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Abstract We study theoretically the global chaotic
behavior of the generalized Chen–Wang differential
system

ẋ = y, ẏ = z, ż = −y − bx2 − xz + 3y2 + a,

where a, b ∈ R are parameters and b �= 0. This poly-
nomial differential system is relevant because is the
first polynomial differential system in R

3 with two
parameters exhibiting chaotic motion without having
equilibria. We first show that for a > 0 sufficiently
small it can exhibit up to three small amplitude periodic
solutions that bifurcate from a zero-Hopf equilibrium
point located at the origin of coordinates when a = 0.
We also show that the system exhibits two limit cycles
emerging from two classical Hopf bifurcations at the
equilibrium points (±√

2a, 0, 0), for a > 0, b = 1/2.
We also give a complete description of its dynamics on
the Poincaré sphere at infinity by using the Poincaré
compactification of a polynomial vector field in R

3,
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and we show that it has no first integrals neither in the
class of analytic functions nor in the class of Darboux
functions.
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1 Introduction and statement of the main result

In chaos theory, it is important to study the stabil-
ity of the equilibria of an autonomous dynamical sys-
tem. Most of the well-known chaotic systems, like the
Lorenz and Chen systems, are of the hyperbolic type,
with their equilibria being unstable and the number of
equilibria no more than three. Wang and Chen [29]
showed that there is an intrinsic relationship between
the global dynamical behavior and the number and sta-
bility of an equilibria of a chaotic system. To do that
they constructed simple chaotic polynomial differential
systems that can have any preassigned number of equi-
libria. They even presented the following very interest-
ing chaotic system with no equilibria:

ẋ = y,

ẏ = z, (1)

ż = −y − x2 − xz + 3y2 + a,
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where a ∈ R is a parameter. They observed that when
a > 0 system (1) has two equilibria (±√

a, 0, 0), when
a = 0 the two equilibria collides at the origin (0, 0, 0)
and for a < 0 system (1) has no equilibria but still
generates a chaotic attractor (see for more details again
[29]). In [19] the authors showed the existence of a
zero-Hopf bifurcation for a = 0. Generically, a zero-
Hopf bifurcation is a two-parameter unfoldingof a 3-di-
mensional autonomous differential systemwith a zero-
Hopf equilibrium. The unfolding can exhibit different
topological type of dynamics in the small neighborhood
of this isolated equilibrium as the two parameters vary
in a small neighborhood of the origin. This, together
with the well-known fact that, the existence of parame-
ters in a differential equationmay cause chaoticmotion,
motivates the study of system (1) with one additional
parameter.

Considering the characteristics of the Chen–Wang
system (the fact that it exhibits chaotic motion with
two, one or zero equilibria), the most natural way to
generalize system (1) is by considering the following
polynomial differential system

ẋ = y,

ẏ = z,

ż = −y − bx2 − xz + 3y2 + a,

(2)

where a, b ∈ R are parameters with b �= 0. This sys-
tem has two equilibria (±√

a/b, 0, 0) when ab > 0,
the two equilibria collides at the origin (0, 0, 0) when
a = 0 and for ab < 0 system (2) has no equilib-
ria but still generates a chaotic attractor. Performing
numerical simulations to system (2) with a and b �= 0
sufficiently small, a strange attractor appears indepen-
dently on the existence or non-existence of equilibrium
points, as shown in Figs. 1 and 2.

Although such a system has either zero, one or two
equilibrium points and each solution converges locally
to the equilibrium point (when it exists), such system is
chaotic. This interesting phenomenon is worth further
studying from the theoretically point of view in order
to understand the complex global dynamical behavior
of a chaotic system with two parameters. This paper
is part of this effort to describe such global proper-
ties for a quadratic three-dimensional vector field. For
related studies on other three-dimensional quadratic
vector fields with chaotic behavior see for instance
[8,14,16–18,22–24].

The first two results of this paper study the so-called
classical Hopf and zero-Hopf bifurcation. A classical
Hopf (resp. zero-Hopf) bifurcation inR3 takes place in
an equilibrium point with eigenvalues of the form ±ωi
and λ �= 0 (resp. λ = 0). The classical Hopf bifurca-
tion theory is quite well understood (see [15]); how-
ever, the zero-Hopf bifurcation theory is not that well
understood but has been analyzed in [11–13,15,26]. In
particular, in these papers it is shown that some com-
plicated invariant sets of the unfolding could bifurcate
from the isolated zero-Hopf equilibrium under conve-
nient conditions, showing that in some cases the zero-
Hopf bifurcation could imply a local birth of “chaos”,
see for instance [1–3,7,26].

The first result in this paper is the following.

Theorem 1 System (2) has a classical Hopf bifurca-
tion at the equilibrium points p± = (±√

2a, 0, 0)
when a > 0 and b = 1/2. The first Lyapunov con-
stant is

l1(p±) = ∓ 5
√
2a

6(1 + 2a)(2 + a)
.

The point p+ is a weak focus of system (2) restricted
to the central manifold of p+ and the limit cycle that
emerges from p+ is stable. The point p− is also a weak
focus of system (2) restricted to the central manifold of
p− and the limit cycle that emerges from p− is unstable.

Theorem 1 is proved in Sect. 3 where for computing
l1(p±) we use a result in [15]. We note that the Chen–
Wang system (1) [which is system (2) with b = 1] does
not exhibit a classical Hopf bifurcation for any value
of a (see Theorem 2 in [19]).

Theorem 2 System (2) has a zero-Hopf bifurcation at
the equilibrium point localized at the origin of coor-
dinates when a = 0. For a > 0 sufficiently small and
b > 0, b �= 1/2 the following statements hold:

1. If b ≤ 4 system (2) has two small periodic solutions
of the form γ± = (x±(t, a), y±(t, a), z±(t, a)),
where
x±(t, a) = ±√

a + O(a),

y±(t, a) = O(a),

z±(t, a) = O(a).

The periodic solution γ+ has a 3-dimensional
unstable manifold (a generalized cylinder) when
b < 1/2 and two 2-dimensional invariant mani-
folds (one stable andoneunstable, both being cylin-
ders) when b > 1/2. The periodic solution γ− has a

123



A generalized Chen–Wang differential system 1499

Fig. 1 The chaotic attractor of system (2) when a = −0.05 and b = 1.01: 2D views on the xy-plane, yz-plane, xz-plane, and the 3D
view

3-dimensional stablemanifold (ageneralized cylin-
der) when b < 1/2 and two 2-dimensional invari-
ant manifolds (one stable and one unstable, both
being cylinders) when b > 1/2.

2. If b > 4 system (2) has three small periodic
solutions: γ± given in the statement above and
ϕ = (x(t, a), y(t, a), z(t, a)) with

x(t, a) = −
√
2a√

b − 4
+ O(a),

y(t, a) =
√
2a√

b − 4
+ O(a),

z(t, a) =
√
2a√

b − 4
+ O(a).

The solutionϕ is a linearly stable periodic solution.
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Fig. 2 The chaotic attractor of system (2) when a = 0.01 and b = 1.01: 2D views on the xy-plane, xz-plane, yz-plane and the 3D
view

The proof of Theorem 2 is done using averaging
theory described in Sect. 4. We remark that the Chen–
Wang system (1) exhibits only the two small limit
cycles γ± given in statement 1 in Theorem 2 (see again
Theorem 2 in [19]).

Now we continue the study of the global dynam-
ics of system (2) by studying its behavior at infinity.

For that we shall use the Poincaré compactification for
a polynomial vector field in R

3. Note that the poly-
nomial vector field associated to system (2) can be
extended to an analytic system defined on a closed
ball of radius 1, whose interior is diffeomorphic to
R
3 and its invariant boundary, that two-dimensional

sphere

123



A generalized Chen–Wang differential system 1501

Fig. 3 Global phase portrait of system (2) on the Poincaré sphere
at infinity

S
2 = {(x, y, z) : x2 + y2 + z2 = 1}

plays the role of the infinity ofR3. This ball is called the
Poincaré ball since the technique for doing this exten-
sion is the well-known Poincaré compactification for
a polynomial vector field in R

3, see [5,27] for more
details. In Sect. 2 we give a summary of this tech-
nique for the case of polynomial vector fields in R

3

in order to make the paper self-contained. The bound-
ary of the Poincaré ball is called the Poincaré sphere.
Using this compactification technique, we obtain the
following result.

Theorem 3 For all values of a ∈ R and b ∈ R \ {0},
the phase portrait of system (2) on the Poincaré sphere
is topologically equivalent to the one shown in Fig. 3.

Theorem 3 is proved in Sect. 5. Note that the dynam-
ics at infinity does not depend on the value of the para-
meter a because it appears in the constant terms of sys-
tem (2). It depends on the parameter b but the global
phase portraits at the sphere for different values of b
are topologically equivalent.

As we shall see in Sect. 5 the Poincaré compact-
ification reduces the space R

3 to the interior of the
unit ball centered at the origin of the coordinates and
the infinity of R

3 to its boundary S
2. From Fig. 3

the equilibria at infinity fill up the two closed curves
S
2 ∩ H where H = {(x, y, z) : H(x, y, z) = 0} with
H(x, y, z) = −bx2 + 3y2 − xz.

The Poincaré sphere at infinity is invariant by the
flow of the compactified systems. The unique way that
an orbit can reach the infinity is by tending to it asymp-
toticallywhen t → ±∞ and through a critical element.
In our case we have two lines filled of equilibria and
so that there are many ways in which the orbits can
reach the infinity. In this sense, since the dynamics are
very sensitive to initial conditions it does not seem that
a numerical approach would allow us to understand
how the solutions reach the infinity when t → ±∞. A
better way to understand how the solutions approach
the infinity is if there exist what is called an invariant
algebraic surface.

The existence of an invariant algebraic surface pro-
vides information about the limit sets of all orbits of a
given system (see Sect. 2.4 for its definition).More pre-
cisely, if system (2) has an invariant algebraic surface
S, then for any orbit γ not starting on S eitherα(γ ) ⊂ S
andω(γ ) ⊂ S, or α(γ ) ⊂ S

2 and α(γ ) ⊂ S
2, where S2

is the sphere of the infinity (for more details see The-
orem 1.2 of [4]) and, α(γ ) and ω(γ ) are the α-limit
and ω-limit of γ , respectively (for more details on the
ω- and α-limit sets see for instance Section 1.4 of [9]).
This property is the key result which allows to describe
completely the global flow of our system when it has
an invariant algebraic surface and, consequently, how
the dynamics approach the infinity. Guided by this we
will study the existence of invariant algebraic surfaces
for system (2).

The characterization of the existence of first inte-
grals is another mechanism that allow us to understand
the dynamics and its chaotic behavior (for the defini-
tion of first integral see Sect. 2.4). More precisely, the
existence of two first independent first integrals will
describe completely the dynamics of our system since it
will provide the global phase portrait, or in other words
its qualitative behavior. The knowledge of a unique first
integral can reduce in one dimension the study of the
dynamics of our system. In the following result, we
study the existence of invariant algebraic surfaces and
of first integrals in the class of functions known as Dar-
boux functions.

Theorem 4 The following statements holds for system
(2)

(a) It has neither invariant algebraic surfaces, nor
polynomial first integrals.

(b) All the exponential factors are exp(x), exp(y), and
linear combinations of these two. Moreover the
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cofactors of exp(x) and exp(y) are y and z, respec-
tively.

(c) It has no Darboux first integrals.

Note that Theorem4 states the non-existence ofDar-
boux first integrals. This does not avoid the existence
of first integrals in another class of functions, so in the
next result we study the existence of first integrals in
the class of analytic functions. As usualQ+ will denote
the set of positive rational numbers andR+ will denote
the set of positive real numbers.

Theorem 5 Fora = 0andb �= 1/2ora/b ∈ R
+\Q+,

system (2) has no local analytic first integrals at the
singular points (±√

a/b, 0, 0), and consequently it has
no global analytic first integrals.

The paper is organized as follows. In Sect. 2 we
present some preliminaries. In Sect. 3 we prove Theo-
rem 1. Theorem 2 is proved in Sect. 4. The dynamics
at infinity is studied in Sect. 5. In Sect. 6 we prove
Theorem 4 and Theorem 5 is proved in Sect. 7.

2 Preliminaries

2.1 Classical Hopf bifurcation

Assume that a system ẋ = F(x), x ∈ R
3 has an equi-

librium point p0. If its linearization at p0 has a pair of
conjugate purely imaginary eigenvalues and the other
eigenvalue has non vanishing real part, then we have
a classical Hopf bifurcation. In this scenario we can
expect to see a small-amplitude limit cycle bifurcating
from the equilibrium point p0. For this to happens we
need to compute the so-called first Lyapunov coeffi-
cient l1(p0) of the system near p0. When l1(p0) < 0
the equilibrium point is a weak focus of the system
restricted to the central manifold and the limit cycle
emerging from p0 is stable. In this case we say that
the Hopf bifurcation is supercritical. When l1(p0) > 0
the equilibrium point is also a weak focus of the sys-
tem restricted to the central manifold but the limit cycle
emerging from p0 is unstable. In this second case we
say that the Hopf bifurcation is subcritical. To compute
l1(p0), we will use the following result on page 180 of
the book [15].

Theorem 6 Let ẋ = F(x) be a differential system
having p0 as an equilibrium point. Consider the third-
order Taylor approximation of F around p0 given by

F(x) = Ax + 1

2! B(x, x) + 1

3!C(x, x, x) + O(|x |4).
Assume that A has a pair of purely imaginary eigenval-
ues±ωi and these eigenvalues are the only eigenvalues
with real part equal to zero. Let q be the eigenvector of
A corresponding to the eigenvalue ωi , normalized so
that q ·q = 1, where q is the conjugate vector of q. Let
p be the adjoint eigenvector such that AT p = −ωi p
and p · q = 1 (AT is the transpose of the matrix A). If
Id denotes the identity matrix, then

l1(p0) = 1

2ω
Re (p · C(q, q, q) − 2p · B(q, A−1B

× (q, q))+ p · B(q, (2ωi Id−A)−1B(q, q))).

2.2 Averaging theory

We present a result from the averaging theory that we
shall need for proving Theorem 2. For a general intro-
duction to the averaging theory see the book of Sanders
et al. [25].

We consider the initial value problems

ẋ = εF1(t, x) + ε2F2(t, x, ε), x(0) = x0, (3)

and

ẏ = εg(y), y(0) = x0, (4)

with x , y and x0 in some open subset Ω of Rn , t ∈
[0,∞), ε ∈ (0, ε0]. We assume that F1 and F2 are
periodic of period T in the variable t, and we set

g(y) = 1

T

∫ T

0
F1(t, y)dt. (5)

We will also use the notation Dxg for all the first
derivatives of g, and Dxxg for all the second derivatives
of g.

For a proof of the next result see [28].

Theorem 7 Assume that F1, DxF1 ,DxxF1 and DxF2
are continuous and bounded by a constant independent
of ε in [0,∞) × Ω × (0, ε0], and that y(t) ∈ Ω for
t ∈ [0, 1/ε]. Then the following statements holds:

1. For t ∈ [0, 1/ε] we have x(t) − y(t) = O(ε) as
ε → 0.
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A generalized Chen–Wang differential system 1503

2. If p �= 0 is a singular point of system (4) such that

det Dyg(p) �= 0, (6)

then there exists a periodic solutionx(t, ε)of period
T for system (3) which is close to p and such that
x(0, ε) − p = O(ε) as ε → 0.

3. The stability of the periodic solution x(t, ε) is given
by the stability of the singular point.

2.3 Poincaré compactification

Consider in R3 the polynomial differential system

ẋ = P1(x, y, z),

ẏ = P2(x, y, z),

ż = P3(x, y, z),

or equivalently its associated polynomial vector field
X = (P1, P2, P3). The degree n of X is defined as
n = max {deg(Pi ) : i = 1, 2, 3}. Let
S
3 = {y = (y1, y2, y3, y4) : ||y|| = 1}

be the unit sphere in R4 and

S+ = {y ∈ S
3 : y4 > 0} and S− = {y ∈ S

3 : y4 < 0}
be the northern and southern hemispheres ofS3, respec-
tively. The tangent space of S3 at the point y is denoted
by TyS3. Then the tangent plane

T(0,0,0,1)S
3

=
{
(x1, x2, x3, 1) ∈ R

4 : (x1, x2, x3) ∈ R
3
}

can be identified with R
3.

Consider the identificationR3 = T(0,0,0,1)S
3 and the

central projection

f± : T(0,0,0,1)S
3 → S±

defined by

f±(x) = ± (x1, x2, x3, 1)

Δ(x)
,

where

Δ(x) =
(
1 +

3∑
i=1

x2i

)1/2

.

Using these central projectionsR3 is identifiedwith the
northern and southern hemispheres. The equator of S3

is S2 = {y ∈ S
3 : y4 = 0}.

The maps f± define two copies of X on S
3, one

Df+ ◦ X in the northern hemisphere and the other
Df− ◦ X in the southern one. Denote by X the vec-
tor field on S

3 \ S
2 = S+ ∪ S−, which restricted

to S+ coincides with Df+ ◦ X and restricted to S−
coincides with Df− ◦ X . Now we can extend analyti-
cally the vector field X(y) to the whole sphere S

3 by
p(X) = yn−1

4 X(y). This extended vector field p(X) is
called the Poincaré compactification of X on S

3.
As S3 is a differentiable manifold in order to com-

pute the expression for p(X), we can consider the eight
local charts (Ui , Fi ), (Vi ,Gi ), where

Ui =
{
y ∈ S

3 : yi > 0
}

and Vi =
{
y ∈ S

3 : yi < 0
}

for i = 1, 2, 3, 4. The diffeomorphisms Fi : Ui → R
3

and Gi : Vi → R
3 for i = 1, 2, 3, 4 are the inverse of

the central projections from the origin to the tangent
hyperplane at the points (±1, 0, 0, 0), (0,±1, 0, 0),
(0, 0,±1, 0) and (0, 0, 0,±1), respectively.

Now we do the computations on U1. Suppose that
the origin (0, 0, 0, 0), the point (y1, y2, y3, y4) ∈ S

3

and the point (1, z1, z2, z3) in the tangent hyperplane
to S3 at (1, 0, 0, 0) are collinear. Then we have

1

y1
= z1

y2
= z2

y3
= z3

y4

and, consequently

F1(y) = (y2/y1, y3/y1, y4/y1) = (z1, z2, z3)

defines the coordinates on U1. As

DF1(y) =
⎛
⎜⎝

−y2/y21 1/y1 0 0

−y3/y21 0 1/y1 0

−y4/y21 0 1/y1 0

⎞
⎟⎠

and yn−1
4 = (z3/Δ(z)n−1), the analytical vector field

p(X) in the local chart U1 becomes

zn3
Δ(z)n−1

( − z1P1 + P2,−z2P1 + P3, z3P1
)
,

where Pi = Pi (1/z3, z1/z3, z2/z3).
In a similar way, we can deduce the expressions of

p(X) in U2 and U3. These are

zn3
Δ(z)n−1

( − z1P2 + P1,−z2P2 + P3, z3P2
)
,
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where Pi = Pi (z1/z3, 1/z3, z2/z3), in U2 and

zn3
Δ(z)n−1

( − z1P3 + P1,−z2P3 + P2, z3P3
)
,

with Pi = Pi (z1/z3, z2/z3, 1/z3), in U3.
The expression for p(X) in U4 is z

n+1
3 (P1, P2, P3)

and the expression for p(X) in the local chart Vi is the
same as in Ui multiplied by (−1)n−1, where n is the
degree of X , for all i = 1, 2, 3, 4.

Note that we can omit the common factor
1/(Δ(z))n−1 in the expression of the compactification
vector field p(X) in the local charts doing a rescaling
of the time variable.

From now on we will consider only the orthogonal
projection of p(X) from the northern hemisphere to
y4 = 0 which we will denote by p(X) again. Observe
that the projection of the closed northern hemisphere is
a closed ball of radius one denoted by B, whose interior
is diffeomorphic to R

3 and whose boundary S
2 corre-

sponds to the infinity ofR3. Moreover, p(X) is defined
in the whole closed ball B in such way that the flow on
the boundary is invariant. The vector field induced by
p(X) on B is called the Poincaré compactification of
X and B is called the Poincaré sphere.

All the points on the invariant sphere S2 at infinity
in the coordinates of any local chart Ui and Vi have
z3 = 0.

2.4 Integrability theory

We start this subsection with the Darboux theory of
integrability. As usual C[x, y, z] denotes the ring of
polynomial functions in the variables x, y and z. Given
f ∈ C[x, y, z]\Cwe say that the surface f (x, y, z) =
0 is an invariant algebraic surface of system (2) if there
exists k ∈ C[x, y, z] such that

y
∂ f

∂x
+z

∂ f

∂y
+(−y−bx2−xz+3y2+a)

∂ f

∂z
= k f. (7)

The polynomial k is called the cofactor of the invariant
algebraic surface f = 0, and it has degree at most 1.
When k = 0, f is a polynomial first integral. When
a real polynomial differential system has a complex
invariant algebraic surface, then it has also its conju-
gate. It is important to consider the complex invariant
algebraic surfaces of the real polynomial differential
systems because sometimes these forces the real inte-
grability of the system.

Let f, g ∈ C[x, y, z] and assume that f and g are
relatively prime in the ring C[x, y, z], or that g = 1.
Then the function exp( f/g) /∈ C is called an expo-
nential factor of system (2) if for some polynomial
L ∈ C[x, y, z] of degree at most 1 we have

y
∂ exp( f/g)

∂x
+ z

∂ exp( f/g)

∂y
+ (−y − bx2 − xz

+3y2 + a)
∂ exp( f/g)

∂z
= L exp( f/g). (8)

As before we say that L is the cofactor of the expo-
nential factor exp ( f/g). We observe that in the defin-
ition of exponential factor if f, g ∈ C[x, y, z] then the
exponential factor is a complex function. Again when
a real polynomial differential system has a complex
exponential factor surface, then it has also its conju-
gate, and both are important for the existence of real
first integrals of the system. The exponential factors are
related with the multiplicity of the invariant algebraic
surfaces, for more details see [6], Chapter 8 of [9], and
[20,21].

LetU be an open and dense subset ofR3, we say that
a nonconstant function H : U → R is a first integral of
system (2) on U if H(x(t), y(t), z(t)) is constant for
all of the values of t for which (x(t), y(t), z(t)) is a
solution of system (2) contained in U . Obviously H is
a first integral of system (2) if and only if

y
∂H

∂x
+ z

∂H

∂y
+ (−y − bx2 − xz + 3y2 + a)

∂H

∂z
= 0,

for all (x, y, z) ∈ U .
A first integral is called a Darboux first integral if it

is a first integral of the form

f λ1
1 · · · f λp

p Fμ1
1 · · · Fμq

q ,

where fi = 0 are invariant algebraic surfaces of system
(2) for i = 1, . . . , p, and Fj are exponential factors of
system (2) for j = 1, . . . , q, λi , μ j ∈ C.

The next result, proved in [9], explain how to find
Darboux first integrals.

Proposition 1 Suppose that a polynomial system (2) of
degree m admits p invariant algebraic surfaces fi = 0
with cofactors ki for i = 1, ..., p and q exponential
factors exp(g j/h j ) with cofactors L j for j = 1, ..., q.
Then, there exist λi and μ j ∈ C not all zero such that
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p∑
i=1

λi Ki +
q∑
j=1

μ j L j = 0, (9)

if and only if the function

f λ1
1 · · · f λp

p

(
exp

(
g1
h1

))μ1

· · ·
(
exp

(
gq
hq

))μq

is a Darboux first integral of system (2).

The following result whose proof is given in [20,21]
will be useful to prove statement (b) of Theorem 4.

Lemma 1 The following statements hold.

(a) If exp( f/g) is an exponential factor for the polyno-
mial differential system (2) and g is not a constant
polynomial, then g = 0 is an invariant algebraic
surface.

(b) Eventually exp( f ) can be an exponential factor,
coming from themultiplicity of the infinity invariant
plane.

Let as before U be an open and dense subset of R3.
An analytic first integral is a first integral H which is
an analytic function inU . Moreover, ifU = R

3 then H
is called a global analytic first integral of system (2).
If now we choose U as a neighborhood of a singular
point p and H : U → R is an analytic first integral
in U , then H is called a local analytic first integral of
system (2) at p.

3 Classical Hopf bifurcation

In this section we study the classical Hopf bifurcation
of system (2) using Theorem 6. First we will show that
system (2) exhibits a classical Hopf bifurcation if and
only if b = 1/2 and a = k2/2, for any real k �= 0.

System (2) has two equilibrium points p± =
(±√

a/b, 0, 0)when a/b > 0, which collide at the ori-
gin when a = 0. The proof is made computing directly
the eigenvalues at each equilibrium point. The charac-
teristic polynomial of the linear part of system (2) at
the equilibrium point p± is

p(λ) = 2
√
a
√
b − λ +

√
a√
b
λ2 − λ3. (10)

Note that a/b must be non negative. As p(λ) is a poly-
nomial of degree 3, it has either one, two (then one
has multiplicity 2), or three real zeros. Imposing the
condition

p(λ) = (λ − k)(λ2 + β2) (11)

with k, β ∈ R, k �= 0 and β > 0 we obtain a system
of three equations that correspond to the coefficients of
the terms of degree 0, 1 and 2 in λ of the polynomial in
(11). This system has only the solution a = k2/2, b =
1/2, β = 1. This implies that system (2) exhibits a
classical Hopf bifurcation if and only if b = 1/2 and
a = k2/2, for any real k �= 0 and the equilibrium points
are p± = (±k, 0, 0) = (±√

2a, 0, 0).
We expect to have small-amplitude limit cycle

branching from each of the fixed points p+ and p−.
For this we will compute the first Lyapunov coefficient
l1(p±) of system (2) near of p±.

Proof of Theorem 1 System (2) is invariant under the
symmetry (x, y, z, t) → (−x, y,−z,−t) and so it is
enough to compute l1(p−). The linear part of system
(2) at the equilibrium points p− is

A =
⎛
⎝0 1 0
0 0 1
k −1 k

⎞
⎠ .

The eigenvalues of A are±i and k. In order to prove
that we have aHopf bifurcation at the equilibrium point
p− it remains to prove that the first Lyapunov coeffi-
cient at l1(p−) is different fromzero. For thisweneed to
compute the bilinear and trilinear forms B and C asso-
ciated with the second- and third-order terms of system
(2). Since the system is quadratic we have that the tri-
linear functionC is zero. The bilinear form B evaluated
at two vectors u = (u1, u2, u3) and v = (v1, v2, v3) is
given by

B(u, v) =
(
0, 0,

1

2
(−u1v1 − u3v1 + 6u2v2 − u1v3)

)
.

The inverse of the matrix A is

A =
⎛
⎜⎝
1

k
−1

1

k
1 0 0
0 1 0

⎞
⎟⎠ .

The inverse of the matrix 2iId − A is

A =

⎛
⎜⎜⎜⎜⎝

− 3 + 2ki

−6i + 3k
−1

3

1

−6i + 3k
k

−6i + 3k
−2i

3

2i

−6i + 3k
2ki

−6i + 3k

1

3
− 4

−6i + 3k

⎞
⎟⎟⎟⎟⎠ .
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The normalized eigenvector q of A associated with
the eigenvalue i normalized so that q · q = 1, where q
is the conjugated of q, is

q = −
(

1√
3
,

1√
3
i,− 1√

3

)
.

The normalized adjoint eigenvector p such that AT p =
−i p, where AT is the transpose of the matrix A, so that
p · q = 1 is

p = −
( √

3k

2(i + k)
,

√
3

2
i,−

√
3i

2(i + k)

)
.

The first and second terms of l1(p−) are zero. The
third term is 20/(9(2 + 2ki)(k − 2i)). Applying the
formula in Theorem 6 we obtain

l1(p−) = 5
√
2a

6(1 + 2a)(2 + a)
.

Since l1(p−) is positive we have a subcritical Hopf
bifurcation at p− so there exists an unstable limit cycle.

�

4 Zero-Hopf bifurcation

In this section we study the zero-Hopf bifurcation of
system (2) using Theorem 7. We will show that system
(2) exhibits a zero-Hopf bifurcation if and only if a = 0
and b �= 0. The characteristic polynomial p(λ) of the
linear part of this system at the equilibrium points p±
is given in (10).

Imposing the condition

p(λ) = λ(λ2 + β2)

with β ∈ R, β > 0 we obtain a system of three equa-
tions that correspond to the coefficients of the terms
of degree 0, 1 and 2 in λ of the polynomial in (11).
This system has only the solution a = 0. So, system
(2) exhibits a zero-Hopf bifurcation at the origin if and
only if a = 0.

Proof of Theorem 2 We want to study if a small peri-
odic orbit bifurcates from the origin when a is suffi-
ciently small using the averaging theory of first order.
In order to apply this theory first, we must do changes
of variables towrite system (2) as a periodic differential
system in the independent variable of the system and
moreover, the system must depend on a small parame-
ter, see Eq. (3) in Sect. 2.2. The first thing to do is to

write the linear part at the origin of system (2) with
a = 0 into its real Jordan normal form that is⎛
⎝0 −1 0
1 0 0
0 0 0

⎞
⎠ .

To do this we apply the linear change of variables

(x, y, z) → (u, v, w),where x = −u + w,

y = v, z = u.

In the new variables (u, v, w) system (2) becomes

u̇ = a − v + (1 − b)u2 + (2b − 1)uw + 3v2−bw2,

v̇ = u,

ẇ = a + (1 − b)u2 + (2b − 1)uw + 3v2 − bw2.

(12)

Writing system (12) in cylindrical coordinates
(r, θ, w), i.e. doing the change of variables

u = r cos θ, v = r sin θ, w = w,

in system (12) we get

ṙ = cos θ
(
a − bw2 + (2b − 1)rw cos θ

− (b − 1)r2 cos2 θ + 3r2 sin2 θ
)
,

θ̇ = 1 + 1

2

(1
r
2(bw2 − a) − 2(2b − 1)w cos θ

+ r(b − 4 + (2 + b) cos(2θ))
)
sin θ,

ẇ = a − bw2 + (2b − 1)rw cos θ − (b − 1)r2 cos2 θ

+ 3r2 sin2 θ. (13)

Doing the rescaling of the variables through the
change of coordinates

(r, θ, w) → (R, θ,W ), where r = √
aR,

w = √
aW.

system (13) becomes

Ṙ = √
a cos θ

(
1 − bW 2 + (2b − 1)RW cos θ

−(b − 1)R2 cos θ + 3R2 sin2 θ
)
,

θ̇ = 1 − 1

2R

√
a
(
2 + 4R2 − bR2 − 2bW 2

+2(2b−1)RW cos θ−(b+2)R2 cos(2θ)
)
sin θ,

Ẇ = √
a
(
1 − bW 2 + (2b − 1)RW cos θ

−(b − 1)R2 cos2 θ + 3R2 sin2 θ
)
. (14)
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This system can be written as

dR

dθ
= √

aF11(θ, R,W ) + O(a),

dW

dθ
= √

aF12(θ, R,W ) + O(a),

(15)

where

F11(θ, R,W ) = 1

2
cos θ(2 − (b − 4)R2 − 2bW 2

+ 2(2b − 1)RW cos θ

− (b + 2)R2 cos(2θ)),

F12(θ, R,W ) = 1 − bW 2 + (2b − 1)RW cos θ

+ (1 − b)R2 cos2 θ + 3R2 sin2 θ.

Using the notation of the averaging theory described
in Sect. 2.2, we have that if we take t = θ , T = 2π ,
ε = √

a, x = (R,W )T and

F1(t, x) = F1(θ, R,W ) =
(
F11(θ, R,W )

F12(θ, R,W )

)
,

ε2F2(t, x) = O(a),

it is immediate to check that the differential system
(15) is written in the normal form (3) for applying the
averaging theory and that it satisfies the assumptions
of Theorem 7.

Now we must compute explicitly the integral in (5)
related with the periodic differential system in order to
reduce the problem of finding periodic solutions to a
problem of finding the zeros of a function. For doing
this, we compute the integral in (5) with y = (R,W )T ,
and denoting

g(y) = g(R,W ) =
(
g11(R,W )

g12(R,W )

)
,

we obtain

g11(R,W ) = 1

2
(2b − 1)RW,

g12(R,W ) = 1

2
(2 − (b − 4)R2 − 2bW 2).

Since g11 �≡ 0 we must have b �= 1/2. In this
case system g11(R,W ) = g12(R,W ) = 0 has the
real solutions (W, R) = (±1/

√
b, 0) and (W, R) =

(0,
√
2/

√
b − 4). Note that in order to have the first

two real solutions b > 0 and for the third one, b > 4.

The Jacobian (6) is
∣∣∣∣∣
1

2
(2b − 1)W

1

2
(2b − 1)R

(4 − b)R −2bW

∣∣∣∣∣
= 2b − 1

2
((b − 4)R2 − 2bW 2).

Evaluated at the solutions (W, R) = (±1/
√
b, 0)

takes the value 1 − 2b �= 0 and evaluated at the
solution (W, R) = (0,

√
2/

√
b − 4) takes the value

2b − 1 �= 0. Then, by Theorem 7, it follows that for
any a > 0 sufficiently small and b > 0 system (14) has
a periodic solution x(t, ε) = (R(θ, a),W (θ, a)) such
that (W (0, a), R(0, a)) tends to (±1/

√
b, 0) when a

tends to zero. Moreover when b > 4, again by The-
orem 7 it follows that for any a > 0 sufficiently
small system (14) has a periodic solution x(t, ε) =
(R(θ, a),W (θ, a)) such that (W (0, a), R(0, a)) tends
to (0,

√
2/

√
b − 4)when a tends to zero. The eigenval-

ues of the Jacobian matrix at the solution (−1/
√
b, 0)

are (1 − 2b)/(2
√
b), 2

√
b and the eigenvalues of

the Jacobian matrix at the solution (1/
√
b, 0) are

−2
√
b, (2b− 1)/(2

√
b). This shows that the first peri-

odic orbit has a 3-dimensional stablemanifold (a gener-
alized cylinder) when b < 1/2 and two 2-dimensional
invariant manifolds (one stable and one unstable, both
being cylinders) when b > 1/2. The second periodic
orbit has a 3-dimensional unstable manifold (a gener-
alized cylinder) when b < 1/2 and two 2-dimensional
invariant manifolds(one stable and one unstable, both
being cylinders) when b > 1/2. The eigenvalues of
the Jacobianmatrix at the solution (0,

√
2/

√
b − 4) are

i
√
2b − 1,−i

√
2b − 1, so this third periodic solution

is a linearly stable periodic solution.
Going back to the differential system (13), we get

that such a system for a > 0 sufficiently small and b >

0 has two periodic solutions of period approximately
2π of the form

r(θ) = O(a),

w(θ) = ±√
a + O(a).

These two periodic solutions become for the differen-
tial system (12) into two periodic solutions of period
also close to 2π of the form

u(t) = O(a),

v(t) = O(a),

w(t) = ±√
a + O(a).
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for a > 0 sufficiently small. Finally, we get for the
differential system (2) the two periodic solutions

x(t) = ±√
a + O(a),

y(t) = O(a),

z(t) = O(a),

of period near 2π when a > 0 is sufficiently small.
Clearly these periodic orbits tend to the origin of coor-
dinates when a tends to zero. Therefore, they are small-
amplitude periodic solutions starting at the zero-Hopf
equilibrium point.

When b > 4 again going back to the differential
system (13), we get that such a system for a > 0 suf-
ficiently small has also a periodic solution of period
approximately 2π of the form

r(θ) = √
2a/

√
b − 4 + O(a),

w(θ) = O(a).

This periodic solution become for the differential sys-
tem (12) into one periodic solution of period also close
to 2π of the form

u(t) = √
2a/

√
b − 4 + O(a),

v(t) = √
2a/

√
b − 4 + O(a),

w(t) = √
2a/

√
b − 4 + O(a),

for a > 0 sufficiently small. Finally we get for the
differential system (2) the periodic solution

x(t) = √
2a/

√
b − 4 + O(a),

y(t) = √
2a/

√
b − 4 + O(a),

z(t) = √
2a/

√
b − 4 + O(a).

of period near 2π when a > 0 is sufficiently small.
Clearly this periodic orbit tends to the origin of coor-
dinates when a tends to zero. Therefore it is also a
small-amplitude periodic solution starting at the zero-
Hopf equilibrium point. This concludes the proof of
Theorem 2. �

5 Compactification of Poincaré

We make an analysis of the flow of system (2) at infin-
ity by analyzing the Poincaré compactification of the
system in the local charts Ui , Vi for i = 1, 2, 3. We
will separate it in different subsections.

Fig. 4 Phase portrait of system (2) on the Poincaré sphere at
infinity in the local chart U1

5.1 Compactification in the local charts U1 and V1

From the results of Sect. 2.3, the expression of the
Poincaré compactification p(X) of system (2) in the
local chart U1 is given by

ż1 = (z2 − z21)z3,

ż2 = −b − z2 + 3z21 − z1z3 + az23 − z1z2z3,

ż3 = −z1z
2
3.

(16)

For z3 = 0 (which correspond to the points on the
sphere S2 at infinity) system (16) becomes

ż1 = 0,

ż2 = −b − z2 + 3z21.

This system has the parabola of equilibria given by
−b − z2 + 3z21 = 0. Considering the invariance of
z1z2-plane under the flow of (16), we can completely
describe the dynamics on the sphere at infinity, which
is shown in Fig. 4. Indeed, for z2 �= −b + 3z21 this
system is equivalent to

ż1 = 0,

ż2 = 1.
(17)

whose the solution are given by parallel straight lines.
The set {−b− z2 +3z21 = 0} determines a parabola the
equilibria.
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The flow in the local chart V1 is the same as the flow
in the local chartU1 because the compacted vector field
p(X) in V1 coincides with the vector field p(X) in U1

multiplied by−1. Hence, the phase portrait on the chart
V1 is the same as the one shown in the Fig. 4 reserving
in an appropriate way the direction of the time.

5.2 Compactification in the local charts U2 and V2

Using again the results given in Sect. 2, we obtain the
expression of the Poincaré compactification p(X) of
system (2) in the local chart U2 as

ż1 = (1 − z1z2)z3,

ż2 = 3 − z3 − bz21 − z1z2 + az23 − z22z3,

ż3 = −z2z
2
3.

(18)

System (18) restricted to z3 = 0 becomes

ż1 = 0,

ż2 = 3 − bz21 − z1z2.
(19)

System (19) has the hyperbola of equilibria given by
3 − bz21 − z1z2 = 0. Considering the invariance of
z1z2-plane under the flow of (18), we can completely
describe the dynamics on the sphere at infinity, which
is shown in Fig. 3. As in the first chart, this system for
3 − bz21 − z1z2 �= 0 is equivalent to system (17) and
the set {3 − bz21 − z1z2 = 0} determines an hyperbola
of equilibria.

Again the flow in the local chart V2 is the same as the
flow in the local chart U2 shown in Fig. 5 by reserving
in an appropriate way the direction of the time.

5.3 Compactification in the local charts U3 and V3

The expression of the Poincaré compactification p(X)

of system (2) in the local chart U3 is

ż1 = z21 + z2z3 + bz31 − 3z1z
2
2 + z1z2z3 − az1z

2
3,

ż2 = z3 + z1z2 + bz21z2 − 3z32 + z22z3 − az2z
2
3,

ż3 = z3
(
z1 + bz21 − 3z22 + z2z3 − az23

)
. (20)

Observe that system (20) restricted to the invariant
z1z2-plane reduces to

ż1 = −z1
(
−z1 − bz21 + 3z22

)
,

ż2 = −z2
(
−z1 − bz21 + 3z22

)
.

Fig. 5 Phase portrait of system (2) on the Poincaré sphere at
infinity in the local chart U2

Fig. 6 Phase portrait of system (2) on the Poincaré sphere at
infinity in the local chart U3

The solution of this system behaves as in Fig. 6
which corresponds to the dynamics of system (2) in
the local chartU3. Indeed for −z1 −bz21 +3z22 �= 0 the
system is equivalent to

ż1 = −z1,

ż2 = −z2,
(21)

whose origin is an improper node. The set {z1 + bz21 −
3z22 = 0} determines two parabolas of equilibria (see
again Fig. 6). The flow at infinity in the local chart V3
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Fig. 7 Orientation of the local charts Ui , i = 1, 2, 3 in the
positive endpoints of coordinate axis x, y, z, used to drawn the
phase portrait of system (2) on the Poincaré sphere at infinity
(Fig. 3). The charts Vi , i = 1, 2, 3 are diametrically opposed to
Ui , in the negative endpoints of the coordinate axis

is the same as the flow in the local chart U3 reversing
appropriately the time.

Proof of Theorem 3 Considering the analysis made
before and gluing the flow in the three studied charts,
taking into account its orientation shown in Fig. 7, we
have a global picture of the dynamical behavior of sys-
tem (2) at infinity. The system has two closed curves of
equilibria, and there are no isolated equilibrium points
in the sphere. We observe that the description of the
complete phase portrait of system (2) on the sphere at
infinity was possible because of the invariance of these
sets under the flow of the compactified system. This
proves Theorem 3. We remark that the behavior of the
flow at infinity does not depend on the parameter a
and the global phase portrait at the sphere for different
values of b are topologically equivalent. �

6 Darboux integrability

In this section we prove Theorem 4. To do it we state
and prove some auxiliary results. As usual we denote
by N the set of positive integers.

Lemma 2 If h = 0 is an invariant algebraic surface of
system (2) with non-zero cofactor k, then k = k0 −mx
for some k0 ∈ C and m ∈ N ∪ {0}.

Proof Let h be an invariant algebraic surface of system
(2) with non-zero cofactor k. Then k = k0 + k1x +
k2y + k3z for some k0, k1, k2, k3 ∈ C. Let n be the
degree of h. We write h as sum of its homogeneous
parts as h = ∑n

i=1 hi where each hi is a homogenous
polynomial of degree i . Without loss of generality, we
can assume that hn �= 0 and n ≥ 1.

Computing the terms of degree n + 1 in (7), we get
that

(−bx2 − xz + 3y2)
∂hn
∂z

= (k1x + k2y + k3z)hn .

Solving this linear partial differential equation we get

hn(x, y, z) = Cn(x, y) exp

(
−k3z

x

)

×(b2x + xz − 3y2)p(x,y),

where Cn is an arbitrary function in the variables x and

y and, p(x, y) = −k1 + k3b − k2y

x
− 3k3y2

x2
. Since

hn must be a homogeneous polynomial, we must have
k3 = k2 = 0 and k1 = −m with m ∈ N ∪ {0}. This
concludes the proof of the lemma. �
Lemma 3 If h = 0 is an invariant algebraic surface of
system (2) with cofactor k = k0 −mx for some k0 ∈ C

and m ∈ N ∪ {0}, then k0 = m = 0.

Proof We introduce the weight change of variables

x = X, y = μ−1Y, z = μ−1Z , t = μT,

with μ ∈ R \ {0}. Then system (2) becomes

X ′ = Y,

Y ′ = μZ ,

Z ′ = 3Y 2 − μY − μ2bX2 − μX Z + μ2a,

(22)

where the prime denotes derivative with respect to the
variable T .

Set

F(X,Y, Z) = μn f (X, μ−1Y, μ−1Z)

=
n∑

i=1

μi Fi (X,Y, Z),

where Fi is the weight homogeneous part with weight
degree n − i of F and n is the weight degree of F
with weight exponents s = (0,−1,−1). We also set
K (X,Y, Z) = k(X, μ−1Y, μ−1Z) = k0 − mX .

From the definition of an invariant algebraic surface
we have
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(3Y 2 − μY − μ2bX2 − μX Z + μ2a)

n∑
i=0

μi ∂Fi
∂Z

+Y
n∑

i=0

μi ∂Fi
∂X

+ μZ
n∑

i=0

μi ∂Fi
∂Y

= (k0 − mX)

n∑
i=0

μi Fi . (23)

Equating in (23) the terms with μ0 we get

Y
∂F0
∂X

+ 3Y 2 ∂F0
∂Z

= (k0 − mX)F0, (24)

where F0 is a weight homogeneous polynomial of
degree n.

Solving (24) we readily obtain, by direct computa-
tion, that

F0(X,Y, Z) = G(Y, Z) exp

(
X (2k0 − mX)

2Y

)
,

where G is an arbitrary function in the variables Y and
Z . Since F0 must be a polynomial, we must have k0 =
m = 0. Otherwise F0 = 0 which implies that F = 0 is
not an invariant algebraic surface of system (22), and so
f = 0 is not an invariant algebraic surface of system
(2), a contradiction. This completes the proof of the
lemma. �
Proof of Theorem 4(a) Let f = 0 be an invariant alge-
braic surface of degree n ≥ 1 of system (2) with cofac-
tor k(x, y, z). It follows from Lemmas 2 and 3 that
k ≡ 0. We write f as sum of its homogeneous parts
as f = ∑n

i=0 fi where fi = fi (x, y, z) is a homoge-
neous polynomial of degree i .

Computing the terms of degree n + 1 in (7) we get
that

(−bx2 − xz + 3y2)
∂ fn
∂z

= 0.

Solving this linear differential equation we get that

fn(x, y, z) = g(x, y), (25)

where g = g(x, y) is a homogeneous polynomial of
degree n in the variables x and y.

Computing the terms of degree n in (7) we obtain

(3y2−bx2−xz)
∂ fn−1

∂z
+ ∂ fn

∂x
y+ ∂ fn

∂y
z+ ∂ fn

∂z
(−y) = 0.

Solving the partial differential equation above we get

fn−1(x, y, z) = K (x, y) + z

x

∂g

∂y

+ 1

x2
log[x(bx + z) − 3y2]

·
(

− (bx2 − 3y2)
∂g

∂y
+ xy

∂g

∂x

)
,

where K is an arbitrary function in the variables x and
y. Since fn−1 must be a homogeneous polynomial of
degree n − 1 we must have

−(bx2 − 3y2)
∂g

∂y
+ xy

∂g

∂x
= 0. (26)

Solving this partial differential equation we get

g = g
(2y2 − bx2

2x6

)
.

Taking into account that g must be a homogeneous
polynomial of degree n we get g = 0.

From (25) fn = 0, i.e. f is a constant, which is a
contradiction with the fact that f = 0 is an invariant
algebraic surface. This completes the proof of Theo-
rem 4(a). �
Proof of Theorem 4(b) Let E = exp( f/g) /∈ C be an
exponential factor of system (2) with cofactor L =
L0 + L1x + L2y + L3z, where f, g ∈ C[x, y, z] with
( f, g) = 1. From Theorem 4(a) and Lemma 1, E =
exp( f ) with f = f (x, y, z) ∈ C[x, y, z] \ C.

It follows from Eq. (8) that f satisfies

(3y2 − y − bx2 − xz + a)
∂ f

∂z
+ y

∂ f

∂x
+ z

∂ f

∂y

= L0 + L1x + L2y + L3z,
(27)

where we have simplified the common factor exp( f ).
Wewrite f = ∑n

i=0 fi (x, y, z), where fi is a homo-
geneous polynomial of degree i . Assume n > 1. Com-
puting the terms of degree n + 1 in (27) we obtain

(−bx2 − xz + 3y2)
∂ fn
∂z

= 0.

Solving it and using that fn is a homogeneous polyno-
mial of degree n we get fn(x, y, z) = gn(x, y), where
gn(x, y) is a homogeneous polynomial of degree n.
Computing the terms of degree n in (27) we obtain

(3y2 − bx2 − xz)
∂ fn−1

∂z
+ ∂gn

∂x
y + ∂gn

∂y
z = 0. (28)
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Solving (28) we get

fn−1 = gn−1(x, y) + z

x

∂gn
∂y

+ 1

x2

(
(3y2 − bx2)

∂gn
∂y

+ xy
∂gn
∂x

)

× log
(
bx2 + xz − 3y2

)
,

where gn−1(x, y) is an arbitrary function in the vari-
ables x and y. Since fn−1 must a homogeneous poly-
nomial of degree n − 1, we must have that (26) holds.
Taking into account that gn must be a homogeneous
polynomial of degree n, we get gn = 0. This implies
that fn = 0, so n = 1.

We can write f = a1x + a2y + a3z with ai ∈ C.
Imposing that f must satisfy (27)weget f = a1x+a2y
with cofactor a1y + a2z. This concludes the proof of
Theorem 4(b). �
Proof of Theorem 4(c) It follows from Proposition 1
and statements (a) and (b) of Theorem 4 that if sys-
tem (2) has a Darboux first integral, then there exist
μ1, μ2 ∈ C not both zero such that (9) holds, that is,
such that

μ1y + μ2z = 0.

But this is not possible. In short, there are no Darboux
first integrals for system (2) and the proof of Theo-
rem 4(c) is completed. �

7 Analytic integrability

Firstwe proveTheorem5whena = 0 andb �= 1/2.We
shall need the following auxiliary result whose proof
follows easily by direct computations.

Lemma 4 The linear part of system (2) with a = 0
at the origin has the two independent polynomial first
integrals x + z and y2 + z2.

Proof of Theorem 5 with a = 0 and b �= 1/2. We
assume that H = H(x, y, z) is a local analytic first
integral at the origin of system (2) with a = 0 and
b �= 1/2. We write it as H = ∑

k≥0 Hk(x, y, z) where
Hk is a homogeneous polynomial of degree k for k ≥ 0.
We will show by induction that

Hk = 0 for all k ≥ 1. (29)

Then we will obtain that H = H0. Hence H will
be constant in contradiction with the fact that H is a
first integral and thus system (2) will not have a local
analytic first integral at the origin.

Now we will prove (29). Since H is a first integral
of system (2) with a = 0 and b �= 1/2 it must satisfy

y
∂H

∂x
+z

∂H

∂y
−(y+bx2+xz−3y2−a)

∂H

∂z
= 0. (30)

The terms of degree one in the variables x, y, z of sys-
tem (30) are

y
∂H1

∂x
+ z

∂H1

∂y
− y

∂H1

∂z
= 0. (31)

Therefore H1 is either zero, or a polynomial first inte-
gral of degree one of the linear part of system (2) with
a = 0. By Lemma 4 we get that H1 = c0(x + z) with
c0 ∈ R. Now computing the terms of degree two of
Eq. (30) in the variables x, y, z we get

y
∂H2

∂x
+ z

∂H2

∂y
− y

∂H2

∂z
= c0(bx

2 + xz − 3y2). (32)

Evaluating (32) on y = z = 0, we have that c0 = 0,
and thus H1 = 0. This proves (29) for k = 1.

Now we assume that (29) holds for k = 1, . . . , l −
1, and we will prove it for k = l. By the induction
hypothesis, computing the terms of degree l in (30) we
get that

y
∂Hl

∂x
+ z

∂Hl

∂y
− y

∂Hl

∂z
= 0.

Then Hl is either zero, or a polynomial first integral of
degree l of the linear part of system (2) with a = 0. It
follows from Lemma 4 that it must be of the form

Hl = Hl(F0, F1) where F0 = x + z,

F1 = y2 + z2.

Now computing the terms of degree l + 1 in (30) we
obtain

y
∂Hl+1

∂x
+ z

∂Hl+1

∂y
− y

∂Hl+1

∂z

= (bx2 + xz − 3y2)
(∂Hl

∂F0
+ 2z

∂Hl

∂F1

)
.

(33)

Ifwe introduce thenotation Ĥl+1 = Ĥl+1(F0, F1, z) =
Hl+1(x, y, z) with x = F0 − z and y = √

F1 − z2 we
get
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∂Hl+1

∂x
= ∂ Ĥl+1

∂F0

∂F0
∂x

= ∂ Ĥl+1

∂F0
,

∂Hl+1

∂y
= ∂ Ĥl+1

∂F1

∂F1
∂y

= 2y
∂ Ĥl+1

∂F1
,

∂Hl+1

∂z
= ∂ Ĥl+1

∂F0

∂F0
∂z

+ ∂ Ĥl+1

∂F1

∂F1
∂z

+ ∂ Ĥl+1

∂z

= ∂ Ĥl+1

∂F0
+ 2z

∂ Ĥl+1

∂F1
+ ∂ Ĥl+1

∂z
.

Then the left-hand side of Eq. (33) becomes

y
∂ Ĥl+1

∂F0
+ 2yz

∂ Ĥl+1

∂F1
− y

∂ Ĥl+1

∂F0
− 2yz

∂ Ĥl+1

∂F1

− y
∂ Ĥl+1

∂z
=−

√
F1 − z2

∂ Ĥl+1

∂z

and so (33) can be written as

−
√
F1 − z2

∂ Ĥl+1

∂z
= (

b(F0 − z)2 + z(F0 − z)

− 3(F1−z2)
)(∂Hl

∂F0
+2z

∂Hl

∂F1

)
.

(34)

Since Hl = Hl(F0, F1) solving (34) we have

Ĥl+1 = Ĥl+1(F0, F1, z)

= 1

2

∂Hl

∂F0

(
((2 − 4b)F0 + (2 + b)z)

√
F1 − z2

− (2bF2
0 + (b − 4)F1) arctan

(
z√

F1 − z2

))

+ 1

6

∂Hl

∂F1

(√
F1 − z2(−10F1 + 3F0z + 4z2

+ 2b
(
3F2

0 + 2F1 − 3F0z + z2
))

+ 3(2b − 1)F0F1 arctan

(
z√

F1 − z2

))

+ K (F0, F1),

where K is a function in the variables F0 and F1. Since
Hl+1 must be a polynomial and b �= 1/2, we get that
∂Hl/∂F0 = ∂Hl/∂F1 = 0. Then since Hl has degree
l, we have that Hl = 0 which proves (29) for k = l.
This proves (29) and consequently Theorem5 is proved
when a = 0 and b �= 1/2. �

Now we shall prove Theorem 5 with a/b ∈ R
+ \

Q
+. Before doing that, we shall need some preliminary

results. Note that system (2) is reversible with respect

to the involution R(x, y, z) = (−x, y,−z). Therefore,
in order to prove Theorem 5, it is enough to study only
the non-existence of analytic first integrals around the
singularity (−√

a/b, 0, 0).
We consider a/b ∈ R

+ \ Q
+, and we make the

change of variables (x, y, z) → (X,Y, Z) given by

X = x +
√
a

b
, Y = y, Z = z

That is, we translate the singular point (−√
a/b, 0, 0)

to the origin. Then system (2) becomes

ẋ = y,

ẏ = z,

ż = −y − 2

√
a

b
x −

√
a

b
z − x2 − xz + 3y2,

(35)

where we have written again (x, y, z) instead of
(X,Y, Z).

Lemma 5 The cubic equation

u3 −
√
a

b
u2 + u − 2

√
a

b
= 0 (36)

has one simple real root λ and two complex roots α±iβ
with λ, α, β ∈ R, satisfying

2α + λ =
√
a

b
, α2 + β2 + 2αλ = 1 and

λ(α2 + β2) = 2

√
a

b
.

(37)

Proof Since the discriminant of the cubic Eq. (36) is
less than zero (note that a/b > 0), it is obvious that it
has one simple real root λ and two complex roots α±iβ
with λ, α, β ∈ R. Moreover, using that

u3 −
√
a

b
u2 + u − 2

√
a

b
= (u − λ)(u − α − iβ)(u − α + iβ),

we can check that conditions (37) hold.

We have the following easy result, whose proof was
given in [10].

Lemma 6 The linear differential system

⎛
⎝ẋ
ẏ
ż

⎞
⎠ =

⎛
⎝α −β 0

β α 0
0 0 λ

⎞
⎠

⎛
⎝x
y
z

⎞
⎠ (38)
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has two independent first integrals of the form:

H1 = (x2 + y2)λ

z2α
and

H2 = (x2 + y2)β exp
(
2α arctan(y/x)

)
.

where λ, 2α and β are positive integers.

Lemma 7 The linear differential system

ẋ = y,

ẏ = z,

ż = −y − 2

√
a

b
x −

√
a

b
z,

(39)

with a/b ∈ R
+ \Q+ has no polynomial first integrals.

Proof Note that the characteristic polynomial of sys-
tem (39) is Eq. (36). So, by Lemma 5, the real Jor-
dan matrix of the linear differential system (39) is the
one given in (38). Then from Lemma 6 our linear dif-
ferential system has a polynomial first integral if and
only if one of the following two conditions hold: either
λ = 2αm, or α = 0 and β = m with m ∈ Z (here Z is
the set of integer numbers). In the first case, using that
λ, α, β must satisfy (37) and that a �= 0 we obtain the
four solutions (α, β, a/b) equal to
(

α−, β±,
(m − 1)2(m − 2)

m2

)
and

(
α+, β±,

(m − 1)2(m − 2)

m2

)
,

where

α± = ±
√
m − 2

2m
and β± = ±

√
8m2 − 9m + 2

2m
.

None of them are possible due to the fact that a/b is
not a rational number.

For the second case, again using that λ, α, β must
satisfy (37) we obtain the solution

λ =
√
a

b
, m2 = −1, λm2 = 2

√
a

b
,

which is obviously not possible. This completes the
proof.

Proof of Theorem 5 with a/b ∈ R
+ \Q+. We assume

that H = H(x, y, z) is a local analytic first integral
at the origin of system (35) with a/b ∈ R

+ \ Q
+.

We write it as H = ∑
k≥0 Hk(x, y, z) where Hk is a

homogeneous polynomial of degree k for k ≥ 0. We
will show by induction that

Hk = 0 for all k ≥ 1. (40)

Then we will obtain that H is constant in contra-
diction with the fact that H is a first integral. This will
imply that system (2) has no local analytic first integrals
at the origin.

Now we shall prove (40). Since H is a first integral
of system (35) it must satisfy

y
∂H

∂x
+ z

∂H

∂y

=
(
y + 2

√
a

b
x +

√
a

b
z + bx2 + xz − 3y2

)
∂H

∂z
.

(41)

The terms of degree one in the variables x, y, z of sys-
tem (41) are

y
∂H1

∂x
+ z

∂H1

∂y
−

(
y + 2

√
a

b
x +

√
a

b
z

)
∂H1

∂z
= 0.

Therefore H1 is either zero, or a polynomial first inte-
gral of degree one of system (39). By Lemma 7 this
last case is not possible and H1 = 0. This proves (40)
for k = 1.

Now we assume that (40) holds for k = 1, . . . , l −
1 and we will prove it for k = l. By the induction
hypothesis, computing the terms of degree l in (41) we
get that

y
∂Hl

∂x
+ z

∂Hl

∂y
=

=
(
y + 2

√
a

b
x + √

az + bx2 + xz − 3y2
)∂Hl

∂z
.

Then Hl is either zero, or a polynomial first integral of
degree l of system (39). Again, by Lemma 7 this last
case is not possible and Hl = 0, which proves (40)
for k = l. Consequently Theorem 5 is proved when
a/b ∈ R

+ \ Q+. �

8 Discussions

Most chaotic systems that appear in the literature have
at least one equilibria. In this paper we study sys-
tem (2). This system is relevant because is the first

123



A generalized Chen–Wang differential system 1515

polynomial differential system in R
3 with two para-

meters generating a chaotic attractor (at least numer-
ically) without having equilibria for some values of
the parameters. It is then worth further studying its
globally chaotic behavior from the theoretical point of
view.

In this direction, we have shown that for a > 0 suffi-
ciently small it can exhibit up to three small-amplitude
periodic solutions that bifurcate of a zero-Hopf equi-
librium point located at (0, 0, 0) when a = 0 and
two limit cycles emerging from two classical Hopf
bifurcations at the equilibrium points (±√

2a, 0, 0),
for a > 0, b = 1/2. We have also given a complete
description of its dynamics on the Poincaré sphere at
infinity, and we have studied its integrability by show-
ing that the system has no first integrals neither in the
class of analytic functions nor in the class of Darboux
functions.

In order to study its chaotic behavior we can pursue,
at least, in two directions not covered in this paper:
try to obtain first integrals in some bigger classes of
functions such as the Liouvillian, meromorphic or even
betterC1 functions, and try to study (either analytically
or numerically) how the solutions of system (2) reach
the infinity characterized in Theorem 3 . Due to the fact
that system (2) can exhibit up to two finite equilibria,
and that it does not have invariant algebraic surfaces,
this last point seems to be very complicated right now.
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