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Abstract Spontaneous periodic up and down transi-
tions are considered to be a significant phenomenon
that is characteristic of slow-wave sleep. We studied
a neural network model of spontaneous up and down
transitions based on our former study of a single-neuron
model. We expanded the model by using two types
of neurons—excitatory and inhibitory neurons—and
redefining the connecting function between two neu-
rons instead of assuming a constant connection, so that
the model is closer to the in vivo network. Using this
model, we studied the relationship between the transi-
tions and network parameters such as size, structure and
the ratio of excitatory to inhibitory neurons. We found
that the network parameters have little impact on these
spontaneous periodic up and down transitions. How-
ever, the intrinsic currents were found to play a leading
role in the process. Then, we studied the transitions in
the presence of stimulation and found that the addi-
tion of stimulation did have an effect on the network
transitions. Through the observation and analysis of
the findings, we have tried to explain the dynamics of
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up and down transitions and to lay the foundation for
future work on the role of these transitions in cortex
activity.
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1 Introduction

The phenomenon of spontaneous periodic up and down
transitions is considered to be a significant character-
istic of slow-wave sleep. This slow oscillation charac-
terized by large delta waves predominates electroen-
cephalograms taken when a subject is asleep. Neural
electrophysiology experiments also have shown that
membrane potentials make spontaneous transitions
between two different levels called up and down states
[1] during slow-wave sleep in the primary visual cortex
of anesthetized animals [2–4] and during quiet wakeful-
ness in the somatosensory cortex of unanesthetized ani-
mals [5]. These two states characterize the bistability of
the membrane potentials. The importance of both bista-
bility, up and down transitions, and slow oscillations
has been emphasized in different fields of research [6–
14], including spatial coherence resonance [15]. More-
over, the findings have also been applied to biochemical
[16] and calcium [17] research.

Why these transitions occur and whether this sponta-
neous activity plays a role in brain functions are still not
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clear. In fact, we know little about the induction of neu-
ron membrane potentials and interactions among neural
networks, especially the relationship between neural
coding and cognitive behaviors. In earlier researches,
the activation of inward currents by hyperpolarizations
was implicated in the pacemaking of both single cell
and network rhythmicity [18–20]. Other results indi-
cate that the dynamic interplay between the gating and
kinetic properties of Ih and INaP is essential for the
generation of rhythmic subthreshold oscillations by the
stellate cells [21]. Further more, some studies used
coupled nonlinear differential equations and obtained
results which showed chaos and limits cycle activity
[7,22–26].

Our former study on up and down transitions of a
single neuron [27] and a small network with constant
connection [28] tried to explain the dynamic mecha-
nism involved in these transitions at the ionic chan-
nel level. At the single-neuron level, cortical neurons
switch between two stable states. Moreover, cortical
local field potential (LFP) changes over time. LFP is
used to describe the state of the whole cortex [10,29–
31]. In this paper, we expanded the model by clarify-
ing the mechanism in two types of neurons, namely,
excitatory and inhibitory neurons, and by substituting
the constant connection state with a changing connect-
ing function state involving two types of neurons, so
that the model reflects the in vivo mechanism better.
Using this model, we explored the factors that influ-
ence spontaneous periodic up and down transitions and
their impact on these transitions.

Studies on the relationship between the transitions
and network parameters such as size, structure and
the ratio of excitatory neurons to inhibitory neurons
showed that the network parameters have little impact
on these spontaneous periodic up and down transitions.
However, the intrinsic currents play a leading role in
the process. There is also some debate about the topo-
logical features of neuronal networks. In this sense, it
would be a good idea to built a model based on the
actual connectivity, observed in neuronal networks, as
done in other research [32]. However, it is difficult to
elucidate the actual connections that are present in vivo.
Fortunately, our models were independent of the net-
work structure and dependent on the channel condi-
tions. We believe that this work will lay the foundation
for studying the relationship between neural coding and
cognitive behavior.

2 Biophysical model

In this paper, we extended our former network model
[28,33], and modeled two compartment neurons—
excitatory neurons (ENs) and inhibitory neurons (INs)
—with two kinds of currents, the intrinsic currents and
synaptic currents. The main current equations and the
intrinsic and synaptic currents are shown below.

2.1 Current equation

The main current equation on which the HH model is
based was developed from the single-neuron dynamic
model [27,33] we studied before. For the excitatory
neurons,

C
dVi
dt

= − INa(Vi )− Ih(Vi , hi ) − IK(Vi , bi ) − Il(Vi )

− IAMPA(Vi , sAMPAi ) − INMDA(Vi , sNMDAi )

− IGABAA(Vi , sGABAA i ). (1)

For the inhibitory neurons,

C
dVi
dt

= − INa(Vi )− Ih(Vi , hi ) − IK(Vi , bi ) − Il(Vi )

− IAMPA(Vi , sAMPAi )− INMDA(Vi , sNMDAi ).

(2)

2.2 Intrinsic current

The intrinsic current [33] consists of the following
four ionic currents: an instantaneous, inward current
(sodium current), a slow h-like current, and two out-
ward currents (a slow potassium current and a leak
current).

INa = gNam∞(V − VNa). (3)

Ih = ghh(V − Vh), (4)
dh

dt
= h∞ − h

τh
. (5)

IK = gKb(V − VK), (6)
db

dt
= b∞ − b

τb
. (7)

Il = gl(V − Vl). (8)

where

m∞ =
(

1 + exp− V−Tm
σm

)−1
, h∞ =

(
1 + exp

V−Th
σh

)−1

,
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τh = 1

α + β
, α = aαV + bα

1 − exp− V+bα/aα
kα

,

β = aβV + bβ

1 − exp
− V+bβ/aβ

kβ

,

b∞ =
(

1 + exp
− V−Tb

σb

)−1

,

τb = τ 0
b · sech

(
V − Tb

4σb

)
.

2.3 Synaptic current

Three types of receptors, namely, AMPA receptors,
NMDA receptors and GABAA receptors, are signifi-
cant for the transmission of information between neu-
rons. The AMPA and NMDA receptors are excitatory
in nature, while the GABAA receptors are inhibitory
one. Furthermore, the AMPA receptors mediate the
prototypical fast excitatory synaptic currents, while the
NMDA receptors mediate synaptic currents that are
substantially slower than the AMPA current [34].

ENs excite other connecting neurons, including ENs
and INs, via AMPA receptors and NMDA receptors.
However, INs only inhibit one type of neurons, the
ENs, through the GABAA receptors. The three types
of currents are represented by the following equations.
AMPA current,

IAMPAi = gAMPA(Vi − VAMPA)

×
∑
j

w( j, i)sAMPA j , (9)

dsAMPA j

dt
= αAMPA[T ](Vj )(1 − sAMPA j )

−βAMPAsAMPA j . (10)

NMDA current,

INMDAi = gNMDA fNMDA(Vi )(Vi − VNMDA)

×
∑
j

w( j, i)sNMDA j , (11)

dsNMDA j

dt
= αNMDA[T ](Vj )(1 − sNMDA j )

−βNMDAsNMDA j . (12)

GABAA current,

IGABAA i = gGABAA(Vi − VGABAA)

×
∑
j

w( j, i)sGABAA j , (13)

dsGABAA j

dt
= αGABAA [T ](Vj )(1 − sGABAA j )

−βGABAAsGABAA j . (14)

In the equations, the stationary relationship between
the transmitter concentration [T ](V ) and presynaptic

voltage is fit to [T ](V ) = Tmax/((1+exp
− V−Vp

K p )) [34].
The slow component of the NMDA synaptic receptor

is represented by fNMDA(V ) = 1/((1 + exp
− V−T f

σ f ))

[35]. The variables sAMPA, sNMDA, and sGABAA define
the degree of opening of the protein channels. α and β

represent the forward and backward constants, respec-
tively. The synaptic weights from neuron j to i are
defined as w( j, i), the value of which depends on the
different network topology.

2.4 Parameters

The values of the constants used in the model are shown
in Table 1 [33–35].

2.5 Network topology

The following pattern is true for all the networks
described in this paper, regardless of size: One EN
excites other connecting neurons including ENs and
INs. At the same time, it is also excited by other ENs and
inhibited by the INs. However, a IN only inhibits one
other type of neurons, ENs, and is excited by the con-
necting ENs. All the excitatory connections are medi-
ated by a fast AMPA component as well as a slow
voltage-dependent NMDA component. The inhibitory
connections are modulated by a fast GABAA synaptic
receptors.

Next, we examine how ENs and INs interact with
each other. The exact ratio of ENs to INs is still unclear.
Different cortical regions have different characteristics
in this regard. However, the EN to IN ratio has been
reported to be 4 : 1 [36] in some studies. We tested our
models using this ratio as well as other possible ratios.

Finally, we tried to understand the interaction
between ENs and INs according to their numbers. Here,
we used the full-connection-like (TP_A) link. Every
EN was found to be connected to all the other neu-
rons, including ENs and INs, while every IN was linked
to all the other ENs but not other INs. This can be
described in detail as w(EN , ENorI N ) = 1/(n − 1),
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Table 1 Values of the constants

Constant Value of the
constant

Unit of the
constant

C 1 µF/cm2

gNa 0.06 ms/cm2

VNa 55 mV

Tm −53.8 mV

σm 3 mV

gh 0.2 ms/cm2

Vh −30 mV

Th −76.4 mV

σh 20 mV

aα −2.89 /(mV s)

bα −445 /s

kα 24.02 mV

aβ 27.1 /(mV s)

bβ −1024 /s

kβ −17.4 mV

gK 0.165 ms/cm2

VK −85 mV

Tb −54 mV

σb 5 mV

τ 0
b 3000 ms

gl 0.1 ms/cm2

Vl −70 mV

gAMPA 0.9 ms/cm2

VAMPA 0 mV

αAMPA 1 /

βAMPA 0.2 /

gNMDA 0.9 ms/cm2

VNMDA 0 mV

αNMDA 0.072 /

βNMDA 0.0067 /

gGABAA 1 ms/cm2

VGABAA −80 mV

αGABAA 5 /

βGABAA 0.18 /

Tmax 1 /

Vp 5 mV

Kp 2 mV

T f −25 mV

σ f 12.5 mV

w(I N , EN ) = 1/nENs , w(I N , I N ) = 0. Here, n
refers to the total number of neurons and nENs refers
to the number of ENs.

Here is another possible connection that was found
to be popular in most stimulations: five cells in AMPA-
and NMDA-mediated EN-EN synapses, one cell in
AMPA- and NMDA-mediated EN–IN synapses, and
five cells in GABAA-mediated IN-EN synapses (TP_B)
[36]. In detail, w(EN , EN ) = 1/5(choose five ENs
randomly), w(EN , I N ) = 1(choose one IN ran-
domly), w(I N , EN ) = 1/5(choose five ENs ran-
domly), w(I N , I N ) = 0. This possibility was also
tested in this paper.

3 Results

3.1 Influence of network structure on up and down
transitions

In this paper, we discussed about four types of net-
work structure elements namely, network size, network
topology, the original state of the network, and the ratio
of ENs to INs in the network. In order to represent the in
vivo mechanisms as far as possible, we used this patten
of interactivity consistently: ENs were excited by other
ENs and inhibited by INs, and these ENs also excited
other neurons including other ENs and INs through fast
AMPA- and slow NMDA-mediated synapses. More-
over, INs were excited by ENs and inhibited ENs mean-
while. The inhibitory synapses were mediated via fast
GABAA. This was an important part of the network
structure that had to be taken into consideration.

Another feature of our model was the number of
the neurons in the links. A full-connection-like (TP_A)
link was created since in small neural networks such as
the one used here, neurons were likely to be combined
in this way. Another structure (TP_B) used in most
stimulations was also tested in this study. Furthermore,
we hypothesized that this type structure (TP_B) may
represent the in vivo structure better, so we used it in
most of the simulations.

The precise ratio of ENs to INs is unclear, and it is
not clear whether there are more ENs or INs or whether
they are present in a balanced manner. We used the most
commonly accepted EN/IN ratio (4:1 [36]), as well as
two other possible ratios, 1:1 and 9:1.

With regard to size, we tested network sizes of 25,
50, and 100 neurons, while keeping the other condi-
tions constant. The original state of the network, which
mainly reflects the average membrane potential of all
the neurons, was initially in the down state or up state.
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n=25

n=100

n=50

ENs:INs=1:1 ENs:INs=4:1 ENs:INs=9:1

TP_B

TP_A

n=50

10s
20mV

Average Member Potential under cases of different network parameters

Up State

Down State

Fig. 1 Spontaneous up and down transitions at the network level
under different network parameters: sizes (n = 25, 50, 100),
structure (TP_B, TP_A), and ratio of excitatory to inhibitory
neurons (ENs/I Ns = 1:1, 4:1, 9:1)

All the situations specified above were tested on the
model, and the results are shown in Fig. 1. Every small
plot in Fig. 1 represents the average membrane poten-
tial of the network under a specific set of different net-
work parameters: sizes (n = 25, 50, 100), structure
(TP_B, TP_A), and ratio of ENs to INs (ENs/I Ns =
1:1, 4:1, 9:1). The small plots illustrated similar spon-
taneous slow subthreshold activities with different net-
work parameters. This also showed the stability of net-
work activity with spontaneous up and down transi-
tions, which provided further evidence that slow-wave
sleep can be considered as deep sleep to some extent.

From the above findings on spontaneous up and
down transitions, we deduced that the results were inde-
pendent of network structure. The network parameters
including network size, network topology, the original
state of the network, and the ratio of ENs to INs in the
network had little impact on these spontaneous periodic
up and down transitions. This network activity showed
stronger stability and robustness without any external
stimulation.

3.2 Influence of channel conditions on up and down
transitions

In the previous part of the results, we found that
spontaneous up and down transitions are independent
of network structure. Our next goal was to examine the
factors that influence on up and down transitions, and
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Fig. 2 Currents of one neuron in up and down transitions accord-
ing to time (top) and membrane potential (bottom)

in this regard, we examined the role of intrinsic currents
in our model.

In Fig. 2, we have illustrated all the currents, except
for the leak current of one EN in the network (top) and
three types of intrinsic currents (bottom) that seemed
to be involved in up and down transitions.

In the top subfigure of Fig. 2, there are six voltage-
dependent currents of the EN. All of them displayed
voltage-dependent characteristics that were reflected
in the spontaneous up and down transitions. Three of
them were intrinsic currents, namely the sodium current
(INa), the potassium current (IK ), and the h-like cur-
rent (Ih). The other three were synaptic currents medi-
ated by the three types of receptors, AMPA receptors,
NMDA receptors, and GABAA receptors. The synaptic
currents were so small compared with the intrinsic cur-
rents that they made little contribution to the integrated
current. The findings indicated that the network struc-
ture hardly had an impact on up and down transitions,
as specified in the previous section.
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Fig. 3 Average membrane potentials of the network under different ionic channel parameters

The bottom subfigure of Fig. 2 is a plot of the sim-
ulated membrane potential against the amplitude of
three intrinsic currents, INa , IK , and Ih . The plot cor-
responding to INa is an inverted S-shaped curve with
a negative slope without hysteresis. Therefore, during
the up transitions or down transitions, there was a rela-
tively instantaneous increase or decrease in the sodium
current. On the other hand, the plots corresponding to
IK and Ih presented a greater degree of delay. These
two closed circuits travelled counterclockwise. From
the bottom subfigure, we can see that the maxima and
minima of the amplitudes of IK and Ih occurred just
after the membrane potential reached its most hyper-
polarized and depolarized values. Therefore, in con-
trast to the sodium current, the amplitudes of the potas-
sium current and h-like current demonstrated a delayed
increase or decrease with the transitions happening.

From Fig. 2, it was estimated that the intrinsic cur-
rents may be responsible for up and down transitions.
We then tried to understand the mechanism underly-
ing the effect of these currents. At the ionic level, the
ion channel properties and conditions may play a role.
Therefore, we examined different channels under dif-
ferent conductance conditions (as shown in Figs. 3, 4).
For this, we used TP_B structure, with 4 : 1 as the
EN/IN ratio and 25 as the network size.

All the plots in Fig. 3 represent the average mem-
brane potentials of the network at various levels of con-

ductance. The left column represents different potas-
sium conductance values; the center column, different
sodium conductance values; and the right column, the
conductance values of the h-like channel. If the potas-
sium channel conductance was within the appropriate
range, the average membrane potential demonstrated
spontaneous up and down transitions with bistability.
The higher the potassium conductance, the fewer were
the transitions and the shorter was the duration of the up
state. Furthermore, if the potassium conductance was
excessive, the membrane potential would always be in
the down state. Conversely, when it was insufficiently
activated, the membrane potential was in the up state.
This was in agreement with the results of our previ-
ous work [27,28]. On the other hand, the findings for
the sodium channel and h channel showed an opposite
trend: The higher the conductance, the more were the
transitions and the longer was duration of the up state.

The results of the quantitative statistic analysis are
illustrated in Fig. 4. In every column of Fig. 3, we listed
the membrane potential results under three different
parameter values of iconic conductance. In Fig. 4, we
tried more parameter values and calculated up state
duration (see top three subfigures) and cycle of up
state transition (including one up state duration and
one down state duration, see middle three subfigures)
of average membrane potential. Then, divide the up
state duration by the cycle of up state transition, and
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Fig. 4 Average duration of the up state (top); average cycle of
the up and down transitions (middle); and the average ratio of the
up state in one cycle (bottom) under different potassium chan-

nel conductance values (left), sodium conductance (center), and
conductance of the h-like current (right)

the results were noted as up state ratio in the cycle (see
bottom three subfigures). So we studied the average
up state duration of the membrane potential (top row),
the average cycle of the transitions (middle row), and
the average proportion of the duration of up state in
the cycle (bottom row) of the three types of channels—
potassium channel (left column), sodium channel (cen-
ter column), and h channel (right column) in Fig. 4.

In most observations, the up state duration increased
with decrease in the potassium channel conductance
and increase in sodium channel conductance and h
channel conductance, during appropriate ranges in
which the membrane potential showed up and down
transitions. However, the cycle of transitions did not
change much under most conditions, except for cases
in which the membrane potential was close to but did
not reach that of a permanent down states. The up state
proportion in the cycles showed a similar tendency to
the up state duration.

The mechanism of up and down transitions in a sin-
gle neuron was examined in our previous work [27].
Briefly, depolarization activates the sodium channel,
letting the sodium ions move into cells, after which
the potassium channel is activated slowly, making the
potassium ions move out of the cells; this leads to the
resultant hyperpolarization, which then activates the h
channel. The h-like current is a slow inward current
with a reversal potential between −43 and 0 mV, but
which requires hyperpolarization to become active. A
mixture of sodium and potassium ions [37] is involved.
At the network level, the ionic movement mechanism
is the same. This is depicted in Figs. 3 and 4. The
higher the potassium channel conductance, the higher
the number of potassium ions leaving the cells, which
leads to a shorter up state duration. On the other hand,
the lower the sodium channel conductance, the higher
the number of sodium ions moving into the cells, which
results in a longer up state duration. With regard to the
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conductance of the h channel, the results were similar to
that for sodium conductance. Therefore, we think that
the sodium ions largely contribute to the h-like current.

From the above discussion on how the channel con-
ditions influence spontaneous up and down transitions,
we think that the degree of opening of the ionic chan-
nels had an influence on the up and down transitions,
especially the up state duration. The higher the degree
of opening of the potassium channel, the shorter the up
state duration. Extremely, the much higher potassium
channel conductance led to lasting down state, and the
much lower one resulted in lasting up state. However,
the sodium and h channels showed opposite trends, as
a higher degree of opening of the channels resulted in
a longer up state duration. Moreover, the much higher
conductances resulted in lasting up state and the much
lower ones resulted in lasting down state. This similar-
ity between the sodium and h channels indicated that
sodium ions largely contribute to the h-like current,
although this current involves a mixture of sodium and
potassium ions.

3.3 Influence of stimulations on up and down
transitions

The above two sections described spontaneous tran-
sitions without any stimulation. Next, we will discuss
transitions in response to stimulation, in order to deter-
mine whether stimulations are related with up and down
transitions. If this is found to be true, we will try to
determine the number of neurons that need to be excited
to stimulate transitions in the whole network. Further-
more, we will also examine whether stimulation of only
one neuron can trigger the whole network. We have
attempted to answer these questions in Figs. 5 and 6.

Figure 5 shows some clear findings with regard to up
and down transitions of the whole network, as a results
of excitation of a number of neurons via channel stim-
ulations. (A) Sodium channel stimulation of 5 of 25
(20 %) neurons with by increasing the sodium conduc-
tance to 1.2 ms/cm2, lasting 5ms every 2s. (B) Potas-
sium channel stimulation of 15 of 25 (60 %) neurons
by increasing the conductance from 0.15 to 20 ms/cm2,
lasting 5ms every 1.5s. (C) h channel stimulation of 17
of 25 (68 %) neurons by increasing the conductance of
h channel from 0.23 to 23 ms/cm2, lasting 5 ms every
2 s. The other parameters are presented in Table 1.
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Fig. 5 Up and down transitions of the whole network on excita-
tion of a number of neurons by channel stimulations. a Sodium
channel stimulation of five neurons, b potassium channel stim-
ulation of fifteen neurons, c h channel stimulation of seventeen
neurons

The global network showed up and down transitions
at points where the stimulations were added. Based on
the number of the neurons that needed to be excited,
we think that the sodium channel may play a more
important role in up and down transitions than the other
two channels.

Unfortunately, if too few neurons were excited than
those shown in Fig. 5, the average membrane potential
varied between the up and down transition potentials
irregularly rather than showing clear up and down tran-
sition potentials. Therefore, it was difficult to determine
whether stimulating only one neuron can trigger global
network transitions based on the model in this paper.
However, we did show that stimulating only one neuron
can trigger the local network transitions in Fig. 6.

To study the local conditions of the network, we
fixed the connection weights between every two neu-
rons and slightly modified the topology as follows:
Four cells for AMPA- and NMDA-mediated EN–EN
synapses, one cell for AMPA- and NMDA-mediated
EN–IN synapses, and four cells for GABAA-mediated
IN–EN synapses. Therefore, based on the results of
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Fig. 6 Different types of neuron transitions on stimulation of
only one neuron of the network

Fig. 6, one EN (Type A) has four direct connecting
ENs (Type B) and one direct connecting IN. These
direct connecting neurons (Type B) also have their own
direct connecting neurons (Type C). The other neurons
(Type D) are not connected to the first neuron (Type A)
within two steps of connection. The definition of the
concept of “local region” (E) over here is the average
membrane potential of the target neuron (Type A) and
the directly connected neurons (Type B).

Comparison of the charts in Fig. 6 showed that
one stimulated neuron did induce transitions in the
local region where the input stimulation (22 mA, lasting
10 ms every 1.5 s) showed a little delay. This result con-
firms that switching of the membrane potential of the
stimulated neuron from slow up and down oscillations
to a persistent-up state or vice versa is associated with
concurrent changes in the temporal pattern of cortical
LFP recorded several millimeters away [38]. In Fig. 6,
the stimulated neuron also had little effect on the transi-
tions of indirectly connected neurons via changes in the
tempo of the original transitions, which were not strong
enough to cause immediate transitions via two-layer

connections. In fact, each of these neurons is likely
to project to several thousand cortical neurons, and a
small percentage of these connections may be strong
enough to trigger postsynaptic spiking and activate a
local network [37].

4 Conclusion

This paper mainly discusses about the factors that influ-
ence the spontaneous periodic up and down transitions
by using a dynamic network model that shows spon-
taneous transitions. The main conclusions were as fol-
lows:

– The network parameters including network size, net-
work topology, the original state of the network, and
the ratio of ENs and INs in the network had little
impact on spontaneous periodic up and down tran-
sitions. Moreover, network activity was more stable
and robust without any external stimulation.

– The degree of opening of the ion channels had an
influence on the up and down transitions, especially
the duration of the up state. The greater the degree
of opening of potassium channel, the shorter the up
state duration. Extremely, the much higher potas-
sium channel conductance led to lasting down state,
and the much lower one resulted in lasting up state.
However, the sodium and h channels showed oppo-
site trends, as a higher degree of opening of the chan-
nels resulted in a longer up state duration. Moreover,
the much higher conductances resulted in lasting up
state and the much lower ones resulted in lasting
down state. This similarity between the sodium and
h channels indicated that sodium ions largely con-
tribute to the h-like current, although this current
involves a mixture of sodium and potassium ions.

– Up and down transitions of the global network can be
induced by adding channel stimulations to a number
of neurons. Moreover, the sodium channel may play
a more important role in the up and down transitions
than the other two channels. In the model used in
this paper, stimulation of only one neuron triggered
local network transitions but failed at the level of
the global network, which will be investigated in the
future.

We believe that these results shed light on the dynamics
of up and down transitions and the role of these transi-
tions in network behaviors, and also lay the foundation
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for understanding the dynamic neural mechanism of
cortex activities.
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