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Abstract An improved optimal velocity model, wh-
ich considers the velocity difference of two adjacent
lanes, is presented in this paper. Using linear stabil-
ity theory, the stability criterion of the new model is
obtained and the neutral stability curves are plotted. By
applying the reductive perturbationmethod, the nonlin-
ear stability of the proposed model is also investigated
and the soliton solution of the modified Korteweg–
de Vries equation near the critical point is obtained
to characterize the unstable region. All the theoretical
analysis and numerical results demonstrate that the pro-
posed model can characterize traffic following behav-
iors effectively and achieve better stability.

Keywords Car-followingmodel ·Nonlinear stability
analysis · Lane velocity difference

1 Introduction

Over the decades, the research on car-following has
attracted considerable attention [2,4]. Various traffic
models have been developed, and numerous empiri-
cal tests have been conducted. As early as 1953, Pipes
[34] did pioneering work to mathematically derive
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dynamic equations which can be used to describe sev-
eral motions of the leading vehicle. Chandler et al. [3]
later expanded Pipes’ model and developed the Cali-
fornia model which considers the delay time of vehi-
cles. Herman [16] proposed a double look-aheadmodel
which involves the nearest and next nearest cars in
front and simulated the model using computer for the
first time. Subsequently, many researchers (e.g., Gazis
[8,9], Edie [7], Newell [31,32], et al.) made great con-
tributions to the car-following theory [5,14,29,30,38].

Among hundreds of car-following models, the opti-
mal velocity (OV) model developed by Bando et al. [1]
has been widely accepted due to its simplicity, innova-
tiveness, and great performance of describing the car-
following behavior. Komatsu and Sasa [20] employed
the OV model to study traffic congestion. Helbing and
Tilch [15] applied the basic concept of the OV model
and developed a generalized force (GF) model, which
achieved good agreement with the empirical data.
Nagatani et al. [28] deduced a difference equation from
the OV model to describe highway traffic flow. Lenz
et al. [22] extended the OV model by incorporating
multi-vehicle interactions and the results indicated that
the size of the stable region had been increased. Mura-
mastu and Nagatani [24] analyzed the density wave
numerically and analytically and obtained Korteweg-
de Vries (KdV) equation for the OV model. Recently,
Jiang et al. [18] studied a full velocity difference (FVD)
model concerning both positive and negative velocities
and addressed theproblemsof toohigh acceleration and
unrealistic deceleration that appear in the OV model.

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11071-015-2568-1&domain=pdf
http://orcid.org/0000-0002-3789-6133


388 G. Yu et al.

Ge et al. [11] studied three different types ofOVmodels
using three nonlinear wave equations including KdV,
Burgers and mKdV, and concluded two generally ver-
ified solutions for the KdV and mKdV equations. Fur-
thermore, Peng et al. [33] proposed an optimal veloc-
ity difference (OVD) model; Zheng et al. [42] ana-
lyzed an anticipation driving car-following (AD-CF)
model; Tang et al. [36] studied the driving behavior
under an accident and proposed a car-following model
with inter-vehicle communication (IVC); and Yu et al.
[40] presented a full velocity difference and accelera-
tion (FVDA)model which considers headway, velocity
difference and acceleration of the leading car.

However, most of existing car-following models
only concern car-following behaviors for single lane.
Only little work considers the interaction between the
major lane and neighbor lane(s). Tang et al. [37] consid-
ered the lateral distance of two lanes and obtained the
stability condition via linear stability theory andnonlin-
ear perturbation equation. Ge et al. [13] proposed a car-
followingmodel incorporating lateral distance between
the motor and adjacent non-motor lane without isola-
tion belts. Jia et al. [17] considered the lateral influence
by introducing a combination of optimal velocity func-
tions of two adjacent lanes.

Apparently, the vehicle velocity of the adjacent lane
has impact on the driving behaviors of vehicles on the
major lane. Typically, if the vehicles on the adjacent
lane increase velocity suddenly, the drivers on themajor
lane might speed up in order to catch up the adjacent
vehicles or slow down since they might think the adja-
cent vehicles need to change lane.On the contrary, if the
vehicles on the adjacent lane reduce velocity abruptly,
the drivers on the major lane might also slow down
since they might think there is a traffic jam or acci-
dent ahead. In either way, the drivers on the major lane
adjust their speeds due to the velocity change of the
vehicles on the adjacent lane. In other words, the major
lane velocity is influenced by the vehicle velocity on
adjacent lanes.

In order to characterize above-mentioned behavior,
in this paper, we propose an expanded car-following
model, named lane velocity difference (LVD) model,
which describes the influence caused by the velocity
difference between the major and adjacent lanes. We
will first analyze the stability condition of the proposed
LVDmodel by using linear stability theory, followed by
investigating its nonlinear stability by using the reduc-
tive perturbation method. From the nonlinear stability

analysis,we canobtain thekink solutionof themodified
mKdV equation near the critical point. With the kink
solution, traffic flow state can be divided into stable,
metastable and unstable three regions. Several simu-
lations will be also carried out to illustrate analytical
results.

The remainder of the paper is organized as follows.
Section 2 reviews some classic car-following models
followed by a description of the proposed LVD model.
Sections 3 and 4 present the stability condition of the
proposed model and analyze the density wave of traffic
flow by using the mKdV equation. In Sect. 5, several
simulation experiments are conducted to verify our ana-
lytic results. Lastly, Sect. 6 concludes this paper with
some remarks.

2 Mathematical model

In this section, we present an extended car-following
model (i.e., the LVD model), which considers the rela-
tive velocity between the major and adjacent lanes.

As proposed by Chowdhury et al. [4], a common
dynamic equation of a car-following model is given by

ẍ = fsti (vn,�xn,�vn) , (1)

where the function fsti indicates the response to the
stimulus received by the nth vehicle. For single-lane
car-following models, the stimulus generally consists
of the speed of the nth vehicle vn , the relative velocity
between vehicles n and n + 1, �vn = vn+1 − vn , and
the relative distance (i.e., headway) between vehicles
n and n + 1, �xn = xn+1 − xn between successive
vehicles. Note, different car-following models might
have different fsti functions, which include different
relative parameters [6,23,43].

To consider the influence of the velocity difference
between the major and adjacent lanes, as shown in
Fig. 1, Eq. (1) can be generalized as follows:

ẍ = fsti
(
vn,�xn,�vn,�vLVDn

)
, (2)

where �vLVDn = v̄Lm − vn represents the relative veloc-
ity between the vehicles on the major and adjacent
lanes; v̄Lm = mean(vLm, vLm+1, . . . , v

L
m+s−1) is the aver-

age speed ofm lateral vehicles on the adjacent lane near
the nth vehicle on the major lane, where vLm indicates
the velocity of the mth car on the adjacent lane and s
represents the number of the cars on the adjacent lane
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Fig. 1 Sketch map of a two-lane traffic. �xn = xn+1 − xn
denotes the vehicle headway on the major lane, where xn indi-
cates the position of the nth car on the major lane. �xLm =
xLm+1 − xLm represents the vehicle headway on the adjacent lane,
where xLm indicates the position of the mth car on the adjacent
lane. �xLVDn = xLm − xn indicates the distance between the nth
car on the major lane and mth car on the adjacent lane

which can be observed by and generate impact on the
nth vehicle on the major lane. Note the average speed
of several vehicles v̄Lm , instead of a particular vehicle
velocity vLm of the adjacent lane, is used in our model
to indicate velocity difference. This is simply because
the influence from the adjacent lane might come from
multiple vehicles.Most car-followingmodels for single
lane only consider the impact from the nearest leading
vehicle since most of drivers only pay attention to the
nearest front vehicle and the view other vehicles has
been blocked by the nearest one. But when consider-
ing the impact from the adjacent lane, the drivers on
the major lane very likely can observe several vehi-
cles driving on the adjacent lane. So an average speed
of these vehicles better describes the overall influence
caused by the velocity difference from the adjacent
lane.

To derive themathematical expression of Eq. (2), we
first refer to a simple single-lane car-following model
proposed by Newell [32] and Whitham [39]:

dxn(x + τ)

dt
= V (�xn(t)) , (3)

where xn(t) is the position of the nth car at time t ,
V (�xn(t)) is the optimal velocity function incorpo-
rating various of the headways on the same lane, and
τ is the delay time, i.e., the time lag before reaching
the optimal velocity. This model essentially indicates
that it takes the delay time τ for a driver to adjust the
vehicle velocity and reach the optimal velocity which
is determined purely based on the observed headway
(�xn(t)).

Clearly, many other factors, such as acceleration,
deceleration, relative velocity between successive vehi-
cles etc., have impacted the final value of the optimal

velocity, as suggested by [12,35,37]. In this paper, we
further consider the impact from the relative velocity
between the major and adjacent lanes. By consider-
ing all abovementioned impact factors, Eq. (3) can be
expanded to a more general differential equation:

dxn(t + τ)

dt
= V

(
�xn(t),�vn(t),�vLVDn (t)

)
. (4)

If we assume a linear relationship between the opti-
mal velocity and two relative velocities (i.e.,V (�xn(t),
�vn(t),�vLVDn (t)) = V (�xn(t)) + λ1�vn(t) +
λ2τ�vLVDn (t)) [18,19,41], and apply Taylor expand-
ing to Eq. (4), we can get the following differential
format of the proposed LVD model:

d2xn(t)

dt2
= α [V (�xn(t)) − vn(t)]

+ k1�vn(t) + λ2�vLVDn (t), (5)

where k1 = λ1/τ, λ1 is the response coefficient of
the relative velocity between successive vehicles, and
λ2 is the response coefficient of the relative velocity
between vehicles on themajor and adjacent lanes. Note
λ1, λ2 are constants independent of time, velocity and
position.

Note the assumption of a linear combination of the
optimal velocity and relative velocities has been sug-
gested bymuch other research. For example, by assum-
ing a linear relationship between the optimal velocity
and the relative velocity between successive vehicles
(i.e., V (�xn(t),�vn(t)) = V (�xn(t)) + λ1�vn(t)),
Xu [41] derived the following relative velocity (RV)
car-following model:

d2xn(t)

dt2
= α

[
V (�xn(t)) − dxn(t)

dt

]
+ k1�vn(t).

(6)

The RV model has the exactly same format as the
simplified FVDmodel proposed by Jiang et al. [18,19],
who derived the model based on the GF model [15].
By comparing with our model [Eq. (5)] and the RV
model [Eq. (6)], we can see that the proposed LVD
model will be degenerated to the RV model (or FVD
model), ifλ2 is set as 0, i.e., ignoring the influence of the
relative velocity between the major and adjacent lanes.
Furthermore, if λ1 = λ2 = 0, the LVD model will be
converted to the original OV model [see Eq. (3)]. The
consistency between the proposed LVD, RV, and OV
models further confirms the rationality of the proposed
LVD model.
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For the purpose of convenience, the dynamic equa-
tion Eq. (5) needs to be discretized and then rewritten
as the following difference equation through the asym-
metric forward difference [4,26]:

xn(t + 2τ) = xn(t + τ) + τV (�xn(t))

+λ1 (�xn(t + τ)

− �xn(t)) + λ2

×τ

⎛
⎝1

s

s∑
j=1

�xLm+ j−1(t) − �xn(t)

⎞
⎠ ,

(7)

where �xLm+ j−1(t) = xLm+ j (t) − xLm+ j−1(t) is the
headway between the (m+ j−1)−th and (m+ j)th cars
on the adjacent lane. Since the response coefficients
λ1, λ2 are sensitive to the headway, the following step
functions are assumed:

λ1 =
{

β, �xn < sc,
0, �xn ≥ sc,

λ2 =
{

δ, �xLn < sc,
0, �xLn ≥ sc.

where β, δ are predetermined response coefficients,
and sc is a critical headway. The above step functions
essentially indicate that if the distance between the pro-
ceeding and following cars (i.e., headway) is too large
(i.e., greater than a critical distance), the velocity dif-
ference between two successive vehicles will have no
influence to the car-following behavior of the follow-
ing car; similarly, if the distance between the car on
the adjacent lane and the car on the major lane (sim-
ilar to headway) goes beyond a critical distance, the
velocity difference between these two cars will have
no influence to the car-following behavior of the car
on the major lane. Note here the critical headway sc
is assumed the same for both λ1 and λ2, but certainly
different critical headways could be assigned to λ1 and
λ2 to indicate the drivers’ different response behaviors
to the relative velocity of the vehicles on the same or
different lane.

For computational convenience, Eq. (7) can be
rewritten as:

�xn(t + 2τ) = �xn(t + τ)

+ τ
[
V (�xn+1(t)) − V (�xn(t))

]

+ λ1 (�xn+1(t + τ) − �xn+1(t)

−�xn(t + τ) + �xn(t)) + λ2τ

×
(
1

s

s∑
j=1

(
�xLm+ j (t) −�xLm+ j−1(t)

)

− (�xn+1(t) − Deltaxn(t))

)
. (8)

As suggested by [12,26], the optimal velocity func-
tion V (�xn) can be formulated as:

V (�xn) = vmax

2
[tanh (�xn − hc) + tanh (hc)] , (9)

where hc is a safety distance and vmax is a max-
imum velocity. Equation (9) assumes a monotoni-
cally increasing function with an upper bound of
lim�xn→∞ V (�xn) = vmax/2 (1 + tanh (hc)). Note
that Eq. (9) has a turning point (i.e., inflection point) at
�xn = hc : V ′′ (hc) = [

d2V (�xn)/d�x2n
]
�xn=hc

=
0, which is a critical point where the mKdV equation
of Eq. (7) can be obtained.

3 Linear stability analysis

This section is to investigate the stability of the pro-
posed LVD model by applying a linear stability analy-
sis method [12,25]. Here we assume no lane changing
and no overtaking, and we only consider the stability
of the uniform traffic flow on each lane. The solution
of the uniformly steady state of Eq. (7) is given by

x (0)
n (t) = hn + V (h) t, with h = L/N1;
xL(0)
m (t) = hlm + Vl (hl) t, with hl = L/N2,

(10)

where h, hl represent the constant headways of two
successive vehicles in the major and adjacent lanes,
respectively; N1, N2 indicate the number of cars in the
major and adjacent lanes, respectively; V, Vl denote
the optimal velocities for the vehicles on the major and
adjacent lanes, respectively; and L is the road length.

Adding small deviations yn(t), yLm(t) to the uniform
solutions described in Eq. (10), we get updated solu-
tions: xn(t) = x (0)

n (t) + yn(t), xLm(t) = xL(0)
m (t) +

yLm(t); and |yn(t)| ,
∣∣yLm(t)

∣∣ � 1 [1,22]. With the
updated solutions, the linear stability equation for
Eq. (8) can be obtained:

�yn(t + 2τ)

= �yn(t + τ) + τV ′ (�yn+1(t) − �yn(t))

+ λ1 (�yn+1(t + τ)
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−�yn+1(t) − �yn(t + τ) + �yn(t)) + λ2τ

·
⎛
⎝1

s

s∑
j=1

(
�yLm+ j (t) − �yLm+ j−1(t)

)

− (�yn+1(t) − �yn(t))) , (11)

where V ′ is the derivative of optimal velocity V (�xn)
at �x = h, �yn(t) = yn+1(t) − yn(t), and �yLm(t) =
yLm+1(t) − yLm(t). Since yn(t) and yLm(t) are very small
perturbations and yn(t), yLm(t) ∝ exp{ikn + zt},
we can let �yn(t) = A exp{ikn + zt}, �yLm(t) ∼=
γ A exp{ikn + zt}, where γ represents the average
strength coefficient which describes the perturbations
between the major and adjacent lanes. γ is critical
for this model since it normalizes the perturbations
between the major and adjacent lanes. By assuming
explicit functions for �yn , and �yLm , Eq. (11) can be
expanded to:

e2zτ = ezτ + V ′ (eik − 1
)

τ

+ λ1

(
eik+zτ − eik − ezτ + 1

)

+ λ2τ

⎛
⎝γ

s

s∑
j=1

×
(
eik j − eik( j−1)

)
− (eik − 1)

)
. (12)

Further expanding z with z = z1(ik)+z2(ik)2+· · ·
[25,41], we have

z1 = V ′ + λ2 (γ − 1) ,

z2 = −3

2
z1

2τ + V ′

2
+ λ1z1 + λ2 · γ s − 1

2
. (13)

From Eq. (13): if z2 is negative, the uniformly steady-
state flow is unstable for long-wavelength modes; and
if z2 is positive, the uniform flow is stable. The neutral
stability condition is given by z2 = 0:

τ = V ′ + 2λ1z1 + λ2(γ s − 1)

3z21
. (14)

In Eq. (14), the delay time τ is a critical value and
usually is written as τc. Its inverse (1/τc) is called the
critical sensitivity (αc). FromEq. (14), the unstable and
stable condition are:

τ >
V ′ + 2λ1z1 + λ2(γ s − 1)

3z21
, (15)

τ <
V ′ + 2λ1z1 + λ2(γ s − 1)

3z21
. (16)

Fig. 2 Phase diagram of different car-following models. The
solid line represents the OV model (λ1 = λ2 = 0); the dash line
indicates the RV model (λ1 = 0.2, λ2 = 0); and the circle line
denotes the LVD model (λ1 = 0.2, λ2 = 0.2, γ = 0.4, s = 1)

Note that the stability conditionEq. (14) in this paper
is similar to the stability conditions of the OV model
(see Eq. (12) in Ref. [1]) and RV model (see Eq. (11a)
in Ref. [41]). For comparison, Fig. 2 plots the stabil-
ity regions for OV, RV, and LVD models respectively.
As shown in the figure, the LVD has the largest sta-
ble region. The finding indicates that by considering
the velocity difference between the major and adjacent
lanes, the proposed LVD model reduces the unstable
region and makes the cars running more stable under
the same condition.

As described before, the derivative of optimal veloc-
ity Eq. (9) can be obtained: V ′(�xn) = vmax

2 [1 −
tanh2(�xn − hc)]. From this equation, we can see that
at the turning point h = hc, the derivative V ′ of Eq. (9)
has the maximum value, i.e., vmax/2. Therefore, from
the Eqs. (14) and (16), for any car density, the uniform
flow is always stable when α > αc. Figure 3 shows
the neutral stability lines in the space of (�x, α) for
different λ2 with vmax = 3, and hc = 4. The solid
curves in the figure represent the neutral stability lines
with different values of λ2. The areas covered by the
solid lines decrease with the increase of λ2, and the
apex of each curve denotes the critical point. Outside
the each curve, the traffic flow is stable, and inside the
each curve, the traffic flow is unstable. From the figure,
we can see that with the increase of λ2, the area of sta-
ble region is increasing. This clearly indicates that by
considering the impact of the relative velocity between
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Fig. 3 Neutral stability lines in the headway-sensitivity. The
solid lines represent the neutral stability lines for various of λ2,
where the safety distance hc = 4 and the maximum velocity
vmax = 3

the major and adjacent lanes, the proposed LVDmodel
is more stable.

4 Nonlinear stability analysis

A nonlinear stability analysis of the proposed LVD
model is further conducted by using the reductive
perturbation method [12]. The analysis essentially
provides the solution of the mKdV equation which
describes the kink density wave. Based on the coarse-
grained scales for long-wavelength models, we con-
sider the slowly varying behavior at long-wavelength
near the critical point (hc, ac) and introduce slow scales
for space variable n and time variable t [12,25,37].
Then the slow variables X and T are defined as below:

X = ε (n + bt) and T = ε3t, 0 < ε � 1, (17)

where b is a to-be-determined constant. Adding a small
fluctuation εR(X, T ) as a function of space X and time
T , the headway can be written as [27]:

�xn (t) = hc + εR (X, T ) . (18)

By expanding Eq. (8) to the fifth order of ε and replac-
ing X and T by Eqs. (17) and (18), respectively, we
can derive the following nonlinear partial differential
equation:

ε2
[
b − V ′ − λ2 (γ − 1)

]

×∂X R + ε3
(
3b2τ

2
− V ′

2
− λ1b

−λ2 · γ s − 1

2

)
∂2X R + ε4

×
[
∂T R +

(
7b3τ 2

6
− V ′

6
− λ1b (1 + bτ)

2

− λ2 · γ s2 − 1

6

)
∂3X R

− V ′′′

6
∂X R

3
]

+ ε5
[
(3bτ − λ1) ∂X∂T R

+
(
5b4τ 3

8
− V ′

24
− λ1 · b

(
2b2τ 2 + 3bτ + 2

)

12

− λ2 · γ s3 − 1

24

)
∂4X R − V ′′′

12
∂2X R

3
]

= 0, (19)

where V ′ = dV (�xn)/d(�xn)|�x=hc ,
V ′′′ = d3V (�xn) /d(�xn)3|�x=hc . Near the criti-
cal point (hc, ac), by taking τ = (1 + ε2)τc and
b = V ′ + λ2(γ − 1), Eq. (19) can be simplified as

ε4
(
∂T R − g1∂

3
X R + g2∂X R

3
)

+ ε5
(
g3∂

2
X R + g4∂

2
X R

3 + g5∂
4
X R

)
= 0, (20)

where g1 =
(

V ′
6 + λ1b(1+bτc)

2 + λ2
(
γ s2−1

)
6 − 7b3τ 2c

6

)
,

g2 = − V ′′′
6 , g3 = 3b2τc

2 , g4 = 6bτc−2λ1−1
12 V ′′′,

g5 = − 23
8 b

4τ 3c + 12bτc−4λ1−1
24 V ′ + λ1

(
5b2τc
4 + 5b3τ 2c

2

− λ1b(1+bτc)
2 − b

6

)
+ λ2 · (12bτc−4λ1)

(
γ s2−1

)−(γ s3−1)
24 .

We make the following transformation for Eq. (20)

T ′ = g1T, R =
√
g1
g2

R′, (21)

then we obtain the regularized equation

∂T ′ R′ − ∂3X R
′ + ∂X R

′3 + ε

(
g3
g1

∂2X R
′ + g4

g2
∂2X R

′3

+g5
g1

∂4X R
′
)

= 0. (22)

Omitting the O(ε) term in Eq. (22), we get the
mKdV equation:

R′
0
(
X, T ′) = √

c tanh

√
c

2

(
X − cT ′) , (23)

where c is a propagation velocity of the kink–antikink
soliton solution, and c is determined by the O(ε) term.
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In order to determine the value of c, it is necessary
to consider the solvability condition [11,25]:
(
R′

0, M[R′
0]

)

=
∫ ∞

−∞
dX R′

0(X, T ′)M[R′
0(X, T ′)] = 0, (24)

where M[R′
0] = g3

g1
∂2X R

′ + g4
g2

∂2X R
′3 + g5

g1
∂4X R

′.
Integrating Eq. (24), we obtain the selected velocity

c = 5g2g3
2g2g5 − 3g1g4

,

then, based onEq. (21), the solution of themKdV equa-
tion (20) is given by

R (X, T ) =
√
g1c

g2
· tanh√

c/2 (X − cg1T ) . (25)

According to Eq. (9), we find that V ′ = vmax/2, V ′′′ =
−vmax. Thus, the amplitude A of the kink solution is
given by

A =
[
g1c

g2

(ac
a

− 1
)]1/2

with

ac = 3(vmax + 2λ2 (γ − 1))2

2vmax + 4λ1 (vmax + 2λ2 (γ − 1)) + 4λ2(γ s − 1)
.

Therefore, the kink–antikink densitywave soliton solu-
tion of the headway is given by

�xn(t) = hc +
√
g1c

g2

(αc

α
− 1

)
tanh

{√
c

2

(αc

α
− 1

)

·
[
n +

(
1 − cg1

(αc

α
− 1

))
t
] }

. (26)

Figure 4 shows a phase diagram of the headway
�x and sensitivity α. The coexisting and neutral sta-
bility curves are represented by the dotted and solid
lines, respectively. The coexisting curves are derived
from the solution of the mKdV equation. The coex-
isting phase consists of freely moving phase with low
density and congested phase with high density. The
headways in freely moving phase and congested phase
are denoted by �x = hc + A and �x = hc − A,
respectively. As shown in the figure, with an iden-
tical λ2, the coexisting and neutral stability curves
divide the whole region into three parts: the region
above the coexisting curve is stable, the region under
the neutral stability curve is unstable, and the region
between the coexisting and neutral stability curves is
metastable.

Fig. 4 Phase diagram of the headway �x and sensitivity α. The
coexisting curves and neutral stability curves are represented by
the dotted lines and solid lines, respectively.With an identical λ2,
the coexisting and neutral stability curves divide thewhole region
into three parts: where the region above the coexisting curve is
stable, the region under the neutral stability curve is unstable, and
the region between the coexisting and neutral stability curves is
metastable

Table 1 The relation of the critical sensitivity αc and the prop-
agation velocity c with the number of the concerning vehicles in
the adjacent lane s

s 1 2 3 4 5

αc 3.3429 3.4052 3.4700 3.5372 3.6071

c 19.1761 20.8316 24.5426 28.5063 27.7110

We further investigate whether the number of con-
cerning vehicles in the adjacent lane (i.e., s) will have
impact on the values of the critical sensitivity αc and
propagation velocity c. Table 1 lists the values of the
critical sensitivity αc and the propagation velocity c
with the varying values of s. From the table, we can
see that the critical sensitivity αc increases with the
increasing value of s, and the propagation velocity c
changes irregularly with the various s. Note a suitable
value of s needs to be determined in order to cater for
the need of the different versions of car-following sys-
tems. Obviously, if s = 1, the minimum value of the
critical sensitivity αc can be obtained, but the corre-
sponding value of propagation velocity c may not be
an appropriate value in the special case [28]. Therefore,
for the sake of definiteness and without loss of gener-
ality, we introduce a variable s in our model to cover
different car-following systems.
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5 Simulation

In this section, we carry out a serial of numerical simu-
lations to describe the proposed LVDmodel. Referring
to the work of Konishi [21], Ge [10] and Xue [41], the
initial parameters are set as:

In major lane: vmax = 4m/s, hc = 4m, a = 2 s−1,

vn(0) = 2m/s, N = 50, T = 0.1 s, where N is the
number of simulation cars, T is a sampling time (also
known as an interval time) which selects data at a reg-
ular interval from the simulation test.

For the adjacent lane, we assume that all the vehi-
cles have the same initial values and keep the same
traffic characteristics during thewhole simulation time.
In other words, all the vehicles on the major and adja-
cent lanes travel homeostatically with identical veloc-
ity and headway when the dynamic system is sta-
ble. To test the model, during the simulation, it is
assumed that a velocity disturbance appears, namely,
the leading car stops suddenly. In detail, we first let
all vehicles run uniformly without any extra distur-
bance for 0 ≤ n < 1000 (i.e., 0 ≤ nT < 100),
then let the leading car stop suddenly for a short time
(100 ≤ nT ≤ 103), and then the leading car recovers
its initial velocity.

Figure 5 shows the velocity-time patterns of the 3th,
25th, 50th cars generated by the LVD model (Fig. 5a)
and RV model (Fig. 5b), corresponding to the para-
meters of λ2 = 0.2 and λ2 = 0, respectively. From
the figure, we can observe the go-and-stop wave, oscil-
lating behavior and traffic jam phenomena. Both LVD
and RV models can capture traffic jam and velocity
changes of the following cars. The figure also shows
that compared with the RV model (Fig. 5b), the ampli-
tude of velocity fluctuation in LVD model is rela-
tively smaller. This indicates that the cars in LVD
model runmore smoothly and achieve stable status ear-
lier.

To further investigate the space-time evolution of
the traffic flow, we plot the distances between the first
leading and each following car over the change of time.
Figure 6 shows the space-time patterns for the LVD and
RV models. From the figure, we observe the change of
the space-time evolution and find that the disturbance
propagates backward when the leading car stops sud-
denly at time nT = 100 ∼ 103. The figure also indi-
cates that distance fluctuation in the LVD model ter-
minates earlier than that in the RV model. Taking the
50th car (the last one) as an example, in the LVDmodel

(a)

(b)

Fig. 5 Velocity-time plots for the LVDmodel (a) and RVmodel
(b). The leading car stops suddenly at time nT = 100 ∼ 103s
with a λ1 = 0.2, λ2 = 0.2, and b λ1 = 0.2, λ2 = 0. With time
increasing, the red solid line v3 represents the velocity profile of
the 3th car ahead, the blue dotted line v25 indicates the velocity
profile of the 25th car ahead, and the green dash line v50 denotes
the velocity profile of the 50th car ahead

the headway between the leading car and the 50th car
returns back to a constant at around 145s; but for the
RV model the terminal time of the disturbance is about
155s. This observation indicates that under the same
simulation condition, the LVD model is more stable
than the RV model.

Next, in order to simulate actual traffic with more
realistic data and compensate the shortage of Eq. (9), in
which the control parameters are unrealistic as pointed
by [17,33], a different optimal velocity function pro-
posed by Kontishi [21] is introduced:
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(a)

(b)

Fig. 6 Space-time patterns for the LVDmodel (a) andRVmodel
(b). The leading car stops suddenly at time nT = 100 ∼ 103s
with a λ1 = 0.2, λ2 = 0.2, and b λ1 = 0.2, λ2 = 0. The hor-
izontal axis indicates the distances between the leading car and
each following car. The longitudinal axis represents simulation
time including the disturbance time period. Each curve is corre-
sponding to one of simulated vehicles and denotes the change of
distance between the observed and leading cars with the change
of time. The red dotted lines (i.e., horizontal lines) in the two
figures indicate the end of distance change

V (�xn) = vmax

2

[
1 + H

(
2 · �xn − hc

ζ

)]
, (27)

where H is a saturation function and given by

H (ρ) =
⎧⎨
⎩
1, ρ > 1,
ρ, −1 ≤ ρ ≤ 1,
−1, ρ < −1.

The parameters in simulation experiment are set as:

Fig. 7 Velocity-time plot for different λ2 and different cars. A
curve containing two colors and corresponding to a value of λ2
represents velocity changes of the 25th and 51th car with sim-
ulation time. The solid line indicates velocity-time evolution of
25th and 51th carwhen λ2 = 0, the dotted line indicates velocity-
time evolution of 25th and 51th car when λ2 = 0.2, and the dash
line indicates velocity-time evolution of 25th and 51th car when
λ2 = 0.4

In major lane: vmax = 33.6m/s, hc = 25m, α =
2 s−1, vn(0) = 20m/s, N = 51, ζ = 23.3m, T =
0.1 s, where ζ is a distance parameter.

We assume that all vehicles in the adjacent lane
travel uniformly and steadily with an identical head-
way and a steady speed. The disturbance is generated
when the velocity of the first leading car drops to 10
suddenly during time 100–103s. Figure 7 shows the
velocity-time plots of different values ofλ2 for 25th and
51th cars. From thefigure,we can see that the amplitude
of the velocity fluctuation decreases with the increas-
ing value of λ2. This indicates that by considering the
relative velocity from the adjacent lane, vehicles can
run more homeostatically with a smaller amplitude of
velocity fluctuation.

Figure 8 shows the velocities of all vehicles at some
particular times. Each line presents the velocity of each
vehicle at a particular time. As shown in the figure,
when the first leading car slows down suddenly at time
100s, the velocity of the first leading car drops down
to 10 and the velocities of other cars still keep the same
initial speed of 20. After five seconds, the first leading
car recovers its previous speed, but the 6th and nearby
cars begins to slow down. It is not hard to see that the
velocity disturbance propagates backwards; and with
the time going by, the amplitude of velocity disturbance
decreases gradually.
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Fig. 8 Vehicle velocities at some particular simulation times.
Each line represents the velocities of all vehicles at a given
moment. The figure denotes the velocity evolution of all cars
with time passing

6 Summary

Car-following modeling is an important research sub-
ject for exploring the way out of traffic jam and for
developing a benign cooperative driving system. This
research extends the original OVmodel and develops a
new LVD model which considers the relative velocity
of two adjacent lanes. Particularly, this research intro-
duces the average strength coefficient γ to describe the
perturbation relationship between the major and adja-
cent lanes for the purpose of modeling the influence
caused by the velocity difference between the major
and adjacent lanes. The linear and nonlinear stability
analysis are also conducted in this research to obtain
a neutral stability condition and mKdV equation for
the proposed model. Furthermore, this research derives
both the neutral stability and coexisting lineswith vary-
ing response factor λ2 to define three regions, i.e.,
stable, metastable and unstable. At the end, through
simulation, this research demonstrates that the pro-
posed new car-following model which considers lane
velocity difference can enhance traffic stability. The
future work will be focusing on modeling the influ-
ence of the pedestrians and cyclists from the adjacent
lanes.
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