E∗
3 . We keep our main focus on

the model (1) as we want to check the effect of Allee
on our dynamical system. For our model, the gesta-
tion delay plays a crucial role. Time delay can switch
the stability of the equilibrium points; that is, for some
critical value τ ∗, the positive equilibrium E∗

2 is sta-
ble when τ < τ ∗, and it becomes unstable as τ crosses
through its critical magnitude from lower to higher val-
ues.We have proved that the system (1) experiences the
Hopf bifurcation as the delay parameter τ crosses the
critical value τ ∗. Further increasing in the delay para-
meter beyond the bifurcation point leads to complex
dynamic behavior, including chaos. The explicit for-
mulaewhich determine the stability, direction and other
properties of bifurcating periodic solution are calcu-
lated, by using normal form and center manifold theo-
rem and then using numerical simulations; we illustrate
our analytical results. We also discussed the complex
dynamical behavior of the system (18) without Allee
effect.

From ecological aspect, chaos has utmost biolog-
ical importance. Many theoretical studies reveal that
many important ecosystem features such as predictabil-
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Fig. 12 Waveform plot and
phase plane for the delayed
system (18), with the time
delay τ = 4. Figure
indicates the existence of
limitcycle
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Fig. 13 Solution curves
and the phase plane
showing chaotic attractor at
τ = 60 for the model (18)
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ity, species persistence [2] and biodiversity [41] can be
affected by chaos. Various chaos control schemes have
been explored till now. In both the systems (1) and (18),
we observed chaotic oscillations, but Allee effect plays
an vital factor in the system (1). The impact of the
Allee effect on the stability of population models can
show different dynamics which strictly depend on the
assumptions of the corresponding model. So, the idea

that chaos can be enhanced by the Allee effect ([57])
is not always true but in this context, we have shown
chaos can be controlled by Allee threshold θ . The
changes in the bifurcation diagrams (Fig. 10) suggest
that chaos may be reduced/removed with the changes
in the strength of Allee effect.

To the best of our knowledge, stability and Hopf
bifurcation are not discussed in any article, for the
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delayed dynamical system when the reproduction rate
of prey population is influenced by strong Allee effect
in the eco-epidemiology model. We hope that our find-
ings in this article will certainly help the ecologists and,
as a consequence, it may enrich theoretical ecology.
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Appendix

Proof of the Proposition 1:

Proof The Jacobian matrix of the model (2) at its any
equilibrium point (S∗, I∗, P∗) is described as follows

J |(S∗,I∗,P∗)

=
⎡

⎣
S∗(1 − 2S∗ − I∗ + θ) (θ − S∗ − β)S∗ 0
β I∗ βS∗ − a P∗ − μ −aI∗
0 αP∗ α I∗ − d

⎤

⎦

(23)

After substituting Ei = (S∗, I ∗, P∗) , i = 0, θ, 1, 2
into (23), we obtain the eigenvalues for each equilib-
rium:

1. E0 = (0, 0, 0) is always locally asymptotically sta-
ble since eigenvalues associatedwith (23) at E0 can
be presented as follows:

λ1 = −θ (< 0) , λ2 = −μ (< 0) and

λ3 = −d (< 0).

2. Eθ = (θ, 0, 0) is always unstable since eigenvalues
associated with (23) at E1 are given by,

λ1 = θ(1 − θ) (> 0),

λ2 = βθ − μ

{<0 if βθ<μ

>0 if βθ>μ

and λ3 = −d (< 0) .

3. E1 = (1, 0, 0) is locally asymptotically stable if
β < μ since eigenvalues associated with (23) at
E1 are given by,

λ1 = θ − 1 (< 0),

λ2 = β − μ

{<0 if β<μ

>0 if β>μ

and λ3 = −d (< 0) .

4. E2 =
(

μ
β
,

(
μ
β

−θ
)(

1− μ
β

)

μ
β

+β−θ
, 0

)

is locally asymptot-

ically stable if α

(
μ
β

−θ
)(

1− μ
β

)

μ
β

+β−θ
− d < 0 and 1 <

β
μ

< min

{
1
θ
,

β−θ+
√

β2−βθ+β

β+βθ−θ2

}
. Since the eigen-

values associated with (23) at E2 are given by

λ3 = α

(
μ
β

− θ
) (

1 − μ
β

)

μ
β

+ β − θ

−d

{<0 if α

(
μ
β

−θ
)(

1− μ
β

)

μ
β

+β−θ
−d<0

>0 if α

(
μ
β

−θ
)(

1− μ
β

)

μ
β

+β−θ
−d>0

and the other two eigenvalues are the roots of the
equation

λ2 − Aλ + B = 0.

Where

A = μ
β

(

1 − 2μ
β

−
(

μ
β

−θ
)(

1− μ
β

)

μ
β

+β−θ
+ θ

)

=
(
β+βθ−θ2

)( β
μ

)2−2 β
μ

(β−θ)−1
(

β
μ

)2(
1+ β

μ
(β−θ)

)

B = μ
(

μ
β

− θ
) (

1 − μ
β

)
> 0

(24)

Thus, we have

A > 0 if
β

μ
>

β − θ +√
β2 − βθ + β

β + βθ − θ2
while

A < 0 if
β

μ
<

β − θ +√
β2 − βθ + β

β + βθ − θ2
.

Therefore, E2 exists and is locally asymptotically
stable if

1 <
β

μ
< min

{
1

θ
,
β − θ +√

β2 − βθ + β

β + βθ − θ2

}

Again, the Jacobian matrix of the model (2) at its
interior equilibrium point Ẽ = (S̃, Ĩ , P̃) can bewritten
as follows

J |Ẽ = (S̃, Ĩ ,P̃)

=

⎡

⎢⎢⎢⎢
⎣

S̃(1 + θ − Ĩ − 2S̃) S̃(θ − β − S̃) 0

β Ĩ 0 −a Ĩ

0 α P̃ 0

⎤

⎥⎥⎥⎥
⎦

(25)

123



Delayed predator–prey model with strong Allee effects 1585

where its characteristic equation reads as follows:

λ3 − S̃(1 + θ − Ĩ − 2S̃)λ2

+ {
β Ĩ S̃(−θ + β + S̃) + a Ĩα P̃

}
λ

− aα Ĩ P̃ S̃(1 + θ − Ĩ − 2S̃)

= (λ1 − λ) (λ2 − λ) (λ3 − λ) = 0. (26)

with λi , i = 1, 2, 3 being roots of (26). If all the real
parts of λi , i = 1, 2, 3 are negative, then we have
∑3

i=1
λi = S̃(1 + θ − Ĩ − 2S̃) < 0

∑3

i, j=1,i �= j
λiλ j = β Ĩ S̃(−θ + β + S̃) + a Ĩα P̃ > 0

3∏

i=1

λi = aα Ĩ P̃ S̃(1 + θ − Ĩ − 2S̃) < 0

Thus, interior equilibrium is locally asymptotically sta-
ble if the following conditions hold

S̃(1 + θ − Ĩ − 2S̃) < 0

1 + θ − Ĩ

2
< S̃ (27)

So, from (27), we see that E∗
2 is stable and E∗

1 is unsta-
ble.

Proof of the permanence of the model (1)

Proof In this section, we shall prove that the boundary
planes of R

3+ repel the positive solutions of system (1)
uniformly. Let us define

C1 =
{

(ψ1, ψ2, ψ3) ∈ C
(
[−τ, 0] , R

3+
)

:

ψ1(φ) = 0, φ ∈ [−τ, 0]
}
,

C2 =
{

(ψ1, ψ2, ψ3) ∈ C
(
[−τ, 0] , R

3+
)

:

ψ2(φ) = 0, ψ1(φ) �= 0, φ ∈ [−τ, 0]
}
,

C3 =
{

(ψ1, ψ2, ψ3) ∈ C
(
[−τ, 0] , R

3+
)

:

ψ3(φ) = 0, ψ1(φ)ψ2(φ) �= 0, φ ∈ [−τ, 0]
}
,

where C([−τ, 0], R
3+) denote the space of continuous

function mapping [−τ, 0] in to R
3+.

IfC0 = C1∪C2∪C3 andC0 = intC
([−τ, 0], R

3+
)
,

it suffices to show that there exists an ε0 > 0 such that

for any solution ut of system (1) initiating from C0,
lim

t→∞ inf d(ut , C0) ≥ ε0.

Now, we verify below that the conditions of Lemma
1 are satisfied. By definition of C0 and C0 and sys-
tem (1), it is easy to see that C0 and C0 are positively
invariant. Moreover, it is clear that conditions (i) and
(ii) of Lemma 1 are satisfied. Thus, we need to confirm
conditions (iii) and (iv).

Three constant solutions in C0 corresponding to
(S(t) = 0, I (t) = 0, P(t) = 0), (S(t) = 1, I (t) = 0,
P(t) = 0) and (S(t) = S2, I (t) = I2, P(t) = 0) are
respectively E0, E1 and E2.

If (S(t), I (t), P(t)) is any solution of system (1)
initiating from C1 with ψ1(0) = 0 then S(t) → 0,
I (t) → 0, P(t) → 0 as t → ∞. If (S(t), I (t), P(t))
is a solution of system (1) initiating from C2 with
ψ1(0) > 0, it follows that S(t) → 1, I (t) → 0,
P(t) → 0 as t → ∞. If (S(t), I (t), P(t)) is a solution
of system (1) initiating from C3 with ψ1(0)ψ2(0) > 0,
it follows that S(t) → S2, I (t) → I2, P(t) → 0 as
t → ∞.

This shows that invariant sets E0, E1 and E2 are iso-
lated invariant, and then, E0, E1 and E2 are an isolated
as well as an acyclic covering, satisfying condition (iii)
of Lemma 1.

We now show that W s(E0) ∩ C0 = Φ, W s(E1) ∩
C0 = Φ and W s(E2) ∩ C0 = Φ. The proof for the
first part is simple, so we ignore it. We shall prove
the second part through contradiction. Let us assume
that W s(E1) ∩ C0 �= Φ, then there exists a posi-
tive solution (S(t), I (t), P(t)) of system (1) such that
(S(t), I (t), P(t)) → (1, 0, 0) as t → +∞. Let us
choose ε1 > 0 small enough such that
(
1 − μ + aε1

β

)(
μ + aε1

β
− θ

)
> 0 and

−ε1 < P(t) < ε1

for some t > t1, where t1 be sufficiently large. Then,
from first and second equations of the system (1), we
have for t > t1
dS(t)

dt
≥ S{(1 − S − I )(S − θ) − β I },

dI (t)

dt
≥ I {βS − μ − aε1}. (28)

Now let us consider
dy1(t)

dt
≥ y1 {(1 − y1 − y2)(y1 − θ) − βy2} ,

dy2(t)

dt
≥ y2 {βy1 − μ − aε1} . (29)

123



1586 S. Biswas et al.

Let V = (v1, v2) and ζ > 0 be small enough such
that ζv1 < S(t1), ζv2 < I (t1). If (y1(t), y2(t)) is a
solution of system (29) satisfying yi (t1) = ζvi , i =
1, 2. We know from comparison theorem that S(t) >

y1(t), I (t) > y2(t) for all t > t1. We can check easily
that the system (29) has a unique positive equilibrium

(
y∗
1 , y∗

2

) =
⎛

⎝μ + aε1

β
,

(
1 − μ+aε1

β

) (
μ+aε1

β
− θ

)

μ+aε1
β

− θ + β

⎞

⎠ .

Now S(t) > y1(t), I (t) > y2(t) for all t > t1
and lim

t→∞ y2(t) = y∗
2 . This is a contradiction. Hence,

W s(E2) ∩ C0 = Φ.
Let W s(E2) ∩ C0 �= Φ. Then, there exists a posi-

tive solution (S(t), I (t), P(t)) of the system such that
(S(t), I (t), P(t)) → (S2, I2, 0) as t → ∞. Let us
choose ε2 > 0 small enough such that I2−ε2 < I (t) <

I2 + ε2 for t > t2 − τ .
Then, from third equation of the system (1), we have

for t > t2 − τ

dP(t)

dt
≥ (αP(t − τ)(I2 − ε2) − d P) . (30)

Now, let us consider

dz(t)

dt
≥ (αz(t − τ)(I2 − ε2) − dz) . (31)

Let u1 and v > 0 be small enough such that
vu1 < P(t2). If z1 is a solution of system (31) satisfy-
ing z1(t2) = wu1, we know from comparison theorem,
P(t) ≥ z1(t) for all t > t2 − τ . We also observe that

the solution z1 of Eq. (31) satisfies lim
t→∞ z1(t) → +∞

(from condition (ii)).
Since P(t) ≥ z1(t) for all t > t2, so lim

t→∞ P(t) � 0.

This contradicts that W s(E2)∩C0 = Φ. From Lemma
1, we conclude that C0 repels the positive solutions of
(1) uniformly. Hence, the system (1) is permanent. This
proves the theorem.

7.1 Direction and stability of Hopf bifurcation of
model (1)

We consider the transformation z1(t) = S(τ t) − S∗,
z2(t) = I (τ t) − I∗, z3(t) = P(τ t) − P∗.

Let τ = τ ∗ + μ, μ ∈ R. Then, μ = 0 is the Hopf
bifurcation value of the system (1). The Eq. (1) can be
written in the form

ż(t) = Lμ(zt ) + F(μ, zt ), (32)

where z(t) = (z1(t), z2(t), z3(t))T ∈ R3. For ψ =
(ψ1, ψ2, ψ3)

T ∈ C([−1, 0], R3+); Lμ : C → R and
F : R × C → R are given by

Lμ(ψ) = (τ ∗ + μ)A3

⎛

⎝
ψ1(0)
ψ2(0)
ψ3(0)

⎞

⎠

+ (τ ∗ + μ)A4

⎛

⎝
ψ1(−1)
ψ2(−1)
ψ3(−1)

⎞

⎠ , (33)

and

F(μ,ψ) = (τ ∗ + μ)A5, (34)

where

A3 =
⎛

⎝
2S∗(1 + θ) − θ − 3S2∗ + I∗(θ − β − 2I∗) −S∗(S∗ − θ) − βS∗ 0
β I∗ βS∗ − a P∗ − μ −aI∗
0 0 −d

⎞

⎠ ,

A4 =
⎛

⎝
0 0 0
0 0 0
0 αP∗ α I∗

⎞

⎠ ,

A5 =
⎛

⎝
(1 + θ − 3S∗)ψ2

1 (0) + (θ − β − 2S∗)ψ1(0)ψ2(0)
βψ1(0)ψ2(0) − aψ2(0)ψ3(0)

αψ2(−1)ψ3(−1)

⎞

⎠ .
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By the Riesz representation theorem [87], there
exists a function η(θ, μ) of bounded variation for
θ ∈ [−1, 0], such that

Lμψ =
∫ 0

−1
dη(θ, μ)ψ(θ), for ψ ∈ C. (35)

In fact, we can choose

η(θ, μ) = (τ ∗ + μ)

⎛

⎝
2S∗(1 + θ) − θ − 3S2∗ + I∗(θ − β − 2I∗) −S∗(S∗ − θ) − βS∗ 0
β I∗ βS∗ − a P∗ − μ −aI∗
0 0 −d

⎞

⎠ δ(θ)

−(τ ∗ + μ)

⎛

⎝
0 0 0
0 0 0
0 αP∗ α I∗

⎞

⎠ δ(θ + 1), (36)

where δ is defined by δ(θ) =
{1, θ=0,

0, θ �=0.

For ψ ∈ C1
([−1, 0], R3+

)
, define

A(μ)ψ =

⎧
⎪⎨

⎪⎩

dψ(θ)

dθ
θ ∈ [−1, 0)

∫ 0

−1
dη(μ, s)ψ(s) θ = 0

and

R(μ)ψ =
{

0, θ ∈ [−1, 0),
F(μ,ψ), θ = 0.

Then, the system (32) is of the form

żt = A(μ)zt + R(μ)zt , (37)

where zt (θ) = zt (t + θ) for θ ∈ [−1, 0].
For φ ∈ C1([0, 1], (R3+)∗), define

A∗φ(s) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−dφ(s)
ds

, s ∈ (0, 1],
∫ 0

−1
dηT (t, 0)φ(−t), s = 0,

and a bilinear inner product

〈φ(s), ψ(θ)〉 = φ(0)ψ(0)

−
∫ 0

−1

∫ θ

α=0
φ(α − θ)dη(θ)ψ(α)dα, (38)

where η(θ) = η(θ, 0). Clearly, A(0) and A∗ are adjoint
operators. We know that ±iρ0τ ∗ are eigenvalues of
A(0). So, they are also eigenvalues of A∗. Now we
search for the eigenvector of A(0) and A∗ correspond-
ing to iρ0τ ∗ and −iρ0τ ∗ respectively.

We assume that q(θ) = (1, u, w)T eiρ0τ∗θ and q∗(s)
are the eigenvectors of A(0) and A∗ corresponding
to iρ0τ ∗ and −iρ0τ ∗, respectively. Then, we have
A(0)q(θ) = iρ0τ ∗q(θ). By the definition of A(0) and
from (35) and (36), it follows that

τ ∗
⎛

⎝
−2S∗(1+θ)+θ+3S2∗ − I∗(θ − β − 2I∗)+iρ0 +S∗(S∗ − θ) + βS∗ 0
−β I∗ −βS∗ + a P∗ + μ + iρ0 aI∗
0 −αP∗e−iρ0τ∗ −α I∗e−iρ0τ∗ + d + iρ0

⎞

⎠ q(0)

=
⎛

⎝
0
0
0

⎞

⎠ .

Then, we can get q(0) = (1, u, w)T ,
where

u =−−2S∗(1+θ)+ θ+3S2∗ − I∗(θ−β−2I∗) + iρ0
S∗(S∗−θ)+βS∗

,

w=−−2S∗(1+θ)+θ+3S2∗ − I∗(θ−β−2I∗) + iρ0
S∗(S∗ − θ)+βS∗

× αP∗e−iρ0τ∗

−α I∗e−iρ0τ∗ + d + iρ0
. (39)
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Similarly, we can obtain

q∗(s)= D
(
1, u∗, w∗)T eiρ0τ

∗s ,

= Deiρ0τ
∗s

(

1,
−2S∗(1+θ)+θ+3S2∗ − I∗(θ−β−2I∗)−iρ0

β I∗
,

− aI∗
−α I∗e−iρ0τ∗ + d − iρ0

× −2S∗(1 + θ) + θ + 3S2∗ − I∗(θ − β − 2I∗) − iρ0
β I∗

)

.

We choose D in such a way that 〈q∗(s), q(θ)〉 = 1,
〈q∗(s), q(θ)〉 = 0.

Hence

〈q∗(s), q(θ)〉
= D(1, u∗, w∗)(1, u, w)T

−
∫ 0

−1

∫ θ

ζ=0
D(1, u∗, w∗)e−iρ0τ∗(ζ−θ)dη(θ)

(1, u, w)T eiρ0τ∗ζdζ

= D
[
1 + u∗u + w∗w

−
∫ 0

−1
(1, u∗, w∗)θeiρ0τ∗θdη(θ)(1, u, w)T

]

= D
[
1 + u∗u

+w∗w + τ ∗wα(u∗ P∗ + w∗ I∗)e−iρ0τ∗]
.

Thus, we can choose D as D =
1

1+uu∗+ww∗+τ∗wα(u∗ P∗+w∗ I∗)eiρ0τ∗ .

To describe the center manifold C0 at μ = 0, we
compute the coordinates by using the same notations
and procedures as proposed by Hassard et al. [36].

Let zt be the solution of of Eq. (32) when μ = 0.
Define

z(t)=〈q∗, zt 〉, W (t, θ)= zt (θ) − 2Re{z(t)q(θ)}.
(40)

On the center manifold C0, we have

W (t, θ) = W
(
z(t), z(t), θ

)
,

where

W (z, z, θ) = W20(θ)
z2

2
+ W11(θ)zz + W02(θ)

z2

2

+ W30(θ)
z3

6
+ · · · ,

z and z are local coordinates for center manifold C0 in
the direction of q∗ and q∗. Here W is real when zt is
real. Now, we consider only real solutions. For solution

zt ∈ C0 of Eq. (32), since μ = 0, we can obtain

ż(t) = iρ0τ
∗z

+
〈
q∗(θ), F

(
0, W (z, z, θ) + 2Re{zq(θ)}

)〉

= iρ0τ
∗z + q∗(0)F

(
0, W (z, z, 0)

+ 2Re {zq(0)}
)

def= iρ0τ
∗z + q∗(0)F0(z, z);

we rewrite this equation as ż = iρ0τ ∗z + g(z, z) with

g(z, z) = q∗(0)F0(z, z) = g20
z2

2
+ g11zz + g02

z2

2

+ g21
z2z

2
+ · · · . (41)

Then, from Eq. (40), we have

zt (θ) = (z1t (θ), z2t (θ), z3t (θ))

= W (t, θ) + 2Re {z(t)q(θ)}
= W20(θ)

z2

2
+ W11(θ)zz + W02(θ)

z2

2
+ (1, u, w)T eiρ0τ∗θz + (1, u, w)T e−iρ0τ∗θz

+ O
(
|(z, z)|3

)
. (42)

Thus, from Eq. (41), we can get

g (z, z) = q∗ (0) F0 (z, z)

= D
(
1, u∗, w∗) τ ∗

(− (3S∗ − 1 − θ) z21t (0) − (β + 2S∗ − θ) z1t (0) z2t (0)
βz1t (0) z2t (0) − az2t (0) z3t (0)

αz2t (−1) z3t (−1)

)

= −Dτ ∗ [(3S∗ − 1 − θ) {z + z

+ W 1
20 (0)

z2

2
+ W 1

11 (0) zz

+ W 1
02 (0)

z2

2
+ O

(
| (z, z) |3

)
}2

+ (β + 2S∗ − θ)

{
z + z + W 1

20 (0)
z2

2

+ W 1
11 (0) zz + W 1

02 (0)
z2

2
+ O

(
| (z, z) |3

)
}

×
{

uz + u z + W 2
20 (0)

z2

2
+ W 2

11 (0) zz

+ W 2
02 (0)

z2

2
+ O

(
| (z, z) |3

)}]

+ Dτ ∗u∗
[{

β

(
z + z + W 1

20 (0)
z2

2
+ W 1

11 (0) zz

+ W 1
02 (0)

z2

2
+ O

(
| (z, z) |3

))}
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×
{

uz + u z + W 2
20 (0)

z2

2
+ W 2

11 (0) zz

+ W 2
02 (0)

z2

2
+ O

(
| (z, z) |3

)
}

− a

{
uz + u z + W 2

20 (0)
z2

2
+ W 2

11 (0) zz

+ W 2
02 (0)

z2

2
+ O

(
| (z, z) |3

)}

×
{
wz + w z + W 3

20 (0)
z2

2
+ W 3

11 (0) zz

+ W 3
02 (0)

z2

2
+ O

(
| (z, z) |3

)
}]

+ Dτ ∗w∗α
{
wze−iρ0τ∗ + w zeiρ0τ∗ + W 3

20 (−1)
z2

2

+ W 3
11 (−1) zz + W 3

02 (−1)
z2

2
+ O

(
| (z, z) |3

)
}

×
{

uze−iρ0τ∗ + u zeiρ0τ∗ + W 2
20 (−1)

z2

2

+ W 2
11 (−1) zz + W 2

02 (−1)
z2

2
+ O

(
| (z, z) |3

)}

(43)

Comparing with the coefficients with (41), we can
obtain

g20 = 2Dτ ∗ [−{(3S∗ − 1 − θ) + u(2S∗ + β − θ)}
+ uu∗(β − aw) + αuww∗e−2iρ0τ∗]

,

g11 = 2Dτ ∗ [−{(3S∗ − 1 − θ) + Re{u}(2S∗ + β − θ)}
+ u∗(βRe{u} − aRe{uw}) + αRe{uw}w∗] ,

g02 = 2Dτ ∗ [−{(3S∗ − 1 − θ) + u(2S∗ + β − θ)}
+ uu∗(β − aw) + αuww∗e2iρ0τ∗]

,

g21 = Dτ ∗ [−(2S∗ + β − θ)(W 2
20(0) + 2W 2

11(0)

+ uW 1
20(0) + 2uW 1

11(0))

− 2(3S∗ − 1 − θ)(W 1
20(0) + 2W 1

11(0))

+ u∗{β(2W 2
11(0) + W 2

20(0) + uW 1
20(0)

+ 2uW 1
11(0)) − a(2uW 3

11(0)

+ uW 3
20(0) + wW 2

20(0) + 2wW 2
11(0)}

+αw∗(2uW 2
11(−1)e−iρ0τ∗

+ uW 3
20(−1)eiρ0τ∗ + wW 2

20(−1)eiρ0τ∗

+ 2wW 2
11(−1)e−iρ0τ∗

)
]
. (44)

To calculate the value of g21, we need to compute the
values of W20(θ) and W11(θ). From Eqs. (37) and (40),
we have

Ẇ = żt − żq − ż q

=
{

AW − 2Re{q∗(0)F0q(θ)}, θ ∈ [−1, 0),
AW − 2Re{q∗(0)F0q(θ)} + F0, θ = 0,

def= AW + H(z, z, θ), (45)

where

H(z, z, θ) = H20(θ)
z2

2
+ H11(θ)zz

+H02(θ)
z2

2
+ · · · . (46)

Expanding the above series and comparing the corre-
sponding coefficients, we obtain

(A − i2ρ0τ
∗ I )W20(θ) = −H20(θ),

AW11(θ) = −H11(θ). (47)

From Eq. (45), we know that for θ ∈ [−1, 0),

H(z, z, θ) = −q∗(0)F0q(θ) − q∗(0)F0q(θ)

= −gq(θ) − g q(θ). (48)

Comparing the coefficients with (46) gives that

H20(θ) = −g20q(θ) − g02q(θ) (49)

and

H11(θ) = −g11q(θ) − g11q(θ). (50)

From (47) and (49), we have

Ẇ20(θ) = i2ρ0τ
∗W20(θ) + g20q(θ) + g02q(θ).

Since q(θ) = (1, u, w)T eiρ0τ∗θ , hence

W20(θ) = ig20
ρ0τ ∗ q(0)eiρ0τ∗θ + i g20

3ρ0τ ∗ q(0)e−iρ0τ∗θ

+ E1ei2ρ0τ∗θ , (51)
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where E1 = (E (1)
1 , E (2)

1 , E (3)
1 ) ∈ R3 is a constant vec-

tor.
Similarly, from Eqs. (47) and (50), we get

W11(θ) = − ig11
ρ0τ ∗ q(0)eiρ0τ∗θ

+ i g11

ρ0τ ∗ q(0)e−iρ0τ∗θ + E2, (52)

where E2 = (E (1)
2 , E (2)

2 , E (3)
2 ) ∈ R3 is a constant vec-

tor.
In what follows, we shall seek appropriate E1 and

E2 in (51) and (52) respectively. From the definition of
A and (47), we obtain

∫ 0

−1
dη(θ)W20(θ) = i2ρ0τ

∗W20(0) − H20(0) (53)

and

∫ 0

−1
dη(θ)W11(θ) = −H11(0), (54)

where η(θ) = η(0, θ). From (47), we have

H20(0) = −g02q(0) − g02q(0) + 2τ ∗
⎛

⎝
−{(3S∗ − 1 − θ) + u(2S∗ + β − θ)}

u(β − aw)

αuwe−2iρ0τ∗

⎞

⎠

(55)

and

H11(0) = −g11q(0) − g11q(0)

+ 2τ ∗
⎛

⎝
−{(3S∗ − 1 − θ) + Re{u}(2S∗ + β − θ)}

βRe{u} − aRe{uw}
αRe{uw}

⎞

⎠.

(56)

Noting that
(

iρ0τ
∗ I −

∫ 0

−1
eiρ0τ∗θdη (θ)

)
q (0) = 0,

and
(

−iρ0τ
∗ I −

∫ 0

−1
e−iρ0τ∗θdη (θ)

)
q (0) = 0,

and putting (51) and (55) into (53), we get
(

i2ρ0τ
∗ I −

∫ 0

−1
ei2ρ0τ∗θdη(θ)

)
E1

= 2τ ∗
(− {(3S∗ − 1 − θ) + u(2S∗ + β − θ)}

u(β − aw)

αuwe−2iρ0τ∗

)
,

which implies that

⎛

⎜
⎝

−2S∗(1+θ)+θ+3S2∗ − I∗(θ−β − 2I∗)+2iρ0 S∗(S∗ − θ)+βS∗ 0
−β I∗ −βS∗+a P∗+μ+2iρ0 aI∗
0 −αP∗e−2iρ0τ∗ −α I∗e−2iρ0τ∗ +d+2iρ0

⎞

⎟
⎠ E1

= 2

⎛

⎜
⎝

−{(3S∗ − 1 − θ) + u(2S∗ + β − θ)}
u(β − aw)

αuwe−2iρ0τ∗

⎞

⎟
⎠ ,

(57)

It follows that

E (1)
1 = |Δ11|

|Δ1| , E (2)
1 = |Δ12|

|Δ1| , E (3)
1 = |Δ13|

|Δ1| ,

(58)
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where

Δ11 = 2

⎛

⎝
−{(3S∗−1−θ)+u(2S∗+β−θ)} S∗(S∗−θ)+βS∗ 0
u(β−aw) −βS∗+a P∗+μ+2iρ0 aI∗
αuwe−2iρ0τ∗ −αP∗e−2iρ0τ∗ −α I∗e−2iρ0τ∗ +d+2iρ0

⎞

⎠ ,

Δ12 = 2

⎛

⎝
−2S∗(1+θ)+θ+3S2∗ − I∗(θ−β−2I∗)+2iρ0 −{(3S∗−1−θ)+u(2S∗+β−θ)} 0
−β I∗ u(β−aw) aI∗
0 αuwe−2iρ0τ∗ −α I∗e−2iρ0τ∗ +d+2iρ0

⎞

⎠ ,

Δ13 = 2

⎛

⎝
−2S∗(1+θ)+θ+3S2∗ − I∗(θ−β−2I∗)+2iρ0 S∗(S∗−θ)+βS∗ −{(3S∗−1−θ)+u(2S∗+β−θ)}
−β I∗ −βS∗+a P∗+μ+2iρ0 u(β−aw)

0 −αP∗e−iρ0τ∗
αuwe−2iρ0τ∗

⎞

⎠ ,

Δ1 =
⎛

⎝
−2S∗(1+θ)+θ+3S2∗ − I∗(θ−β−2I∗)+2iρ0 S∗(S∗−θ)+βS∗ 0
−β I∗ −βS∗+a P∗+μ+2iρ0 aI∗
0 −αP∗e−2iρ0τ∗ −α I∗e−2iρ0τ∗ +d+2iρ0

⎞

⎠ .

Similarly putting (52) and (56) into (54), we have

(∫ 0

−1
dη(θ)

)
E2 = 2τ ∗

⎛

⎝
−{(3S∗ − 1 − θ) + Re{u}(2S∗ + β − θ)}

βRe{u} − aRe{uw}
αRe{uw}

⎞

⎠ ,

which implies that
⎛

⎝
−2S∗(1 + θ) + θ + 3S2∗ − I∗(θ − β − 2I∗) S∗(S∗ − θ) + βS∗ 0
−β I∗ −βS∗ + a P∗ + μ aI∗
0 −αP∗ −α I∗ + d

⎞

⎠ E2

= 2

⎛

⎝
−{(3S∗ − 1 − θ) + Re{u}(2S∗ + β − θ)}

βRe{u} − aRe{uw}
αRe{uw}

⎞

⎠ ,

and hence,

E (1)
2 = |Δ21||Δ2| , E (2)

2 = |Δ22||Δ2| , E (3)
2 = |Δ23||Δ2| , (59)

where

Δ21 =
⎛

⎝
−{(3S∗ − 1 − θ) + Re{u}(2S∗ + β − θ)} S∗(S∗ − θ) + βS∗ 0
βRe{u} − aRe{uw} −βS∗ + a P∗ + μ aI∗
αRe{uw} −αP∗ −α I∗ + d

⎞

⎠ ,

Δ22 =
⎛

⎝
−2S∗(1 + θ) + θ + 3S2∗ − I∗(θ − β − 2I∗) −{(3S∗ − 1 − θ) + Re{u}(2S∗ + β − θ)} 0
−β I∗ βRe{u} − aRe{uw} aI∗
0 αRe{uw} −α I∗ + d

⎞

⎠ ,

Δ23 =
⎛

⎝
−2S∗(1 + θ) + θ + 3S2∗ − I∗(θ − β − 2I∗) S∗(S∗ − θ) + βS∗ −{(3S∗ − 1 − θ) + Re{u}(2S∗ + β − θ)}
−β I∗ −βS∗ + a P∗ + μ βRe{u} − aRe{uw}
0 −αP∗ αRe{uw}

⎞

⎠ ,

Δ2 =
⎛

⎝
−2S∗(1 + θ) + θ + 3S2∗ − I∗(θ − β − 2I∗) S∗(S∗ − θ) + βS∗ 0
−β I∗ −βS∗ + a P∗ + μ aI∗
0 −αP∗ −α I∗ + d

⎞

⎠ .
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From the above analysis, we can compute the fol-
lowing quantities:

C1(0) = i

2ρ0τ ∗

(
g20g11 − 2|g11|2 − 1

3
|g02|2

)

+ 1

2
g21,

μ2 = −Re{C1(0)}
Re{λ́(τ ∗)} ,

β2 = 2Re{C1(0)},
τ2 = − Im {C1(0)} + μ2Imle f t{λ́(τ ∗)right}

ρ0τ ∗ .

The above three quantities μ2, β2 and τ2 will deter-
mine the direction, stability and the periods of the bifur-
cating periodic solutions.
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