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Abstract A novel modeling based on deep learning
framework which can exactly manifest the character-
istics of nonlinear system is proposed in this paper.
Specifically, a Deep Reconstruction Model (DRM) is
defined integrating with the advantages of the deep
learning and Elman neural network (ENN). The para-
meters of the model are initialized by performing unsu-
pervised pre-training in a layer-wise fashion using
restricted Boltzmann machines (RBMs) to provide a
faster convergence rate for modeling. ENN can be used
tomanifest thememory effect of system.Tovalidate the
proposed approach, two different nonlinear systems are
used for experiments. The first one corresponds to the
class-D power amplifier which operates in the ohmic
and cutoff regions. According to error of time domain
and spectrum, back propagation neural network model
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improved by RBMs (BP-RBMs) and ENN are com-
pared with different input signals which are the sim-
ulated two-tone signal and actual square wave signal.
The second system is a permanent magnet synchro-
nous motor servo control system based on fuzzy PID
control strategy. In terms of simulated and actual speed
curves, BP-RBMs, DRM and ENNmodels are adopted
on comparison, respectively. It is shown by experimen-
tal results that the proposed model with fewer parame-
ters and iteration number can reconstruct the nonlinear
system accurately and depict the memory effect, the
nonlinear distortion and the dynamic performance of
system precisely.

Keywords Nonlinear system · Deep learning ·
Restricted Boltzmann machines ·Deep Reconstruction
Model

1 Introduction

The total nonlinear dynamic systems are defined as
those where themodel parameters and input (controller
outputs) are subject to nonlinear to the output [1]. The
modeling of nonlinear system [2] has become an essen-
tial part of system analysis because it provides a conve-
nient and efficient method to predict system-level per-
formance without the computational complexity of full
system simulation or physical-level analysis, thereby
speeding up the analysis process.
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Power amplifiers (PAs) which can produce a high
power output to drive the load under the condition of
a certain distortion rate are increasingly used in a wide
range of applications such as audio and communica-
tion applications [3]. Class-D power amplifier (CDPA)
that works in switchingmode is a typical nonlinear sys-
tem. The fuzzy proportional integral derivative (PID)
control strategy for a permanent magnet synchronous
motor (PMSM) servo control system is another typical
nonlinear system. Themotor is controlled by electronic
virtual shaft. Meantime, speed and torque of motor are
decoupled, and the speed is sent back to the fuzzy PID
controller through the encoder [4].

For the modeling of nonlinear system, there are a
large amount of approximations and simplifications
have to be performed. Unfortunately, they have a nega-
tive impact on the desired accuracy. In communication
systems, the PAs of the transmitter distort the signal due
to the nonlinear characteristic of circuit. In the PMSM
control systems based on vector control strategy of the
dynamicdecouplingmathematicalmodel, control algo-
rithm can affect dynamic response and position accu-
racy of motor. Numerous studies have been conducted
to model for these effects [5]. The known models of
nonlinear systemwithmemory effects aremainly based
on Volterra series [6] and neural networks (NNs) [7],
or their improved forms. However, the models based
on Volterra series need a large number of coefficients
to complicate their practical implementation. And the
models based on NNs are always stuck with the initial-
ized weights, if the initialized weights are not appropri-
ate, the network gets stuck in local minima and leads
the training process to a wrong ending, or the vanish-
ing gradient problem is encountered during back prop-
agation in the initial layers and the network becomes
infeasible to train.

Deep learning has been successful in solving sev-
eral engineering problems including speech and video
signal processing [8,9]. This work proposes the model-
ing based the deep learning framework. The proposed
framework learns Deep Reconstruction Model (DRM)
which integrated with the characteristics of restricted
Boltzmann machines (RBMs) and Elman neural net-
work (ENN). RBMs [10,11] can be interpreted as
neural network models which consist of two types of
units called visible neurons and hidden neurons. Thus,
RBMs always can be viewed as nonlinear feature detec-
tor [12]. Using trained RBMs for initializing the first
layer of amultilayer neural network can provide a faster

convergence rate for the modeling of nonlinear sys-
tem. The Elman neural network is a partial recurrent
network model first proposed by Elman in 1990. Its
back-forward loop employs context layer which is sen-
sitive to the history of input data, so the network can
manifest the memory effect of the nonlinear system.
In order to evaluate the performance of the proposed
model, extensive experiments are done alongwith com-
parisons to existing models of nonlinear system. Simu-
lation results have shown that the proposedmodel could
well avoid the local minimum and has a faster conver-
gence rate to reduce iteration number significantly, so
further decrease the amount of calculation.

This paper is organized as follows. Section 2 is
devoted to describing the theory of DRM. Numerical
results and analysis based on simulated data and actual
data are given in Sect. 3. The conclusion is shown in
Sect. 4.

2 Deep reconstruction model

Deep learning methods aim at learning feature hierar-
chies with features from the higher levels of the hier-
archy formed by the composition of lower level fea-
tures. They include learning methods for a wide array
of deep architectures, including neural networks with
hidden layers and graphical models with levels of hid-
den variables [13]. Unsupervised pre-training works
to render learning deep architectures more effective.
Unsupervised pre-training acts as a kind of network
pre-conditioner, putting the parameter values in the
appropriate range for further supervised training and
initializes the model to a point in parameter space that
somehow renders the optimization process more effec-
tive, in the sense of achieving a lower minimum of the
empirical cost function.

Restricted Boltzmann machines are the very impor-
tant parts for the deep architecture models and used
to initialize a multilayer neural network by perform-
ing unsupervised pre-training in a layer-wise fashion.
The parameters of a stack of RBMs also correspond to
the parameters of a deterministic feed-forward multi-
layer neural network. Hence, once the stack of RBMs
is trained, one can use available parameters to initialize
the first layer of a multilayer neural network.

Integrating with the characteristics of RBMs and
ENN, a Deep Reconstruction Modeling is proposed,
as shown in Fig. 1.
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Fig. 1 The architecture of
DRM

2.1 Restricted Boltzmann machines

A restricted Boltzmann machine [14] is an energy-
based model. It contains a set of visible units v and
a sequence of hidden units h as shown in Fig. 2. Our
work focus on binary RBMs where the random vari-
ables (v, h) take values from {0, 1}. The definition of
the energy function about the state is:

B(v, h; θ)=−
N∑

i

L∑

j

Ri jvi h j −
N∑

i

aivi −
L∑

j

b j h j

(1)

where θ = {R, a, b} are the parameters, a is the vector
of biases for visible units, b is the vector of biases for
the hidden units, vi and h j are the binary state of visible
unit i and hidden unit j and Ri j represent the weight
between visible unit i and hidden unit j . N and L are
the number of visible and hidden units. The probability
of observable variables v is denoted as

p(v; θ) = 1

Z(θ)

∑

h

exp(−B(v, h; θ)) (2)

Z(θ) =
∑

v

∑

h

exp(−B(v, h; θ)) (3)

where Z(θ) indicates the partition function.
A restricted Boltzmann machine is an undirected

graphical model in which visible variables are con-

Fig. 2 ArestrictedBoltzmannmachinewith no inner connection
in each layer

nected to stochastic hidden units, and there are no con-
nections among hidden variables or visible variables.
The conditional distributions over hidden and visible
units are defined as

p(h j = 1|v; θ) = sigm

(
N∑

i=1

Ri jvi + b j

)
(4)

p(vi = 1|h; θ) = sigm

⎛

⎝
L∑

j=1

Ri j h j + ai

⎞

⎠ (5)

where sigm(x) = 1/(1+exp(−x)) is the sigmoid acti-
vation function. RBMs learning algorithms are based
on gradient ascent on the log-likelihood. The often
stated gradients for the parametersΔRi j ,Δai andΔb j

are

ΔRi j = ∂ log p(v; θ)

∂Ri j
= [vi h j ]data − [vi h j ]model (6)

Δai = ∂ log p(v; θ)

∂ai
= vi −

∑

v

p(v; θ)vi (7)
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Δb j = ∂ log p(v; θ)

∂b j

= p(h j = 1|v; θ) −
∑

v

p(v; θ)p(h j = 1|v; θ)

(8)

The reconstruct error is denoted as

Ereconst = {[vi ]data − [vi ]model}T{[vi ]data − [vi ]model}
(9)

and Ri j , ai and b j can be represented as

Ri j (t) = Ri j (t − 1) + φΔRi j (10)

ai (t) = ai (t − 1) + φΔai (11)

b j (t) = b j (t − 1) + φΔb j (12)

where φ is the learning rate of RBMs and t is the iter-
ation number.

2.2 Elman neural network

The architecture of ENN can be generally divided into
four layers: input layer, hidden layer, context layer and
output layer [15]. The input layer has N input nodes. It
accepts the input variables and transmits to the hidden
layer. The hidden layer has L nodes and contains the
transfer function f . The context layer is the feedback
loop of hidden layer with a self-loop coefficient α and it
has L neural nodes, too. The output of the context layer
at pth step is related to the output of the hidden layer
at (p − 1)th step. The output layer has M nodes, and
the output ym(m = 1, 2, . . . , M) is the linear combi-
nation of the output of the hidden layer. There are three
kinds of weights in the network: W1 is the L × M
dimensional weight matrix from the hidden layer to
the output layer. W2 is the N × L dimensional weight
matrix from the input layer to the hidden layer. W3 is
the L × L dimensional weight matrix from the context
layer to the hidden layer. The dynamical equations of
the ENN model are as follows

y(p) = W1(p)H(p) (13)

H(p) = f [W2(p)u + W3(p)Xc(p)] (14)

Xc(p) = αH(p − 1) (15)

where p is the iteration number and f (x) usually rep-
resents the sigmoid function. α is the self-loop coeffi-

cient of the context layer. By using the gradient decent
method, the weight values are adjusted so that the
sum of squared error (SSE) is minimized after train-
ing cycles. Suppose that the pth iteration output of the
network is y(p), the objective performance error func-
tion is defined as

E(p) = 1

2
[( yd − y(p))T( yd − y(p))] (16)

where yd is the desired output of the model. The partial
derivative of error function with respect to the weight
parameters is as follows

ΔW 1
lm(p) = −η1

∂E(p)

∂W 1
lm(p)

= η1δ
o
m(p)Hl(p) (17)

ΔW 2
nl(p) = −η2

∂E(p)

∂W 2
nl(p)

= η2δ
h
l (p)

∂Hl(p)

∂W 2
nl(p)

(18)

ΔW 3
kl(p) = −η3

∂E(p)

∂W 3
kl(p)

= η3δ
h
l (p)

∂Hl(p)

∂W 3
kl(p)

(19)

with

δom(p) = yd,m − ym(p) (20)

δhl (p) =
M∑

m=1

δom(p)W 1
lm(p) (21)

∂Hl(p)

∂W 2
nl(p)

= f
′
l (.)

[
un + αW 3

ll(p)
∂Hl(p − 1)

∂W 2
nl(p − 1)

]
(22)

∂Hl(p)

∂W 3
kl(p)

= f
′
l (.)

[
αHk(p−1)+αW 3

ll (p)
∂Hl(p−1)

∂W 3
kl(p−1)

]

(23)

where n represents the nth neuron of the input layer
(n = 1, 2, . . . , N ), l represents the lth neuron of
the hidden layer (l = 1, 2, . . . , L), k represents the
kth neuron of the context layer (k = 1, 2, . . . , L),
m represents the mth neuron of the output layer and
η1, η2andη3 represent the learning rate ofW1,W2 and
W3, respectively. f

′
l is the derived function of the trans-

fer function f .

2.3 Training steps of DRM

The overall procedure of DRM algorithm is illustrated
as follows
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Algorithm: Deep Reconstruction Model
Step 1 Set appropriate SSE threshold value of ENN and
reconstruct error threshold value of RBMs. Choose the
number of hidden neurons L is the same as RBMs hidden
units. Set the maximum iteration number of ENN Nmax.

Step 2 Prepare the training input and output data then
normalize the data.

Step 3 Set the learning rate of RBMs φ. Initialize the RBMs
parameter matrix θ with zero matrix. Train RBMs using
normalized input data.

Step 4 According to formulation (6), (7),(8), update the
parameters ΔRi j ,Δai ,Δb j . Use formulation (10), (11),(12)
to calculate Ri j (t), ai (t), b j (t).

Step 5 According to formulation (9), if the reconstruct error is
bigger than the threshold value, return to Step 4, else end the
RBMs training process, get the updated weights matrix R(t)
and execute step 6.

Step 6 Initialize the ENN weights matrix W2(0) with R(t) and
W1(0),W3(0) with zero matrix. Set ∂Hl (0)/∂W 2

nl = 0,
∂Hl (0)/∂W 3

kl = 0. The initial value of the context layer is
Xc(0) = 0. Set the self-loop coefficient of the context layer α

and the learning rate η1, η2, η3.
Step 7 According to formulation (13) (14) (15), calculate the
output y(p). Calculate the SSE with y(p) and the training
output. If the SSE is bigger than the threshold value, execute
Step 8. If the SSE is smaller than the threshold value or the
iteration number p = Nmax, end the training process and
execute Step 9.

Step 8 According to formulation (16) (17) (18) (19), train ENN
using normalized data to update the weights ΔW1(p),
ΔW2(p),ΔW3(p). Then the parameters are updated as:
W1(p + 1) = W1(p) + ΔW1(p),W2(p + 1) = W2(p) +
ΔW2(p),W3(p + 1) = W3(p) + ΔW3(p). Jump to Step 7.

Step 9 With the weight matrix obtained in Step 7, calculate the
final output y(p) of ENN.

3 Simulation results and analysis

In the sequel, in order to validate the preceding advan-
tages, the proposed model is evaluated with simulated
and actual data. The first system is CDPA circuit,
according to the description of [16]. The model is also
applied for data coming from automation engineering
as PMSM servo control system.

Fig. 3 The circuit of half-bridge CDPA

Fig. 4 Error curves of BP with different kinds of initialization
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Fig. 5 Error curves of DRM and ENN model versus iteration
number

Table 1 The simulation results of the DRM and ENN model

Simulation Iteration Hidden neurons SSE
results number L (dB)

ENN 25 15 −5.0046

20 −16.3547

25 −28.5370

DRM 25 15 −6.6331

20 −18.0709

25 −29.8642

Table 2 The iteration number and running time of the DRM and
ENN model

Threshold Model Iteration Running
value (dB) number time (s)

20 ENN 9 2.8621

DRM 7 2.2118

10 ENN 16 5.4022

DRM 15 5.0279

0 ENN 23 7.6389

DRM 22 7.3931

123



1332 X. Jin et al.

Fig. 6 Comparison among
three models in time
domain. a BP-RBMs model.
b ENN model. c DRM

(a)

(b)

(c)
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Table 3 The mean error σ̄ and maximum transient error σmax
of three models in time domain

Model σ̄ (V) σmax(V) Condition

BP-RBMs 0.0345 0.0744 L = 15

ENN 0.0150 0.0323 N = 25

DRM 0.0087 0.0187

There are some common parameters for all exper-
iments. In RBMs model, the learning rate φ and the
initial parameters θ . Here, we choose φ = 0.01 and
θ = 0. The weight R(t) which is trained after t = 10
iteration times is used for initialization. In ENNmodel,
the learning rate η1 = η2 = η3 = 0.01 and the self-
loop coefficient of the context layer α = 0.001.

3.1 Performance of different initialization

In half-bridge CDPA, the simulation data are acquired
from the circuit shown in Fig. 3. The pulse width mod-
ulation (PWM) signal z is produced by comparing the
input signal x with triangular signal of which the fre-
quency is 40kHz. The logic level of the PWM signal z
is±10V.The output signal of power amplifier is termed
as y. A group of the training data are extracted from
0 to 10ms by the sampling frequency fs = 100kHz.
The testing data have the same length and sampling
frequency with the training data; the difference is the
starting time.

To investigate the performance of the RBMs initial-
ization, we study the SSE versus iteration number with
different ways of initialization. Back propagation (BP)
neural network is used for the experimental model. The
number of hidden neurons of BP is 15 and set the max-
imum iteration number Nmax = 30. Initialize the first
layer of BP with different kinds of initialization and
set the parameters of other layers with 0. First, take the
advantage of RBMs initialization to design aBPmodel.
A stack of RBMs is trained then use those parameters
to initialize. Second, random values are used to initial.
Third, set the initial parameters with zero matrix. Nor-
malized two-tone signal is used as the input signal x ;
436Hz and 3kHz are the input frequencies.

As shown in Fig. 4, to achieve the same error thresh-
old, RBMs initialization needs the fewest iteration
number in three kinds of initialization. The SSE error
curve of RBMs initialization drops fastest with the

increasing iteration number. Random initialization is
worse than zero initialization proves that improper ini-
tial parameters lead to get a lower convergence rate.
After 30 iteration steps, the SSE of zero initialization
is−6.1612dB and random initialization is−5.8185dB
while the SSE of RBMs initialization is −8.3636dB.
Based on the advantage of RBMs initialization, a BP
model improved by RBMs (BP-RBMs) is designed.

3.2 Reconstruction error of DRM and ENN model

For the DRM and ENN model, make the number of
hidden neurons L increases from 15 to 25 with the
interval of 5. The preceding two-tone signal is used
as the input signal. All the tests were carried out using
MATLABR2010bon adesktop Intel Pentium(R)Dual-
Core E5300 PCwithWindows 7 system. After training
the DRM and ENN model, the simulation results are
shown in Fig. 5 and Table 1.

As shown in Fig. 5, with the increasing iteration
number, the error curves of SSE drop rapidly. The
larger the number of hidden neurons L is, the faster
SSE decreases, and the less iteration number needed
to reach the same SSE. With the same hidden neurons,
the SSE error curves of DRMdecrease faster than ENN
model. As listed in Table 1, for example, fixing the
number of hidden neurons L = 15, the SSE of ENN
model is −5.0046dB, while DRM is −6.6331dB after
25 iteration number.

To evaluate the convergence rate of DRM and ENN
model, the threshold value of SSE is set as 20, 10 and
0dB, respectively. The hidden neurons L = 15 are
chosen. If the SSE is smaller than the threshold value,
end the training process and record the running time.
The iteration number and running time are listed in
Table 2.

As shown in Table 2, at the beginning of the iter-
ation process, it takes less running time and iteration
number for the DRM significantly. With the increasing
iteration number, DRM still resumes less running time
and iteration steps. It is evident that the convergence
rate of DRM is much faster than the ENN model.

3.3 CDPA case

The construction of CDPA is the same as shown in
Fig. 3.
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Fig. 7 Comparison among
three models in frequency
domain. a BP-RBMs model.
b ENN model. c DRM

(a)

(b)

(c)
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Table 4 Spectrum of the
circuit and spectrum error of
three models

Frequency f1 f2 f3 f4 f5 f6

Circuit spectrum (dB) 46.86 48.24 26.20 26.62 18.50 18.39

Spectrum error (dB)

BP-RBMs 0.6711

ENN 0.2856

DRM 0.1641

Fig. 8 Square wave signal oscillogram, the upper waveform:
input, the lower waveform: output

3.3.1 Simulation experiment

To validate the effectiveness of the newmodel, preced-
ing two-tone signal is used to test itsmodeling accuracy
and convergence rate with comparison to the model of
BP-RBMs and ENN. Set the number of hidden neu-
rons L = 15 and the iteration number N = 25. For the
BP-RBMs model, set the learning rate with 1.

The two-tone signal is often used to study the mem-
ory effect of the nonlinear system since the intermodu-
lation distortion (IMD) of the signal is easy to measure
[17]. Using the preceding two-tone signal as the test-
ing input signal, the time domain simulation results are
shown in Fig. 6. The mean error and maximum tran-
sient error of the models in time domain are listed in
Table 3.

It can be seen in Fig. 6 and Table 3 that DRM is
the most accurate model among three models. BP-
RBMs, ENN and DRM have stable approximation
capability. Under the same conditions, DRM is the
most precise model. The final mean transient error of

BP-RBMs is 0.0345 and ENN is 0.0150, while DRM
is only 0.0087. The spectrum results are shown in
Fig. 7.

(a)

(b)

(c)

Fig. 9 Comparison among three models in time domain. a BP-
RBMs model. b ENN model. c DRM
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(a)

(b)

(c)

Fig. 10 Comparison among three models in frequency domain.
a BP-RBMs model. b ENN model. c DRM

In Fig. 7a, f1 = 436Hz and f2 = 3kHz are the
input frequencies of the two-tone signal. f3 = f2 − f1
and f4 = f1 + f2 are the second-order IMD (IMD2).
f5 = f2 − 2 f1 and f6 = f2 + 2 f1 are the third-
order IMD (IMD3). The existent of IMD means the
system is nonlinear, and the asymmetry of IMDdemon-
strates the memory effect of the system. The circuit
output spectrum and the spectrum error are listed in
Table 4.

In Fig. 7 and Table 4, the spectrum error of BP-
RBMs, ENN model and DRM are steady; under the

Table 5 The mean error σ̄ , maximum transient error σmax and
SSE of three models in time domain

Model σmax (V) σ̄ (V) SSE (dB)

BP-RBMs 0.0443 0.0333 0.5281

ENN 0.0205 0.0154 −6.1834

DRM 0.0187 0.0141 −6.9659

Table 6 The mean error δ̄ and maximum transient error δmax of
three models in frequency domain

Model δmax (dB) δ̄ (dB)

BP-RBMs 0.3940 0.3940

ENN 0.1797 0.1797

DRM 0.1641 0.1641

Fig. 11 Control strategy based on electronic virtual shaft

same conditions, the spectrum error of BP-RBMs is
0.6711dB and ENN is 0.2856dB, while the spectrum
error of DRM is only 0.1641dB. The accuracy of DRM
is much higher.

3.3.2 Actual measurement experiment

In order to test on the performance of the model fur-
ther, the data which are collected by oscilloscope from
actual power amplifier circuit are used. In the cir-
cuit, TPS28225 is a high-speed driver for N-channel
complimentary driven power MOSFETs with adap-
tive dead-time control. CSD88537ND is a new type
of power tube chip. This dual power MOSFET is
designed to serve as a half bridge in low current motor
control applications. Our test circuit is mainly com-
posed of the two chips above. Square wave signal
is used as the input signal and the amplitude of the
signal is from 0 to 4V. The logic level of the out-
put signal can be amplified to ±20V, and the fre-
quency of the signal is 1.2MHz. The sampling fre-
quency fs = 100MHz. The output oscillogram of
the power amplifier from the oscilloscope is shown in
Fig. 8.
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Fig. 12 Comparison
among three models in time
domain. a BP-RBMs model.
b ENN model. c DRM

(a)

(b)

(c)
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Table 7 The mean error σ̄ , maximum transient error σmax and
SSE of three models in time domain

Model σmax (r/s) σ̄ (r/s) SSE (dB)

BP-RBMs 0.0145 0.0079 −11.5989

ENN 0.001 5.70E−04 −34.4249

DRM 8.78E−04 4.76E−04 −35.9859

Set the value of hidden neurons L = 15 and
the iteration number N = 25 for BP-RBMs, ENN
and DRM. Using the normalized data as the test-
ing input, the time domain simulation results are
shown in Fig. 9 and their spectrum results are illus-
trated in Fig. 10. The mean error, maximum tran-
sient error and SSE of the models in time domain
are listed in Table 5. The spectrum errors are in
Table 6.

It can be seen that the models can reconstruct the
output data from the input square wave signal with
different accuracies. The error of BP-RBMs is much
higher evidently. DRM is the more accurate model for
analyzing the nonlinearity and memory effect of the
nonlinear system in both time domain and frequency
domain.

3.4 PMSM servo control system case

By integrating the virtual shaft control idea with the
cross coupling control algorithm, an improved con-
trol strategy for PMSM servo system is proposed [4].
Controllers about speed and torque are decoupled and
can be designed separately. The speed control strategy
based on electronic virtual shaft is shown in Fig. 11.
The compensation of ωA −ω0 is sent back to the fuzzy
PID controller, where ω0 is the speed of virtual shaft
and ωA is the mechanical angular speed of PMSM.
Use BP-RBMs, ENN and DRM for comparing, set the
number of hidden neurons L = 25 and iteration num-
ber N = 25.

3.4.1 Simulation experiment

By using the MATLAB toolboxes of power sys-
tem, a model of PMSM control system is built. The
parameters and the initial values of speed compen-
sator are listed in [4]. In the simulation experiment,
some disturbances are added to the system; hence,
the speed responses of shaft will change. We adopt
the speed of virtual shaft on the testing input and the
mechanical angular speed of MATLAB on the out-
put. The time domain simulation results are shown
in Fig. 12. The mean error, maximum transient error
and SSE of the models in time domain are listed in
Table 7.

In terms of the performance in time domain, the BP-
RBMs, ENN and DRM can simulate the system with
low error, but DRM is more accurate.

3.4.2 Actual measurement experiment

In practical engineering, the operating data of motor
based on fuzzy PID control strategies are read out
from PLC. The speed curves which can reflect system’s
dynamics performance are drawn by MATLAB. Take
the actual measurement data as the testing input, the
time domain simulation results are shown in Fig. 13.
The speed mean error, maximum transient error of
speed and SSE of the models in time domain are listed
in Table 8.

The reconstruction error of three models and the
actual speed deviation which is read out from PLC
are shown in Fig. 13. During the accelerated starts up
process and the decelerated stops process, the speed
deviation of model increased accordingly. The speed
deviations of the three models are coincident with
the actual data. When the crane is running at a con-
stant speed, the mean error of speed deviation of BP-
RBMs model is 4.1321E−05 r/s and ENN model is
8.4058E−06 r/s but that of DRM is 7.2793E−06 r/s.
DRM can reconstruct the working process of the sys-
tem, and the accuracy is more precise than that of other
models.
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Fig. 13 Comparison
among three models in time
domain. a BP-RBMs model.
b ENN model. c DRM.
d Speed deviation

(a)

(b)

(c)

(d)
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Table 8 The mean error of speed σ̄ , maximum transient error
of speed σmax and SSE of three models in time domain

Model σmax (r/s) σ̄ (r/s) SSE (dB)

BP-RBMs 0.0527 0.0426 3.3092

ENN 0.0107 0.0087 −10.5208

DRM 0.0093 0.0075 −11.7719

4 Conclusion

In this paper, Deep Reconstruction Model is proposed
to analyze the characteristics of the nonlinear sys-
tem. The model is based on ENN whose back-forward
loop employs context layer and its parameters are ini-
tialized by performing unsupervised pre-training in a
layer-wise fashion using RBMs. The DRM solves the
problem of improper initial parameters which make
the model tend to fall into local minimum and get a
lower convergence rate. In CDPA case, according to
the simulation results, with the same number of hidden
neurons, DRM can more accurately characterize non-
linear system and get a higher convergence rate than
BP-RBMs model and ENN model. Through the sim-
ulation of actual square wave signal, it can be seen
that DRM has a higher reconstruction accuracy in both
time and frequency domain. In the modeling of PMSM
servo control system, DRM can reconstruct the work-
ing process excellently and the performance of using
simulated data or actual data are all superior to BP-
RBMs model and ENN model.

Based on the discussion above and the comparison
of simulation results, it can be concluded that the pro-
posed model is an efficient model and appropriate for
nonlinear systems with memory effect, such as the dis-
tillation tower in the process of chemical industry, the
pH titration, the modeling of retinal imaging process
in biological control, the economic and financial field
and the ecological control system.
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