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Abstract The paper presents a new time-constrained
guidance approach for the multi-missile network by
using the nonlinear model predictive control (MPC)
technique. The objective is to coordinate the impact
time of a group of interceptor missiles against the sta-
tionary target. The framework of a distributed MPC
scheme is developed. Each missile is assigned its own
finite-horizon optimal control problem (FHOCP) and
only shares the information with its neighbors. The
solutions of the local FHOCP are obtained by using
the improved pigeon-inspired optimizationmethod that
serves as a convenient tool to deal with the equality and
inequality constraints. Further, a safe distance-based
penalty term is integrated into the local cost function
to achieve no-fly zone avoidance for the multi-missile
network. The numerical simulations show that the dis-
tributed MPC scheme is effective to implement the
cooperative time-constrained guidance with satisfied
accuracy of target capture. The Monte Carlo test also
demonstrates the robustness of the proposed guidance
approach in consideration of the no-fly zone constraint.
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1 Introduction

Numerous autonomousguidance approaches havebeen
developed in the last decade to improve the per-
formance of interceptor missiles for some specific
objectives, such as impact time control, impact angle
control, minimum time control, and minimum energy
control [1–4]. For a single interceptormissile, the above
objectives have been achieved with satisfactory accu-
racy of target capture. And recently, many studies start
to focus on the development of cooperative guidance
approaches for the multiple-missile network, which
have shown better performance than a single intercep-
tor missile, in detecting the maneuvering targets, pen-
etrating the defense systems, and surviving the threats
[5–7]. However, it is more difficult to achieve the time-
constrained guidance against a given target in light of
the different initial conditions as well as the communi-
cation limit in the multiple-missile network [8,9].

In the current literature, two typical classes of
approaches have been proposed to develop the time-
constrained guidance laws for the multi-missile salvo
attack. The first class investigates the design of the
impact time constraint in the control command for
each interceptor missile. In [10], the closed form of the
impact time control guidance law (ITCG) is derived
on the basis of linear formulation, which can guide a
group of missiles to simultaneously intercept a station-
ary target at a desirable time. In [11], a time-varying
navigation gain is discussed to coordinate the impact
time of the multi-missile network. Later, an extension
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of the ITCG guidance is presented to control both the
impact time and angle in [12]. Regarding the above
algorithms, it is required that the global information of
the time-to-go is available to each group member in
the multiple-missile network. To improve the perfor-
mance of the time-constrained guidance law, the dis-
tributed control architecture is developed on the basis
of consensus protocols [13]. The consensus theory is
also applied to design the cooperative guidance laws
by using the discrete topology model [14]. In addi-
tion, a biased proportional navigation guidancemethod
(BPNG) is proposed, in which the time-to-go estima-
tion is derived by solving differential equations analyt-
ically [15].

The second class employs the leader-followermodel
to describe the cooperative interception of multiple-
missile network. Based on traditional proportional nav-
igation (PN) algorithm, a nonlinear state tracking con-
troller is used to design the leader-follower strategy
in order to achieve the time-constrained guidance [16].
Then, the consensus protocols are applied to the design
of leader-follower strategy which guarantees that the
impact time of each follower can converge to the
leader in finite time [17]. In [18], a heterogeneous
leader-follower guidance approach is also discussed for
multiple-missile network based on the traditional PN
algorithm. Further, the virtual leader scheme is also
employed to achieve cooperative guidance by trans-
forming the time-constrained guidance problem to the
nonlinear tracking problem [19].

In this paper, the nonlinear model predictive con-
trol (MPC) technique [20,21] is used to design the
cooperative time-constrained guidance for the multi-
missile network. The contribution of the manuscript is
described in the following: (1) The distributed MPC
scheme is developed to coordinate the impact time of
the interceptor missiles, each of which only shares
information with the neighbors and solves its own
local optimization problem; (2) the pigeon-inspired
optimization (PIO) method is enhanced with nonlinear
equality and inequality constraints and used to formu-
late the distributed MPC; (3) the safe distance-based
penalty term is integrated into the local cost function
to achieve no-fly zone avoidance for the multi-missile
network. The paper is organized as follows. Section 2
presents the preliminaries to the guidance geometry and
nonlinear MPC. In Sect. 3, the design of the coopera-
tive time-constrained guidance approach is proposed
in detail. The effectiveness of the proposed distributed

algorithm is demonstratedby thenumerical simulations
in Sect. 4. Finally, concluding remarks are presented in
Sect. 6.

2 Preliminary

2.1 Basic assumptions

To simplify the equations of motion for the missile-
target engagement, the nonlinear dynamics of the two-
dimensional pursuit situation is considered in this
paper. We assume that the following conditions are
used to facilitate the analysis of the distributed time-
constrained guidance approach:

1. Both the interceptormissiles and the target are con-
sidered as the geometric points in the planar plane;

2. The seeker and autopilot dynamics of each inter-
ceptor missile are much faster in comparison with
the guidance loop;

3. The angle of attack of each interceptor missile is
small enough to be neglected;

4. The velocity of each interceptor missile is constant
and the acceleration input only changes its direc-
tion.

2.2 Guidance geometry

Suppose that Nm missiles participate in the multi-
missile network to simultaneously intercept a station-
ary target. Under the aforementioned assumptions, the
two-dimensional guidance geometry on many-to-one
engagement is depicted in Fig. 1.

Fig. 1 Guidance geometry on many-to-one engagement
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Let Mi denote each interceptor missile and T denote
the target. The terms γi , λi , and θi denote the mis-
sile heading angle, line-of-sight angle, and look-ahead
angle, respectively. As shown in Fig. 1, the look-ahead
angle represents the angle between the missile heading
angle and line-of-sight angle, which is defined as

θi = γi − λi (1)

where the subscript i ∈ {1, 2, . . . , Nm} denotes each
member in the multi-missile network. Then, the two-
dimensional pursuit situation can be described by the
equations of motion in the form of [22]

ṙi = −Vi cos θi (2)

λ̇i = −Vi sin θi

ri
(3)

γ̇i = ai
Vi

(4)

where ri is the missile-to-target range. Vi is the total
velocity of each interceptor missile. The acceleration
command is defined as ai for missile i . The problem
studied herein is to find the coordination algorithm that
can guide the multi-missile network to the given target
at a same time, even if the initial conditions of each
member are different.

2.3 Nonlinear MPC

Considering the nonlinear MPC problem, the missile
dynamics (1–4) can be written in the equivalent form
as follows

ż (t) = f (z(t), u(t)) , t ≥ t0, z(0) = z0 (5)

where z(t) ∈ Rn is the system state trajectory, and
u(t) ∈ Rm is the systemcontrol trajectory. Then, define
the constant prediction horizon as Tp ∈ (0,∞) and
the constant control update period as δ ∈ (0, Tp]. The
common receding horizon update times are given by
tc = t0 + δc, c ∈ {0, 1, 2, . . .}. At each time instant tc,
the MPC problem can be formulated by the following
finite-horizon optimal control problem (FHOCP).

Problem 1 For each member i ∈ {1, 2, . . . , Nm} and
at the update time tc = t0+δc, c ∈ {0, 1, 2, . . .}: Given
z(tc), and then, find

u∗ (s; tc) = arg min
u(s;tc)

J (z (s; tc) , u (s; tc)) (6)

J (z (s; tc) , u (s; tc))=
∫ tc+Tp

tc
F (z (s; tc) , u (s; tc)) ds

+Φ
(
z
(
tc + Tp; tc

))
(7)

subject to

ż (s; tc) = f (z (s; tc) , u (s; tc)) (8)

z (s; tc) ∈ Z (9)

u (s; tc) ∈ U (10)

where s ∈ [tc, tc+Tp] is the prediction horizon. z(s; tc)
and u(s; tc) are the predicted state trajectory and con-
trol trajectory, respectively. Z and U are the state and
control input constraints. The optimal control trajec-
tory is denoted as u∗(s; tc). J is the integrated cost
function including a running function F and a terminal
state penalty function Φ.

3 Time-constrained guidance approach

In this section, the distributed MPC framework in
[21] is used to design the time-constrained guidance
approach for the multi-missile network. The PIO algo-
rithm is improved to solve the distributed finite-horizon
optimal control problem. The main objective is to
achieve an agreement on the impact time between each
interceptor missile, meanwhile satisfying the no-fly
zone constraint.

3.1 Distributed MPC scheme

The decoupled time-invariant nonlinear dynamics for
missile i can be written in the equivalent form as

żi (t) = fi (zi (t), ui (t)) , t ≥ t0 (11)

and then, the concatenated vectors in the system
(5) can be denoted as z = (z1, z2, . . ., zNm), u =
(u1, u2, . . ., uNm), and f (z, u) = ( f1(z1, u1), f2(z2,
u2), . . ., fNm(zNm, uNm)), respectively.

For the conventional MPC framework in Problem 1,
the states of each missile are typically coupled in the
integrated cost function to achieve the impact time con-
trol. The common components in (7) can be defined as

F (z (t) , u (t)) = α
∑

(i, j)∈E

∥∥tgo,i (t) − tgo, j (t)
∥∥2

+ (1 − α)
∑
i∈V

‖ui (t)‖2 (12)
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Fig. 2 Example of the communication limitation in the multi-
missile network

Φ (z (t)) = β
∑
i∈V

‖ri (t)‖2 (13)

where the symbol || · || denotes any vector norm inRn .
V = {1, 2, . . . , Nm} represents the set of the interceptor
missiles. E is the set of the pair-wise neighbors in the
multi-missile network. It is assumed that, if (i, j) ∈ E ,
then ( j, i) /∈ E , and (i, i) /∈ E for missile i ∈ V . The
terms α and β are the weighting constants. The time-
to-go of each interceptor missile is estimated by the
following expression

tgo,i (t) = ri (t)

Vi
(14)

The main advantage of the conventional MPC frame-
work is the design of the cost function with (12) and
(13) which takes account into the state and control tra-
jectories of all the interceptor missiles. It can reflect
overall the motion of the multi-missile network. How-
ever, the requirement of computation load is quite high
and the guidance approach would be out of work if
some interceptor missiles are only able to obtain the
effective information from its neighbors. Figure 2 illus-
trates an example of the communication limitation in
the multi-missile network, for which missile i can only
communicate with its neighbors in the set Ni . There-
fore, the time-constrained guidance should be devel-
oped in the distributed framework to achieve an agree-
ment on the impact time.

As shown in Fig. 3, the distributed MPC framework
is proposed for the multi-missile network. The main
principle is summarized as follows. At each update
time, the control inputs of the group of interceptor mis-
siles are first initialized by using the previous predicted
optimal control trajectories. Then, each member in the
multi-missile network receives the estimated control
trajectory from its neighbors, computes the neighbors’
states over the current prediction horizon, and mean-

while transmits its estimated control trajectory to the
neighbors. Based on the estimated state and control
trajectories from neighbors, each missile evaluates the
distributed cost functionof its ownandfinds the optimal
predicted control trajectory over the current prediction
horizon. Finally, the optimal control trajectory over the
first control update period is implemented to update the
states of each interceptor missile.

To describe the distributed MPC scheme, we first
define that the neighbors of each interceptor missile
i ∈ V have the control vectors u−i (t) = {u j (t)}, j ∈
Ni and state vectors z−i (t) = {z j (t)}, j ∈ Ni , respec-
tively.Thedecouplednonlinear dynamics for the neigh-
bors of missile i can be formulated as

ż−i (t) = f−i (z−i (t) , u−i (t)) , t ≥ t0 (15)

Then, we define the following notations to distinguish
the different kinds of the state and control trajectories
for each missile i at current time tc

(1) u p
i (s; tc) , z pi (s; tc): the predicted control and

state trajectories;
(2) u∗

i (s; tc) , z∗i (s; tc): the optimal predicted control
and state trajectories;

(3) ûi (s; tc) , ẑi (s; tc): the estimated control and state
trajectories.

where s ∈ [tc, tc + Tp] is the given prediction hori-
zon. Consistent with u−i (t) and z−i (t), the estimated
control and state trajectories of the neighbors of each
missile i are defined as û−i (s; tc) and ẑ−i (s; tc), respec-
tively.

The estimation of the control trajectory û−i (s; tc)
and the state trajectory ẑ−i (s; tc) in the prediction
horizon s ∈ [tc, tc + Tp] will be determined at each
update time tc. As shown in Fig. 3, it is typically
an iterative process in the proposed distributed MPC
scheme by continuously updating the time constant
tc = t0 + δc, c ∈ {0, 1, 2, . . .}.

In each iterative process, the estimated control tra-
jectory of its neighboring missile over the prediction
horizon s ∈ [tc, tc + Tp] is described according to the
aforementioned definition u−i (t) = {u j (t)}, j ∈ Ni .
In detail, the estimated control trajectory û−i (s; tc) can
be given in the form of

û−i (s; tc) = {
û j (s; tc)

}
, j ∈ Ni (16)
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Fig. 3 Framework of the
distributed MPC scheme

Fig. 4 Generation of the
estimated control and state
trajectories

where the estimated control trajectory û j (s; tc) con-
sists of two individual parts over the prediction hori-
zon s ∈ [tc, tc + Tp]. As shown in Fig. 4, the first part
of the estimated control trajectory û j (s; tc) inherits the
previous optimal control trajectory u∗

j (s; tc−1) over the
prediction horizon s ∈ [tc, tc−1 + Tp). The second part
of the estimated trajectory û j (s; tc) over the prediction
horizon s ∈ [tc−1 +T, tc +Tp] is derived from the pre-

vious optimal control trajectory u∗
j (s; tc−1) at the time

instant s = tc−1 + Tp. To be specific, the estimated
control trajectory û j (s; tc) can be expressed as

û j (s; tc)=
{
u∗
j (s; tc−1) , s∈ [

tc, tc−1 + Tp
)

u∗
j

(
tc−1 + Tp; tc−1

)
, s∈ [

tc−1 + Tp, tc+Tp
]

(17)
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By using Eqs. (16) and (17), the estimation of
the control trajectory of the neighboring missile,
û−i (s; tc), is obtained. Then, the relevant state trajec-
tories ẑ−i (s; tc) can be also computed according to the
dynamics (15).

Based on the formulation of the estimated control
trajectory and state trajectory, the distributed cost func-
tion for each missile i ∈ V is given in the following
expression as

Fi
(
z pi (s; tc) , ẑ−i (s; tc) , u p

i (s; tc)
)

= α
∑
j∈Ni

∥∥∥t pgo,i (s; tc) − t̂go, j (s; tc)
∥∥∥2

+ (1 − α)
∥∥u p

i (s; tc)
∥∥2 (18)

Φi
(
z pi

(
tc + Tp; tc

)) = β
∥∥ri (tc + Tp; tc

)∥∥2 (19)

where the time-to-go of the neighbors of each missile
i is estimated by

t̂go, j (s; tc) = r̂ j (s; tc)
Vj

, j ∈ Ni (20)

Then, the nonlinear MPC problem at each time instant
tc can be formulated by the distributed FHOCP as fol-
lows.

Problem 2 For each member i ∈ {1, 2, . . . , Nm} and
at the update time tc = t0+δc, c ∈ {0, 1, 2, . . .}: Given
zi (tc) , z−i (tc) , ûi (s; tc) , û−i (s; tc) , s∈ [

tc, tc+Tp
]
,

and then, find

u∗
i (s; tc) = arg min

ui (s;tc)
Ji (zi (s; tc) , z−i (s; tc) , ui (s; tc))

(21)

Ji
(
z pi (s; tc) , ẑ−i (s; tc) , u p

i (s; tc)
)

=
∫ tc+Tp

tc
Fi

(
z pi (s; tc) , ẑ−i (s; tc) , u p

i (s; tc)
)
ds

+ Φi
(
z pi

(
tc + Tp; tc

))
(22)

subject to

ż pi (s; tc) = fi
(
z pi (s; tc) , u p

i (s; tc)
)

(23)

˙̂z−i (s; tc) = f−i
(
ẑ−i (s; tc) , û−i (s; tc)

)
(24)

z pi (s; tc) , ẑ−i (s; tc) ∈ Z (25)

u p
i (s; tc) , û−i (s; tc) ∈ U (26)

where s ∈ [tc, tc + Tp] is the prediction horizon.
Ji is the distributed cost function for each missile i ,
which includes a running function Fi and a terminal

state penalty function Φi . The optimal control trajec-
tory of each missile i ∈ V is denoted as u∗

i (s; tc).The
pseudo-code of the distributedMPC scheme is listed in
Algorithm 1.

Algorithm 1: Pseudo-code of the distributed MPC
scheme for each missile i ∈ {1, 2, . . . , Nm}.

1: // Initialization: at time t0
2: Set the parameters of the algorithm: Tp, δ
3: Initialize the state trajectory: zi (t0) , z−i (t0)
4: Set ûi (s; t0) = 0, û−i (s; t0) = 0, s ∈ [

t0, t0 + Tp
]

and solve Problem 2 for missile i , yielding the
optimal predicted control trajectory
u∗
i (s; t0) , s ∈ [

t0, t0 + Tp
]

5: Apply the first control input u∗
i (s; t0) , s ∈ [t0, t1)

6: // Main loop: at any time tc = t0 + δc, c = {1, 2, . . .}
7: Measure the current state zi (tc)
8: Transmit ûi (s; tc−1) , s ∈ [

tc, tc−1 + Tp
]
to its every

neighbor j
9: Receive û j (s; tc−1) , s ∈ [

tc, tc−1 + Tp
]
from its

every neighbor j and compute the estimated
trajectory û−i (s; tc) , ẑ−i (s; tc) , s ∈ [

tc, tc + Tp
]

10: Solve Problem 2 for missile i , yielding u∗
i (s; tc) ,

s ∈ [
tc, tc + Tp

]
11: Apply the first control input u∗

i (s; tc) , s ∈ [
tc, tc+1)

12: // Results
13: Find the optimal control sequences and generate the

complete trajectory
14: Validate the trajectory constraints and terminal conditions

3.2 No-fly zone constraint

As theneeds for adaptive guidance andcontrol approac-
hes are increasing, the threat avoidance and geopoliti-
cal restriction have been considered for the unmanned
aerial vehicles [23], unmanned surface vehicles [24],
autonomous underwater vehicles [25], and mobile
robots [26]. Regarding the interceptor missiles in a
complex environment, the no-fly zone constraint is also
indispensable to the development of the guidance and
control systems. For this reason, recent studies have
focused on the design of reference routes [27] and
guidance laws [1] in consideration of the no-fly zone
constraint. However, only the single interceptor mis-
sile was considered in the above work. To improve the
performance of multi-missile network in detecting the
targets and penetrating the defense systems, the no-
fly zone constraint is discussed in this section which
enhances the time-constrained cooperative guidance.
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Fig. 5 Geometry on the interceptor missile with no-fly zone
constraint

Figure 5 shows the geometry of the interceptor mis-
sile with no-fly zone constraint. Herein, the circle-
shaped no-fly zone is used because any irregularly
shaped no-fly zone can be simply replaced with it. The
term R represents the radius of the no-fly zone, and di
is the distance between the no-fly zone and missile i .
The angle σi ∈ (−π,+π) is defined in the line-of-sight
frame with respect to the center of the no-fly zone. It
can be found that the no-fly zone constraint will pos-
sibly be violated as di → R and |αi | → 0, whereas
some larger di or |αi | may protect the interceptor mis-
sile against penetrating the no-fly zone.

In the paper, the term dsa f e is employed to describe
the safe distance between eachmissile and the center of
the no-fly zone. The different cases of the interceptor
missile in relation to the no-fly zone are illustrated in
Fig. 6. To satisfy the no-fly zone constraint, the basic

rule, as mentioned above, is to prevent each missile
from approaching and pointing to the center of the no-
fly zone. Therefore, the terms di or |αi | are used to
design the switching conditions under which the mem-
bers in the multi-missile network must react immedi-
ately. As shown in Fig. 6, it is considered that the no-
fly zone constraint will be included in the optimiza-
tion problem when any missile i approaches within the
unsafe distance (i.e., di < dsa f e) and toward near the
center of the no-fly zone (i.e., |αi | < π/2). In other
words, the interceptor missile will start to adjust its
acceleration command for no-fly zone avoidance only
when the two conditions above are satisfied.

Thus, the no-fly zone constraint can be solved by
adding a penalty term to the distributed cost function.
The cost function for each missile i is given by

J̃i = Ji + μ
D (di , σi ) cos σi

‖di‖2
(27)

where μ is the weighting constant. The term D(di , σi )

is determinedwhen the penalty term should be included
in the cost function. The detailed form is described as

D (di , σi ) =
{
1, di < dsafe and |σi | < π/2
0, di ≥ dsafe or |σi | ≥ π/2

(28)

Fig. 6 Different cases of
the interceptor missile in
relation to the no-fly zone
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3.3 Constrained PIO solver

The basic PIO algorithm and its improved version are
introduced in this part. The PIO is one of the swarm
intelligence (SI)-based methods that take the original
inspiration from the natural phenomena. It mimics the
motion of a flock of pigeons when they find their home
by using the magnetic field, the sun, and the landmarks
[28]. As a population-based optimization tool, the PIO
has a main strength that each pigeon uses the experi-
ence of the whole flock in the search space rather than
only the experience of its own. It consists of two indi-
vidual operators: 1) the map and compass operator; 2)
the landmark operator [29]. To be specific, a flock of
pigeons first shape the map by using the magnetic field
and adjusting the direction according to the altitude of
the sun. Then, they will fly close to the destination by
using the landmarks neighboring them.

Regarding the basic PIO solver, the total population
of pigeons is given by Np. The dimension of the prob-
lem to be solved is defined as Nd. Each pigeon in the
flock represents a possible solution and corresponds to
a specific value of the fitness function. The number of
the iterations is Niter. The initial set of the pigeons is
randomly selected in the searching space. The pigeon p
is associated with a position vector X (p) and a velocity
vector Y (p) in the form of

X (p)=[x1(p), x2(p), . . . , xNd (p)],
×(p=1, 2, . . . , Np) (29)

Y (p)=[y1(p), y2(p), . . . , yNd (p)],
×(p=1, 2, . . . , Np) (30)

In the map and compass operator, all the pigeons try
to adjust and follow the best position in the flock. The
position vector X (p) and the velocity vector Y (p) are
updated by the following equations [28]:

Y (iter+1)(p) = Y (iter)(p) · e−ωp(iter+1)

+ rand ·
(
B(iter) − X (iter)(p)

)
(31)

X (iter+1)(p) = X (iter)(p) + Y (iter+1)(p) (32)

where iter(iter = 1, 2, . . ., Niter) represents each itera-
tion. ωp is the map and compass factor that influences
the velocity of each pigeon. B(iter−1) denotes the best
position in the pigeon flock. rand is a random number
within [0, 1].

In the landmark operator, half flock of the pigeons
(they are away from the landmarks) is driven to follow

the other half (they are close to the landmarks). The
selected half of pigeonswill guide thewholeflock to the
destination. The center of these pigeons can be obtained
by [28]

C (iter+1) =
∑

NP
X (iter+1)(p) · fitness (

X (iter+1)(p)
)

∑
fitness

(
X (iter+1)(p)

)
(33)

where fitness (·) reflects the cost function of the prob-
lem. The number of pigeons in the current iteration is
updated in the form of

N (iter+1)
p = 1

2
N (iter)
p (34)

Thus, in this landmark operator, the position vector is
manipulated by the following equation:

X (iter+1)(p) = X (iter)(p)

+ rand ·
(
C (iter+1) − X (iter)(p)

)
(35)

To improve the performance of the basic PIO algo-
rithm (29–35), the paper expands its further application
to the parameter optimization problem that includes
many nonlinear path constraints and terminal condi-
tions. First, the components of each possible solution
in the PIOwill be constrained in their respective ranges.
To be specific, the position component is bounded in
the form of

lak ≤ x (iter)
k (p) ≤ lbk, (k = 1, 2, . . . , Nd) (36)

where lak and lbk are the given constants. The cor-
responding velocity vector should also be limited to
suitable range; otherwise the update of the map and
compass operator would violate the constraint (36). It
has the expression as

− ldk ≤ y(iter)
k (p) ≤ ldk, ldk

= lbk − lak, (k = 1, 2, . . . , Nd) (37)

Thus, the following rules are derived for the update laws
(31, 32), which can guarantee that the position vector
X (p) and the velocity vector Y (p) are constrained by
(36, 37)

(a) If y(iter)
k (p) < −ldk ⇒ y(iter)

k (p) = −ldk .

(b) If y(iter)
k (p) > ldk ⇒ y(iter)

k (p) = ldk .
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(c) If x (iter)
k (p) < lak ⇒ x (iter)

k (p) = lak and

y(iter)
k (p) = 0.

(d) If x (iter)
k (p) > lbk ⇒ x (iter)

k (p) = lbk and

y(iter)
k (p) = 0.

Next, the equality and inequality constraints will
also be involved in the PIO solver to meet the require-
ment of the constrained optimization problem. Consid-
ering the position vector X (p), the typical expressions
of equality and inequality constraints are described in
the form of

ϕm (X (p)) = 0, (m = 1, 2, . . . , N1) (38)

ξq (X (p)) ≤ 0, (q = 1, 2, . . . , N2) (39)

where N1 and N2 are the numbers of the equality and
inequality constraints, respectively.

For the equality constraints, many SI-based algo-
rithms use the popular solution by adding the penalty
terms to the fitness function, which is also employed
in the PIO solver. Thus, the fitness function consists of
the basic cost function J and the equality constraints
(38) as follows

Fitness (X (p))=min
X (p)

J̃ = J +
N1∑
m=1

ωm ‖ϕm (X (p))‖2

(40)

where ωm ≥ 0 are the weighting constants. Note that
the selection of ωm usually depends on the actual opti-
mization problem.

For the inequality constraints, the problem is less
intractable even though theynarrow the searching space
of the feasible solutions. Because the inequality con-
straints do not decrease the degree of freedom (DOF)
of the optimization problem, a simple approach is used
herein by setting the fitness function to an infinite
value if some members in the pigeon flock violate any
inequality constraint. In detail, the following rule is
derived to satisfy the constraint (39)

(e) If ξq (X (p)) > 0 ⇒ fitness (X (p)) = ∞ and
Y (p) = 0.

In the above rule, the related velocity vector is also set to
zero such that the flock of pigeonswould not be affected
by the velocity update if some inequality constraints are
violated. The other steps of iterations are similar to the
basic PIO. The complete pseudo-code of the proposed
PIO solver is listed in Algorithm 2.

Algorithm 2: Pseudo-code of the constrained PIO solver

1: // Initialization
2: Set the parameters of the algorithm:

Nd, Np, Niter, ωp, lak , lbk
3: Generate Np random pigeons with position vector

X (p) and velocity vector Y (p)
4: Formulate the fitness function on the basis of (22)
5: // Main loop
6: while iteration i ter ≤ Niter (stop criteria)do
7: // The map and compass operator
8: for Np pigeonsdo
9: Update pigeon velocity using (31)
10: Update pigeon position using (32)
11: Evaluate the fitness and determine the current best

position
12: end for
13: // The landmark operator
14: Rank the fitness and select the half flock of pigeons

close to the landmarks
15: Determine the center of the selected half using (33)

and (34)
16: Update pigeon position using (35)
17: end while
18: // Results
19: Find the global best position, i.e., the optimal solution

4 Numerical simulations

4.1 Example 1 (cooperative engagement)

In this part, a simulation scenario of cooperative
engagement is performed to demonstrate the effec-
tiveness of the proposed time-constrained guidance
approach. Suppose that a group of three missiles inter-
cept a stationary target at (0, 0). The position of each
missile i ∈ {1, 2, 3} in the inertial reference frame can
be obtained by

ẋi = Vi cos γi , ẏi = Vi sin γi (41)

where xi and yi are the downrange and the crossrange,
respectively. As shown in Fig. 7, a simple communi-
cation topology is selected for the multi-missile net-
work. To be specific, missile 1 and missile 3 can only
obtain the information from the neighbor missile 2,
i.e., N1 = {2}, N2 = {1, 3}, and N3 = {2}. Table 1
presents the initial conditions of interceptor missiles.
The acceleration of each member in the multi-missile
network is limited within ±5.0 × 9.81 m/s2.

In case 1, the acceleration rate of each missile is
not limited. The constant prediction horizon is set to
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Fig. 7 Communication topology for the multi-missile network

Table 1 Initial conditions of the interceptor missiles

Missiles x (m) y (m) γ (◦) V (m/s)

Missile 1 −1200 −3800 120 235

Missile 2 −4200 −1500 60 240

Missile 3 −4000 2500 15 245

Fig. 8 Ground tracks of the interceptor missiles in case 1

Tp = 0.4 s and the constant control update period is
set to δ = 0.1 s. Figures 8 and 9 present the simula-
tion results of the proposed time-constrained guidance
approach in comparison with the traditional PN algo-
rithm. The navigation constant for each missile is set
to 3.0. As shown in Fig. 8, the final impact time of the
three missiles by using the PN algorithm is 18.2, 19.5,
and 20.6 s, respectively. The ground tracks obtained
by using the distributed MPC scheme illustrate that
both missile 2 and missile 3 move farther rounds to
achieve a simultaneous interception on the target. The
final impact time of the multi-missile network reaches
an agreement on 20.8 s, which shows the feasibility of
the time-constrained guidance.

Then,we define the nominal time-to-go error of each
member in the multi-missile network as follows

et,i =
∑
j∈Ni

∥∥∥t pgo,i − t̂go, j
∥∥∥2 (42)

It can be found that the time-to-go error of each inter-
ceptor missile i converges to zero before t = 5 s, as
shown in Fig. 9. The acceleration commands of the
interceptor missiles also decrease to around zero as
they gradually approach the given target. The effec-
tiveness of the proposed distributed MPC scheme is
demonstrated.

In case 2, the limit of the acceleration rate is taken
into account for each missile in the multi-missile net-
work. To evaluate the proposed guidance approach,
the different constant control update period is selected
as δ = 0.1 s and δ = 0.05 s, respectively. The con-
stant prediction horizon is still set to Tp = 0.4 s. Fig-
ure 10 presents the ground tracks of the three inter-
ceptor missiles. The numerical trajectories obtained by
using δ = 0.1 s are quite similar to the trajectories by
using δ = 0.05 s. However, the smaller control update
period δ = 0.05 s leads to a faster convergence of the
time-to-go error than the period δ = 0.1 s, as shown in
Figs. 11 and 12. In return, the control effort of eachmis-
sile with δ = 0.05 s is larger than that with δ = 0.1 s.

4.2 Example 2 (cooperative engagement with no-fly
zone)

In this example, a simulation scenario of the coop-
erative engagement with no-fly zone constraint is
performed to show the effectiveness of the time-
constrained guidance approach. The initial conditions,
control limits, and communication topology of the
multi-missile network are the samewith those in Exam-
ple 1. The constant prediction horizon and control
update period are set to Tp = 0.4 s and δ = 0.1 s,
respectively. The center of the no-fly zone is set at
(2250 m, 1800 m), and the radius is R = 400 m. Note
that missile 3 would penetrate the given no-fly zone if
the penalty term in (27) is not added to the cost function.

In case 3, the safe distance for avoidance of the no-fly
zone is set to dsafe = 600 m and dsafe = 500 m, respec-
tively. Figure 13 illustrates the numerical results of the
ground tracks of interceptor missiles. It can be found
that the no-fly zone constraint is satisfied by using the
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Fig. 9 Histories of the
accelerations and time-to-go
errors in case 1

Fig. 10 Ground tracks of the interceptor missiles in case 2

time-constrained guidance algorithm with each safe
distance above. However, the ground track of missile 3
is farther away from the no-fly zone when the safe dis-
tance dsafe = 600 m is selected. In Figs. 14 and 15, the
histories of the acceleration commands also show that
the larger safe distance dsafe results in the earlier satu-
ration of the control effort of missile 3. Although the
time-to-go error of the multi-missile network increases
slightly as missile 3 moves around the no-fly zone, the
convergence of the time-to-go error is not violated. The
final impact times of the interceptor missiles reach an
agreement on 21.9 s (dsafe = 600 m) and 21.1 s (with
dsafe = 500 m), respectively.

Fig. 11 Histories of the
accelerations and time-to-go
errors in case 2 (δ = 0.1 s)
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Fig. 12 Histories of the
accelerations and time-to-go
errors in case 2 (δ = 0.05 s)

Fig. 13 Ground tracks of the interceptor missiles in case 3

In case 4, the Monte Carlo test is performed to
demonstrate the robustness of the proposed distributed
MPC scheme. The safe distance is set to dsafe = 500 m.
Table 2 lists the dispersions that are used in this simu-
lation. Figures 16 and 17 present the numerical results
of the Monte Carlo test in 40 times. The ground tracks
of interceptor missiles show that the time-constrained
guidance is achieved with satisfied accuracy of tar-
get capture. The final impact times range from 20.9
to 23.1 s in the simulation. The Monte Carlo results
also demonstrate that the no-fly zone constraint can
be solved by means of a penalty term into the cost
function.

Fig. 14 Histories of the
accelerations and time-to-go
errors in case 3
(dsafe = 600 m)
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Fig. 15 Histories of the
accelerations and time-to-go
errors in case 3
(dsafe = 500 m)

Table 2 Dispersions used in the Monte Carlo test

Parameters x (m) y (m) γ (◦)

Uniform dispersion ±200 ±200 ±5

Fig. 16 Ground tracks of the interceptor missiles in case 4

5 Discussions

5.1 Large initial heading errors

In this part, the time-constrained guidance of the inter-
ceptor missiles with some large initial heading errors
is performed to show the effectiveness of the proposed
MPC scheme. The initial conditions of the interceptors
and target are same with those in Sect. 4.1. The ini-
tial heading of missile 1 is set to γ1 = 90◦, γ1 =
120◦, γ1 = 150◦, and γ1 = 180◦. Thus, the ini-

tial heading errors between missile 1 and missile 3
are �γ13 = 75◦,�γ13 = 105◦,�γ13 = 135◦, and
�γ13 = 165◦, respectively.

Figures 18 and 19 illustrate the numerical results of
ground tracks and accelerations. With different initial
heading errors, the interceptor missiles can achieve the
simultaneous impact on the given target in the above
four cases. It can be found that a larger initial head-
ing error (γ1 = 180◦,�γ13 = 165◦) typically leads
to the farther ground tracks of missile 2 and missile
3. As shown in Fig. 19, the acceleration commands
also decrease to around zero as the interceptor missiles
gradually approach the given target. The histories of
the times-to-gowith large initial heading errors are pre-
sented in Fig. 20. It demonstrates that the convergence
of the impact time between each interceptormissile can
be guaranteed by the distributed MPC scheme.

5.2 Autopilot dynamics

The autopilot dynamicsmay influence the performance
of the time-constrained guidance scheme. In this part,
the PIO-based MPC method is tested in consideration
of autopilot lags. The autopilot dynamics can be usually
described by the first-order differential equations in the
form of

ȧMi = −1

τ
aMi + 1

τ
ai (43)

where τ is the time constant of the autopilot, and ai is
the command to the autopilot.
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Fig. 17 Histories of the
accelerations and time-to-go
errors in case 4

Fig. 18 Ground tracks with large initial heading errors (γ1 =
90◦, 120◦, 150◦, 180◦; �γ13 = 75◦, 105◦, 135◦, 165◦)

The dynamics (43) is added in each control update
period (not in the prediction model) to test the distrib-
uted MPC scheme. The time constant of the autopilot
is set to τ = 0.5 and τ = 1.0, respectively. The ini-
tial conditions of the interceptor missiles are same with
those in Sect. 4.1. The numerical results of the ground
tracks are illustrated in Fig. 21. The histories of the
accelerations and times-to-go with different autopilot
lags are presented in Figs. 22 and 23. It can be found
that the interceptor missiles with time constant τ = 1.0
move farther rounds to achieve a simultaneous impact
on the target. Each interceptormissile typically requires
longer time to respond to the guidance commands with
the time constant τ = 1.0 than τ = 0.5. As shown in
Fig. 23, it also demonstrates that a larger time constant

Fig. 19 Accelerations with large initial heading errors (γ1 =
90◦, 120◦, 150◦, 180◦; �γ13 = 75◦, 105◦, 135◦, 165◦)

of the autopilot results in a slower convergence of the
times-to-go.

5.3 Environmental disturbances

The environmental disturbances may also have an
impact on the performance of guidance system. There-
fore, the simulation scenario of cooperative engage-
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Fig. 20 Times-to-go with large initial heading errors (γ1 =
90◦, 120◦, 150◦, 180◦; �γ13 = 75◦, 105◦, 135◦, 165◦)

Fig. 21 Ground tracks with different autopilot lags (τ = 0.5,
1.0)

ment in consideration of wind disturbances is per-
formed to show the effectiveness of the distributed
MPC scheme. The model of the bounded wind dis-
turbances can be described as

ẋi = Vi cos γi + Wx , ẏi = Vi sin γi + Wy, |Wx |
≤ Wmax,

∣∣Wy
∣∣ ≤ Wmax (44)

where Wx and Wy are the components of the wind
velocity, and Wmax is the maximum magnitude of Wx

and Wy .
Similarly, the bounded wind disturbances (44) are

included in each control update period (not in the pre-
diction model) to test the guidance approach. The ini-
tial conditions of interceptor missiles are same with
those in Sect. 4.1. The bounded wind disturbances are

Fig. 22 Accelerations with different autopilot lags (τ = 0.5,
1.0)

Fig. 23 Times-to-go with different autopilot lags (τ = 0.5, 1.0)

set to Wmax = 10 m/s,Wmax = 20 m/s, and Wmax =
30 m/s, respectively. Figures 24, 25, and 26 present the
numerical results of the ground tracks, accelerations,
and times-to-go of each interceptor missile. It can be
found that the cooperative guidance can be achieved by
using the PIO-based MPC scheme in consideration of
some weak wind disturbances such as Wmax = 10 m/s
and Wmax = 20 m/s. Typically, the wind disturbance
Wmax = 20 m/s leads to larger terminal accelerations
than the disturbance Wmax = 10 m/s. As shown in
Figs. 24 and 26, the interceptormissiles fail to converge
to the given target at a constant final time when the
strong wind disturbance (Wmax = 30 m/s) is included
in the guidance system. In this case, the estimation of
the disturbances should be considered in the prediction
model for disturbance rejection.

5.4 Computation efficiency

The PIO parameters, control update period, and pre-
diction horizon typically determine the success rate
of the time-constrained guidance approach. Therefore,
this part will discuss the computation efficiency of the
proposed MPC scheme.
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Fig. 24 Ground tracks with
different wind disturbances
(Wmax = 10 m/s, 20 m/s, 30
m/s)

Fig. 25 Accelerations with different wind disturbances
(Wmax = 10 m/s, 20 m/s, 30 m/s)

Using the standard Visual C++, the simulations are
run for several cases with different PIO parameters,
control update period, and prediction horizon. In detail,
the pigeon population of the PIO solver is set to Np =
30 and Np = 50. The iteration number is set to Niter =
30 and Niter = 50. The control update period is set to
δ = 0.05 s, δ = 0.1 sec, and δ = 0.15 s, respectively.
The prediction horizon is set to Tp = 4δ and Tp =

Table 3 Success rate of the PIO-based MPC scheme (repeated
30 times)

Parameters Success rate (%): Tp = 4δ/Tp = 6δ

δ = 0.05 s δ = 0.1 s δ = 0.15 s

Np = 30, Niter = 30 100/96.7 100/100 100/100

Np = 50, Niter = 50 90.0 /83.3 100/93.3 100/100

6δ. For each case, the simulation is repeated 30 times
with the same parameters. Table 3 shows the statistical
results of the PIO-based MPC scheme for comparison.

It can be found that a large control update period δ

typically raises the success rate of the distributed MPC
scheme. The success rate for the cases of δ = 0.1 s and
δ = 0.15 s almost reach 100%, because the average
running time of the PIO solver in each control update
period δ is about 0.018 s (Np = 30, Niter = 30)
and 0.039 s (Np = 50, Niter = 50), respectively.
The proper selection of the pigeon population Np and
iteration number Niter may also reach a compromise
between the performance index and computation effi-
ciency. In addition, the numerical results of the success
rate demonstrate that a reasonable reduction of the pre-
diction horizon Tp can improve the stability of theMPC
scheme.

Fig. 26 Times-to-go with
different wind disturbances
(Wmax = 10 m/s, 20 m/s, 30
m/s)
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6 Conclusions

The cooperative time-constrained guidance with no-fly
zone avoidance is studied in this paper. The coordina-
tion of impact time for the multi-missile network is
achieved by the distributed MPC scheme. The guid-
ance problem is transmitted to the local FHOPC that
is solved by the enhanced PIO method. The numeri-
cal results show that the acceleration command of each
interceptor missile is adjusted by the distributed algo-
rithm to achieve a simultaneous impact on the target.
Typically, a smaller control update period δ can lead
to a faster convergence of the time-to-go error of the
multi-missile network, whereas the control effort will
increase in return. The no-fly zone avoidance is also
achieved by integrating a safe distance-based penalty
term into the local cost function. It shows that a larger
safe distance dsafe results in the earlier saturation of
the control effort. The impacts of large initial heading
errors, autopilot lags, and wind disturbances are also
discussed to show the effectiveness of the proposed
guidance approach. The future work will focus on the
design of the time-constrained guidance law against
maneuvering targets. The complete three-dimensional
guidance geometry should be also taken into consid-
eration to perform the actual cooperative engagement
missions.
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