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Abstract Cable’s triad and two-to-one mode inter-
actions excited by support motions are modeled and
analyzed in a unified boundary modulation formula-
tion. Based upon proper scaling and a boundary reso-
nance concept, the small support motion is modeled
as a nonzero boundary modulation term for cable’s
reduced (slow) dynamics through attacking cable’s
continuous dynamic equations directly by the mul-
tiple scale method. Boundary resonance coefficients,
characterizing the boundary modulation effect, are
derived analytically for both cable’s triad and two-to-
one mode resonant dynamics. It is found that the bound-
ary resonance coefficients depend on both cable’s
boundary modal information and cable’s initial defor-
mation/sag. Frequency response diagrams based on
cable’s reduced models (modulation equations) are
obtained, with stability and bifurcation determined.
Finally, these approximate analytical results are ver-
ified by the numerical results through applying the
finite-difference method directly to cable’s original par-
tial differential equations.
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1 Introduction

Cables are extensively used in various engineering
fields, such as suspension/stay cable bridges, power
transmission lines, and mooring cables. Due to its elas-
ticity, initial sag, nonlinear axial stretching, and com-
plex boundary connections, cable’s dynamic behaviors
are very rich and extensive investigations into cable’s
dynamics have been undertaken by many researchers
in the past few decades [1,2].

Irvine and Caughey [3,4] established a linear cable
model and finished linear modal analysis. Triantafyl-
lou [5] conducted extensive researches into moor-
ing cables. Based upon the single-degree-of-freedom
(sdof) cable model, Hagedon et al. [6], Luongo et
al. [7], and Benedettini et al. [8] investigated free
and forced oscillations of elastic cables. Furthermore,
mode interactions are key for cable’s nonlinear dynam-
ics. Benedettini et al. [9] investigated modal cou-
pling between in-plane and out-plane motions. By
Galerkin discretization, Rao et al. [10], Perkins [11],
Lee et al. [12], and Srinil et al. [13] conducted exten-
sive investigations into cable’s planar and/or non-
planar 2:1 resonant interactions; Pakdemirli et al.
[14] examined cable’s 1:1 resonant interaction; Lacar-
bonara et al. [15,16] established a general frame-
work for cable’s 2:1, 1:1, and 3:1 resonant interac-
tions; Zhao and Wang [17] conducted further inves-
tigations into cable’s 3:1 internal resonance. And
internal resonance modeling and analysis for vari-
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ous structure members can be found in reference
[18].

Besides complex mode interactions and nonlinear
multimodal dynamic behaviors, cable’s various load-
ing/excitation sources are also key factors for struc-
tural design, such as wind loadings [19], rain-wind
loadings, and seismic loadings. One more important
excitation source, though not so obvious, is moving
support-induced excitations, or termed cable-flexible
support interactions [20] broadly.

Actually, our motivations for investigations into
cable–support interactions are twofold. Firstly, in sus-
pension/stay cable bridge’s cable–tower system, power
transmission cable–tower system and marine mooring
cable-floating platform system, an important bound-
ary excitation source of elastic cables is the support’s
oscillation, which might arise from seismic loadings
or sea surface wave loadings; secondly, for the cable–
deck or cable–arch system in structural/bridge engi-
neering, the main boundary excitation for cables is
deck’s (beam structures) or arch’s oscillations, which
might be caused by moving vehicles through vehicle–
bridge interactions.

A preliminary step for modeling cable–support
interaction is treating supports in motion as moving
boundary conditions for cables [21–24]. In this case,
the coupling is assumed to be one way, and the sup-
port acts as a boundary excitation only. This assump-
tion would be reasonable if the inertia/mass of the
support is much larger than that of cables. Using
Galerkin discretization, Perkins [11] investigated sus-
pended cable’s two-to-one resonance under longitu-
dinal/tangential support’s motion, and Benedettini et
al. [25] established a four-degree-of-freedom discrete
cable model for modal couplings under vertical/out-
plane support motions. Thereafter, most other work was
dedicated to stay/inclined cable’s nonlinear vibrations
caused by connected deck/tower’s motion [26–35].

Cai and Chen [26] investigated nonlinear responses
of a inclined cable subject to parametric/external res-
onances numerically. Lilien and Pinto da Costa [27]
investigated stay cable’s motions due to parametric
excitations. Pintoda Costaetal [28] studied the oscil-
lations of stay cables due to periodic motions of the
girder/pylon. Berlioz and Lamarque [29] investigated
an inclined cable’s motion under the boundary motions
theoretically and experimentally. Georgakis and Taylor
[30] investigated the nonlinear dynamics of cable stays
induced by sinusoidal deck’s motion. Wang and Zhao

[31] investigated inclined cable’s nonlinear multimodal
responses with deck’s sinusoidal motion. Gonzalez-
Buelga et al. [32] and Macdonald et al. [33] presented
modal stability analysis for inclined cable subjected to
support excitations. Kang et.al [34] investigated pri-
mary/subharmonic resonant responses of stay cable–
beam system. Essentially, these support-induced cable
dynamics, or roughly cable–support interactions, can
actually be categorized into three basic prototype mod-
els: cables with vertical, out-plane, and longitudinal
support motions.

In the previous investigations into cable–support
interactions, the main possible limitations include: (1)
Cable’s mode shape functions are usually simplified
into or replaced by taut string’s mode functions with
cable’s initial sag effect neglected [29–31,34,35]. (For
reference [35], more strictly, the exact cable mode func-
tions were used for evaluating the model’s large linear
terms, while the simpler taut string’s mode functions
were used for the small nonlinear terms); (2) almost
all the dynamic models are discrete due to Galerkin
discretization (by finite modes or even one mode); (3)
In the absence of consensus, the ambiguous support-
induced quasi-static motion modes [25,34,35] were
superposed on cable’s elastic/flexible mode (with fixed
boundaries).

For the first limitation, approximate taut string
modes used for short stay cables might be proper. How-
ever, for a long flexible suspended cable, the initial sag
cannot be neglected and the induced quadratic interac-
tion is the dominant nonlinearity.

For the second, as pointed out in references [36–
38], directly reduced models, i.e., by directly attack-
ing the original continuous partial differential equa-
tions through the multiple scale method, would be
more appropriate/accurate than the (classical low-order
Galerkin) discretized models, especially for character-
izing cable’s quadratic nonlinearity effect [37].

For the third, our key observation/assumption herein
is that the scale of support motion, in most engineer-
ing cases, is much smaller than that of the cable, and
the support motion’s influence on cable’s linear modal
analysis (fast dynamics) can thus be neglected tempo-
rally through proper scaling. The small amplitude sup-
port motion can be treated as a boundary modulation
term for cable’s reduced (slow) dynamics. Such scale
separation idea (boundary modulation) is similar to the
nonlinear normal mode analysis for continuous struc-
tures with weak geometric nonlinearities [15], espe-
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cially those with weak boundary nonlinearities [18,39].
For example, Shaw and Pierre [39], and also Nayfeh
[18], neglected nonlinear boundary springs’ influence
on a beam’s linear modal dynamics and treated them as
boundary modulations of beam’s reduced/slow dynam-
ics, when analyzing nonlinear normal modes of beams.
Our assumption can also be validated by the fact that
stay cable–deck (beam) systems exhibit many localized
modes that mainly involve the transversal cable dynam-
ics only, even full coupling between cable and deck
beam/support is assumed a priori [40]. This means that
the cable and deck/support can indeed be decoupled for
linear modal (fast) dynamics (decoupled in zero-order
approximation in terms of multiple scale method) for
possible parameters.

Thus, with the idea of boundary resonance in mind,
we aim to establish a boundary modulation formula-
tion for cable’s support-excited mode interactions using
multiple scale expansions in the direct form.

2 Problem statement

Consider the in-plane motion of a suspended elastic
cable, which is fixed at support O and coupled to a ver-
tically oscillating support at A, as depicted in Fig. 1.
Assuming the cable stretches in a quasi-static manner,
one can derive the following non-dimensional govern-
ing equations for cable’s in-plane vertical motion [17–
25]:

ẅ+2cẇ−w′′−α
(
w′′+y′′)

∫ 1

0

(
y′w′+ 1

2
w′2
)

dx=0

(1)

where w(x, t) denotes the cable’s in-plane vertical
displacement. The overdot indicates the differentia-
tion with respect to the non-dimensional time t ; the
prime indicates the differentiation with respect to the
non-dimensional coordinate x . The longitudinal kinetic

condensation technique has been utilized in Eq. (1),
owing to fact that the longitudinal dynamic timescale
is much small (thus fast) than the vertical/transversal
one. The non-dimensional stiffness α = EA/H =
8EA/mgl2, where E is the Young’s modulus, A is the
area of the cross section, H is the cable tension’s hor-
izontal component, m is the mass per unit length, g is
the gravitational acceleration. The sag-to-span ratio is
f = b/ l, and the non-dimensional cable’s initial sag
is y(x) = 4 f x(1 − x), where b is the sag, l is the span.

The fixed boundary condition at x = 0 and the time-
varying boundary condition at x = 1 induced by the
oscillating support A are

w (x, t) = 0, at x = 0
w (x, t) = z (t) = Z0 cos Ωt, at x = 1

(2)

In real engineering structures such as suspended/stay
cable bridges and mooring cables in marine engineer-
ing, vibration of towers/decks or floating- platforms is
always responsible for this moving boundary condi-
tion in Eq. (2) (seismic loadings/moving vehicles and
sea surface wave loadings might cause oscillations of
towers/decks and marine platforms, respectively.). It
is noted that no other external excitation is applied in
Eq. (1), and the only excitation is the support-induced
boundary excitation.

For a complete understanding cable’s nonlinear mul-
timodal dynamics, mode interaction’s modeling and
analysis is key. For quadratic nonlinearities, triad mode
resonance and its degenerate case, i.e., two-to-one reso-
nance, are fundamental. And they satisfy the following
resonance relations [18]

±ω1 ± ω2 ± ω3 = 0, triad resonance
ω2 = 2ω1, 2:1 resonance

(3)

where cable’s eigenfrequencies are denoted by ω1, ω2,

ω3, and these linear modal analysis results are cited
in “Appendix 1.” Any three/two eigenfrequencies sat-

Fig. 1 Illustration of a
suspended cable with a
vertically oscillating
support

123



1262 T. Guo et al.

isfying the resonance relations in Eq. (3) are called a
resonant cluster/pair in the present paper.

Based upon the Newton–Raphson algorithm and the
resonance relation in Eq. (3), one can find typical mode
resonance points in cables by sweeping the elasto-
geometric parameter λ2 = EA/mgl(8b/ l)3. For exam-
ple, we find out possible triad resonant interactions,
say

ω1 + ω3 − ω7 ≈ 0 (4)

with the elasto-geometric parameter λ1 = 13.88 or
λ2 = 23.67. And, ω1 + ω3 − ω5 ≈ 0 with λ3 = 5.96.
Also, ω5 ≈ 2ω1 [16] with λ4 = 9.26 or λ5 = 17.00,
and ω7 ≈ 2ω3 [16] with λ6 = 10.15. Here ωk, k =
1, 3, 5, 7 denote the eigenfrequency of cable’s k-th in-
plane mode.

3 Asymptotic modeling by the multiple scale
method

For the sake of brevity, following Lacarbonara [15], we
rewrite Eq. (1) in a compact form

ẇ − u = 0

u̇ + 2cu + L[w] − N2[w] − N3[w] = 0 (5)

where linear operator L , quadratic and cubic nonlinear
terms N2, N3 are defined as

L[w] = −w′′ − αy′′
∫ 1

0

(
y′w′)dx,

N2[w] = αw′′
∫ 1

0

(
y′w′)dx + αy′′

∫ 1

0

(
w′2/2

)
dx,

N3[w] = αw′′
∫ 1

0

(
w′2/2

)
dx (6)

And the boundary conditions are

w (x, t) = 0, u (x, t) = 0 at x = 0
w (x, t) = z (t) , u (x, t) = ż (t) at x = 1

(7)

An uniform asymptotic expansion of w is assumed
as

w (x, t) = εw1 (T0, T1) + ε2w2 (T0, T1) · · ·
u (x, t) = εu1 (T0, T1) + ε2u2 (T0, T1) · · · (8)

where Ti = εi t , and ε is a small bookkeeping para-
meter. To make damping, nonlinearity, and the non-
homogenous boundary condition in Eq. (7) be balanced
at the same order, ε2, the damping c and the support

motion can be rescaled as c → εc, Z0 → ε2Z0. Sub-
stituting Eq. (8) into Eq. (5), equating coefficients of
like powers of ε, we obtain

Order ε:

D0w1 − u1 = 0

D0u1 + L [w1] = 0 (9)

with homogenous boundary conditions

w1 = 0, u1 = 0 at x = 0 , 1 (10)

Order ε2:

D0w2 − u2 = −D1w1

D0u2 + L [w2] = −D1u1 − 2cu1 + N2 [w1] (11)

with non-homogeneous second-order boundary condi-
tions

w2 = 0, u2 = 0 at x = 0

w2 = Z0

2
eiΩT0 + cc,

u2(x, t) = iΩ
Z0

2
eiΩT0 + cc. at x = 1 (12)

It is noted that the scaling rule Z0 → ε2Z0 is impor-
tant for the above perturbation analysis, i.e., decoupling
the oscillating boundary from cable’s linear modal
(fast) dynamics on order ε and thus simplifying the
original problem significantly. As mentioned before,
such scale separation technique is also used by Shaw
[39] and Nayfeh [18] for deriving nonlinear normal
modes of beams with (pure) nonlinear resonant bound-
ary conditions.

3.1 Generic triad mode interaction under boundary
resonance

The solutions of the first-order problem in Eq. (9) are
assumed as

w1 =
3∑

k=1

Ak ( T1) φk (x) eiωkT0 + cc,

u1 =
3∑

k=1

iωk Ak (T1) φk (x) eiωk T0 + cc (13)

where φk and ωk are cable’s symmetric in-plane mode
and eigenfrequency. With a slight abuse of notations,
here ω1, ω2, ω3 represent an arbitrary triad resonant
cluster, say, ω1, ω3, ω7 or ω1, ω3, ω5 mentioned in
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Cable’s mode interactions under vertical support motions 1263

Sect. 2. Their detailed mathematical forms are pre-
sented in “Appendix 1”, and cc is short for complex
conjugate.

Substituting Eq. (13) into the second-order problem
in Eq. (11), we obtain

D0w2 − u2 = −
3∑

k=1

D1Akφk (x) eiωk T0 + cc, (14)

D0u2+L[w2]=−
3∑

k=1

iωk (D1Ak+2cAk) φk(x)e
iωk T0

+ A1A2ei(ω1+ω2)T0Π12 + A3 Ā1ei(ω3−ω1)T0Π31

+ A3 Ā2ei(ω3−ω2)T0Π32 + NST. + cc (15)

The nonlinear coefficients Π12,Π31,Π32 in Eq. (15)
are defined in “Appendix 2”, and NST is short for non-
secular/resonant terms. The non-homogeneous 2nd-
order problems in Eqs. (14), (15) and (12) should satisfy
certain solvability conditions for non-trivial solutions.
The problem is self-adjoint, and the adjoint homo-
geneous solutions are q† = [iωk, 1] φk (x) e−iωk T0 ,
which should be ‘orthogonal’ to the right-hand sides
(RHS) of Eqs. (14) and (15).

In most cases, i.e., with homogeneous boundary
conditions, resonant/secular terms, distributed in the
whole structure domain, are usually caused by exter-
nal/parametric excitations or internal resonances. How-
ever, the present non-homogenous boundary conditions
in Eq. (12) might also be resonant, although this reso-
nance appears to be ‘localized’ at the boundary. More
care would be needed to derive the solvability condi-
tions for the support-induced resonant responses. The
main difficulties lie in that the adjoint solutions q† is
NOT strictly orthogonal to the LHS/RHS of Eqs. (14)
and (15). Actually, it turns out that certain nonzero
‘boundary terms’ (BT) would arise in the process of
integration by parts.

Introducing internal and external detuning parame-
ters, i.e., σ1 and σ2, we write the resonance relations
and the primary excitation frequency Ω as

ω3 = ω1 + ω2 + εσ1, Ω = ωp + εσ2, p = 1, 2, 3

(16)

We multiply the right-hand-sides of Eqs. (14) and
(15) by the adjoint solutions q† = [iωk, 1] φk (x) e−iωk T0

and integrate in the domain [0, 1] × [0, τ0], where τ0

is the typical period of w2 and u2 with respect to T0

[18,38]. We thus obtain the right-hand-sides (RHS) as

RHS=
{
−2iω1 (D1A1+μ1A1)+Γ1 Ā2A3eiσ1T1

}
τ0δ1k

+
{
−2iω2 (D1A2 + μ2A2) + Γ2 Ā1A3eiσ1T1

}
τ0δ2k

+
{
−2iω3 (D1A3+μ3A3)+Γ3A1A2e−iσ1T1

}
τ0δ3k

(17)

where the Kroneck delta δ jk = 1, j = k; δ jk =
0, j �= k, and the triad resonance coefficients Γk and
the dampings μk in Eq. (17) can be written as

Γ1 = 〈φ1,Π32 (x)〉 , Γ2 = 〈φ2,Π31 (x)〉 ,

Γ3 = 〈φ3,Π12 (x)〉 , μk =
〈
c (x) , φ2

k

〉
(18)

if introducing the inner product for any two smooth
functions ϕ1(x) and ϕ2(x)

〈ϕ1, ϕ2〉 =
∫ 1

0
ϕ̄1 (x) ϕ2 (x) dx (19)

Noting Eq. (16), we rewrite the resonant boundary con-
ditions in Eq. (7) as

w2 = Z0
2 eiΩT0 + cc. = eiωpT0 Z0

2 eiσ2T1 + cc. at x = 1

u2 (x, t) = iωp
Z0
2 eiωpT0 eiσ2T1 + cc. at x = 1

(20)

Multiplying the left-hand sides of Eqs. (14) and (15) by
the adjoint solutions q† = [iωk, 1] φk (x) e−iωk T0 and
integrating in the domain [0, 1]×[0, τ0], we obtain the
more subtle left-hand-sides (LHS), explicitly

LHS =
∫ τ0

0

∫ 1

0

{
iωkφke−iωk T0 (D0w2 − u2)

+ φke−iωk T0 (D0u2 + L [w2])
}

dxdT0

=
∫ τ0

0

∫ 1

0

{
−D0

(
iωkφk (x) e−iωk T0

)
w2

−
(
iωkφk (x) e−iωk T0

)
u2

}
dxdT0

+
∫ τ0

0

∫ 1

0

{
−D0

(
φk (x) e−iωk T0

)
u2

+ L
[
φk (x) e−iωk T0

]
w2

}
dxdT0 + BT

= −
∫ τ0

0

∫ 1

0

[
D0
(
φk (x) eiωk T0

)− iωkφk (x) eiωk T0

]

︸ ︷︷ ︸
=0

· u2dxdT0

+
∫ τ0

0

∫ 1

0

[
D0
(
iωkφk (x) eiωk T0

)+L
[
φk (x) eiωk T0

]]

︸ ︷︷ ︸
=0

· w2dxdT0 + BT

= BT �= 0 (21)

123



1264 T. Guo et al.

where integration by parts is used, and the over-bar
means complex conjugate manipulations. As marked
by the brace, the last two integrals are exactly equal to
zero as the braced integrands are actually the first-order
linear dynamics denoted by Eq. (9). In this integra-
tion process, those nonzero ‘boundary terms’ arising
from the non-homogeneous resonant boundary con-
ditions, i.e., Eq. (20), are denoted by BT. And, it is
these ‘boundary terms’ (BT) that incorporate those res-
onant boundary conditions into cable’s reduced dynam-
ics/modulation equations. If the boundary conditions
are non-resonant or homogeneous (the support is fixed),
extensively treated in references, the boundary terms
would be zero, i.e., BT=0.

The above nonzero boundary terms BT herein can be
obtained as follows. Recall the cable’s linear integral-
differential operator

L[w] = −w′′ − αy′′
∫ 1

0

(
y′w′)dx (22)

Thus the boundary terms BT are obtained by inspecting
into

∫ τ0

0

∫ 1

0
φk (x) e−iωk T0 L [w2]dxdT0

=
∫ τ0

0

∫ 1

0
φk (x) e−iωk T0

[
−w′′

2 −αy′′
∫ 1

0

(
y′w′

2

)
dx

]
dxdT0

= −
∫ τ0

0

[ (
φk (x)w′

2

)∣∣1
0 − (

φ′
k (x)w2

)∣∣1
0

+
∫ 1

0

[
φ′′
k (x)w2

]
dx

]
e−iωk T0 dT0

− α

∫ τ0

0

{[
(
φk (x) y′)∣∣1

0 −
∫ 1

0
φ′
k (x) y′dx

]

·
[
(
y′w2

)∣∣1
0 −

∫ 1

0

(
y′′w2

)
dx

]}
e−iωk T0 dT0

=
∫ τ0

0

(
φ′
k (x)w2

)∣∣1
0 e−iωk T0 dT0

+ α

∫ T0

0

(
y′w2

)∣∣1
0

∫ 1

0
φ′
k y

′dxe−iω1T0 dT0

−
∫ τ0

0

∫ 1

0

(
φke−iωk T0

)′′ ·w2dxdT0

−
∫ τ0

0

∫ 1

0

[
αy′′

∫ 1

0

(
φke−iω1T0

)′
y′dx

]
· w2dxdT0

=
[
φ′
k (1) + αy′ (1)

∫ 1

0
φ′
k y

′dx
]
Z0

2
eiσ2T1τ0δkp

︸ ︷︷ ︸
BT

+
∫ τ0

0

∫ 1

0
L
[
φk (x) e−iωk T0

]
w2dxdT0 (23)

The linear mode functionφk satisfiesφk (0) = φk (1) =
0, and this is used in the third equality. Furthermore,
the non-homogeneous resonant boundary conditions in
Eq. (20) are used in the last equality above.

Introducing boundary resonance dynamic coeffi-
cients Λk

Λk = φ′
k (1) + αy′ (1)

∫ 1

0
y′φ′

k (x) dx, k = 1, 2, 3

(24)

Thus, the nonzero boundary terms BT or LHS can be
written as

LHS = BT = Λk
Z0

2
eiσ2T1τ0δkp (25)

where the Kronecker delta δkp = 1, k = p; δkp =
0, k �= p. One notes that the non-homogeneous reso-
nant boundary conditions in Eq. (20) are of vital impor-
tance for deriving Eq. (25). We point out that the bound-
ary dynamic coefficients Λk are closely related with the
first-order derivative of the modal function, i.e.,φ′

k and
also the cable’s initial sag y(x). Further discussion on
the boundary coefficient Λk are detailed in Sect. 4.

Note that the LHS denoted in Eq. (25) is NOT equal
to zero, leading to a new boundary modulation term for
the amplitudes Ak. This is due to the ‘boundary reso-
nant terms’ in Eq. (20). In nonlinear structure dynamic
analysis, most resonant/secular sources originate from
the RHS of perturbed equations, say Eq. (11), not LHS,
such as internal resonance, primary external resonance,
and parametric resonance terms. Thus, this represents
another different resonant interaction mechanism in
cable dynamics, and we call this as ‘(localized) bound-
ary resonance’ between the cable and support, in com-
parison with ‘(distributed) bulk resonance’ treated by
most previous work, i.e., external/parametric excita-
tions, or internal resonance, occurring in the whole
interior domain of cables.

Finally, letting LHS = RHS, we obtain the cable’s
reduced dynamics (modulation equations) with bound-
ary resonance due to support’s motion z(t)

D1A1 = −μ1A1 − i
Γ1

2ω1
Ā2A3eiσ1T1 + i

Λ1

4ω1
Z0eiσ2T1δ1p

(26)

D1A2 = −μ2A2 − i
Γ2

2ω2
Ā1A3eiσ1T1 + i

Λ2

4ω2
Z0eiσ2T1δ2p

(27)
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Cable’s mode interactions under vertical support motions 1265

D1A3 = −μ3A3 − i
Γ3

2ω3
A1A2e−iσ1T1 + i

Λ3

4ω3
Z0eiσ2T1δ3p

(28)

Our remark here is that the above boundary resonant
interactions, in essence, are one-way coupling between
the cable and support, i.e., the support’s motion ampli-
tude Z0 is constant and not affected by the cable’s ten-
sion. Our future work would be to extend the present
boundary modulation formulation/approach to the two-
way coupling /interaction between the cable and (elas-
tic) support, i.e., cable’s motion would induce modula-
tions of support’s motion z(t).

The boundary resonant modulation equations in Eqs.
(26)–(28) appear to be similar to those with exter-
nal excitations. Roughly, the effect of vertical bound-
ary resonant excitations is equivalent to the externally
forced resonance. In mathematical forms, this is true.
However, such remark is not rigorous enough from a
physics viewpoint. The boundary resonance induced
excitation amplitude Λk Z0 include cable’s boundary
modal information, i.e., φ′

k (1), and even the initial
deformation/sag, i.e., y(x), which are not embodied
in the case of externally forced resonance.

From the above derivations, it might also be tempt-
ing to assume that only principal /primary boundary
resonance is possible. This is partially right. Actually,
the limitation of our present boundary resonant modu-
lation formulation is that the cable’s resonant boundary
condition in Eq. (20) is independent of cable’s displace-
ments (thus linear). Nonlinear boundary conditions are
possible, which would induce other nonlinear boundary
resonance/modulation patterns. For example, a nonlin-
ear boundary resonance pattern for beams with nonlin-
ear boundary springs was derived by Shaw and Pierre
[39] and Nayfeh [18].

3.2 Degenerate two-to-one mode interaction under
boundary resonance

For 2:1 internal resonance, the solutions of the first-
order problem in Eq. (9) are assumed as

w1 =
2∑

k=1

Ak (T1) φk (x) eiωkT0 + cc,

u1 =
2∑

k=1

iωk Ak (T1) φk (x) eiωk T0 + cc (29)

where φk and ωk are cable’s symmetric in-plane mode
and eigenfrequency, and ω1, ω2 constitute an arbitrary
2:1 resonant pair.

Substituting Eq. (29) into the second-order problem
in Eq. (11), we obtain

D0w2 − u2 = −
2∑

k=1

D1Akφk (x) eiωkT0 + cc,

(30)

D0u2 + L [w2] = −
2∑

k=1

iωk (D1Ak + 2cAk)

×φk (x) eiωk T0

+ A1A1ei2ω1T0Π1

+ A2 Ā1ei(ω2−ω1)T0Π21+NST.+cc

(31)

The nonlinear coefficients Π1,Π21 are defined in
“Appendix 2”. Introducing internal and external detun-
ing parameters, i.e., σ1 and σ2, we write the resonance
relations and the primary excitation frequency Ω as

ω2 = 2ω1 + εσ1, Ω = ωp + εσ2, p = 1, 2 (32)

Thus the corresponding resonant boundary conditions
in Eq. (7) can be rewritten as

w2 = Z0
2 eiΩT0 + cc. = eiωpT0 Z0

2 eiσ2T1 + cc. at x = 1

u2 (x, t) = iωp
Z0
2 eiωpT0 eiσ2T1 + cc. at x = 1

(33)

In the similar manner detailed in Sect. 3.1, mul-
tiplying Eqs. (30) and (31) by the adjoint solutions
q† = [iωk, 1] φk (x) e−iωk T0 and integrating in the
domain [0, 1] × [0, τ0], letting LHS=RHS, we obtain
the cable’s 2:1 modulation equations with ‘boundary
resonant excitations’ due to support’s vertical motions

D1A1 = −μ1A1 − i
Γ1

2ω1
Ā1A2eiσ1T1 + i

Λ1

4ω1
Z0eiσ2T1δ1p

(34)

D1A2 = −μ2A2 − i
Γ2

2ω2
A1A1e−iσ1T1 + i

Λ2

4ω2
Z0eiσ2T1δ2p

(35)

where the triad resonance coefficients Γk and the damp-
ings μk are

Γ1 = 〈φ1,Π21 (x)〉 , Γ2 = 〈φ2,Π1 (x)〉 ,

μk =
〈
c (x) , φ2

k

〉
(36)

and the boundary resonance coefficients

123



1266 T. Guo et al.

Λk =φ′
k (1)+αy′ (1)

∫ 1

0
y′φ′

k (x) dx, k=1, 2 (37)

In a similar manner, for higher precisions, we can
also seek a 2nd-order multiple scale expansion of the
support-induced cable 2:1 resonant dynamics. Assum-
ing c → ε2c, Z0 → ε3Z0, and Ω = ωp + ε2σ2, fol-
lowing the basic expansion procedures detailed above,
and using the method of reconstitution [38], we derive
the associated modulation equations as

dA1

dt
= −μ1A1 − i

Γ1

2ω1
Ā1A2eiσ1t − i

K11

2ω1
A1 |A1|2

− i
K12

2ω1
A1 |A2|2 + i

Λ1

4ω1
Z0eiσ2tδ1p (38)

dA2

dt
= −μ2A2 − i

Γ2

2ω2
A1A1e−iσ1t − i

K22

2ω2
A2 |A2|2

− i
K21

2ω2
A2 |A1|2 + i

Λ2

4ω2
Z0eiσ2tδ2p (39)

where the 2nd-order nonlinear coefficients K11, K12,

K21, K22 can be obtained in the similar way proposed
by Lacarbonara [15] and here the differentiation rule
∂/∂t = D0 + εD1 + ε2D2 and ε = 1 has been substi-
tuted.

4 Discussions on the boundary resonance
coefficient Λk

Noting λ2 = 64α f 2 and using integration by parts, we
can simplify the boundary coefficient Λk into

Λk = φ′
k (1) + αy′ (1)

{
y′φk (x)

∣∣1
0 −

∫ 1

0
y′′
k φk (x) dx

}

= φ′
k (1) + αy′ (1)

(
8 f
∫ 1

0
φk (x) dx

)

= φ′
k (1)
︸ ︷︷ ︸

Λk1

− 0.5λ2
∫ 1

0
φk (x) dx

︸ ︷︷ ︸
−Λk2−sag effect

= Λk1 + Λk2 (40)

4.1 Cable’s sag effect

We note that the boundary coefficients Λk consists of
two parts: The first is the boundary value of the mode
function’s first-order derivative, i.e., Λk1, and the sec-
ond part is a combined/hybrid effect of both the mode
function and the initial sag, i.e., Λk2. Therefore, from
Eq. (40) we conclude that:

(a) For the same elasto-geometric coefficient λ: The
boundary coefficient’s degenerate form is Λk =
Λk1 = φ′

k (1) for cable’s asymmetrical modes.
And for symmetric modes φk (x), we can see that
the initial deformation y(x) would induce another
nonzero sag-related term, i.e., Λk2;

(b) For the same symmetric mode functionφk (x): Note
that the boundary coefficient Λk (λ) depends on
λ in a complicated way, rather than the apparent
quadratic way. This is because the mode function
φk (x) itself is also related to the elasto-geometric
coefficient λ. We illustrate the boundary coefficient
Λk for the first four in-plane symmetric modes in
the following.

From Fig. 2, four main characteristics can be
observed:

(1) For each boundary coefficient, there is a maximum
|Λk | (absolute value) at λm , and the coefficient is
dominated by the sag-induced effect, i.e., Λk2, in
the vicinity of this maximum;

(2) The boundary coefficient’s first part, i.e., Λk1, turns
positive from negative as λ is increased. Thus there
is always a λ where Λk1 is exactly equal to zero
and the boundary excitation effect is caused only
by the sag-induced term, i.e., Λk2;

(3) For small elasto-geometric parameters λ, the sag-
induced Λk2 is small, and the boundary coefficient
is can be approximated by Λk1 ≈ φ′

k (1). Roughly,
this domain can be described as 0 ≤ λ ≤ λ0, where
λ0 denotes the crossing point of Λk1 and Λk2. We
point out this observation is in accordance with the
fact that the boundary coefficient’s degenerate form
is Λk = Λk1 = φ′

k (1) for really taut strings with
λ → 0.

(4) Furthermore, both λm and λ0 introduced above get
larger as the order of mode functions increases,
i.e, the domain where Λk1 ≈ φ′

k (1) expands. This
means that if boundary resonance occurs at modes
of higher orders, the initial sag’s effect on the
boundary modulation becomes less important for
many small and even intermediate sagged cables.

4.2 Multiple support motions

The approach used to derive the above boundary coeffi-
cient Λk at x = 1 is general in the mathematical sense.
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Fig. 2 Boundary resonance
coefficient Λk associated
with the first four symmetric
modes

0 10 20 30
−80

−60

−40

−20

0

λ
Λ

n

0 10 20 30
−300

−200

−100

0

λ

Λ
n

0 10 20 30
−40

−20

0

20

λ

Λ
11

Λ
12 0 10 20 30

−200

−100

0

100

λ

Λ
51

Λ
52

0 10 20 30
−100

−50

0

50

λ

Λ
31

Λ
32

0 10 20 30
−300

−200

−100

0

100

λ

Λ
71

Λ
72

Λ
1

Λ
7

Λ
5

Λ
3

Therefore, in a similar manner, we can obtain the cor-
responding boundary coefficient at x = 0, explicitly

Λk |x=0 = −φ′
k (0) − αy′ (0)

∫ 1

0
y′φ′

k (x) dx

= −φ′
k (0) − αy′ (0)

(
8 f
∫ 1

0
φk (x) dx

)

= −φ′
k (0)

︸ ︷︷ ︸
Λk1

− 0.5λ2
∫ 1

0
φk (x) dx

︸ ︷︷ ︸
−Λk2−sag effect

(41)

Considering that φ′
k (0) = −φ′

k (1) for symmetric
mode functions, and φ′

k (0) = φ′
k (1) for antisymmetric

ones, we therefore conclude

Λk |x=0 = Λk |x=1, φk is symmetric
Λk |x=0 = − Λk |x=1, φk is antisymmetric

(42)

4.3 Cable–support (flexible) dynamic interaction

We believe that the proposed concept of boundary res-
onance coefficient paves the way for coupled model-

ing of cable-flexible support dynamic interaction in an
asymptotic sense. Noting that the cable and the sup-
port can be loosely considered as ‘boundary’ for each
other. Therefore, similar to the support-induced bound-
ary coefficient for the cable, one can also, with proper
extensions, establish the cable-induced boundary coef-
ficient for the flexible support, through deriving the
solvability conditions. And the cable and the flexible
support would be coupled naturally on the slow time
scale, more explicitly, coupled by the modulation equa-
tions, through two sets of boundary coefficients.

5 Dynamic analysis and nonlinear responses for
illustrative examples

In this section, we would present the dynamic analy-
sis for the support-induced cable system. The modula-
tion equations established in precedent sections can be
considered as cable’s reduced dynamic models and our
following analysis would be based upon these mod-
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els. For the sake of simplicity, we rewrite the mod-
ulation equations through polar transformations [18].
All the approximate analytical results based upon these
reduced models would also verified by direct numerical
simulations using the finite-difference method.

5.1 Modulation equations for triad mode resonant
interaction

Introducing the following transformations

Ak (T1) = 1

2
ak (T1) eiβk (T1), k = 1, 2, 3 (43)

If the boundary resonance is applied to the two low-
frequency modes of the resonant cluster, only single-
mode solutions would exist. This is similar to that of
externally forced resonance [18]. Thus setting p = 3
in Eqs. (26)–(28), we mainly restrict our attentions to
triad mode coupled solutions in the following numeri-
cal study. For the generic triad resonance, substituting
the transformation in Eq. (43) into the Eqs. (26)–(28),
we obtain the amplitude equations

a′
1 = −μ1a1 + Γ1

4ω1
a2a3 sin (γ1) (44)

a′
2 = −μ2a2 + Γ2

4ω2
a1a3 sin (γ1) (45)

a′
3 = −μ3a3 − Γ3

4ω3
a1a2 sin (γ1) − Λ3

2ω3
Z0 sin (γ2)

(46)

and the (relative) phase equations

γ ′
1 = σ1 + Γ1

4ω1

a2a3

a1
cos (γ1) + Γ2

4ω2

a1a3

a2
cos (γ1)

− Γ3

4ω3

a1a2

a3
cos (γ1) + Λ3

2ω3

Z0

a3
cos (γ2) (47)

γ ′
2 = σ2 + Γ3

4ω3a3
a1a2 cos (γ1) − Λ3

2ω3

Z0

a3
cos (γ2)

(48)

where γ1 = β3 −β2 −β1 +σ1T1, and γ2 = σ2T1 −β3.
Thus, we obtain the autonomous modulation equations
in the polar form, i.e., Eqs. (44)–(48). After solving
these equations, we derive cable’s first-order triad res-
onant asymptotic responses as

w (x, t) = ε {a1 cos (ω̃1t + ν1) φ1 (x)

+ a2 cos (ω̃2t + ν2) φ2 (x)

+ a3 cos (Ωt − γ2) φ3 (x)} + O(ε2) · · ·
(49)

where ω̃1 = ω1 + εβ ′
1, ω̃2 = ω2 + εβ ′

2, ω̃1 + ω̃2 =
Ω, ν1 + ν2 = −γ1 − γ2, and ε can be absorbed into
ai , or equivalently be set ε = 1 in the numerical simu-
lation.

Setting a′
1 = a′

2 = a′
3 = 0 in Eqs. (44)–(46) and

γ ′
1 = γ ′

2 = 0 in Eqs. (47) and (48), we can obtain
equilibrium solutions by the Newton–Raphson algo-
rithm (combined with the homotopic algorithm [41]).
By sweeping the detuning parameter σ2, frequency
response diagrams are then constructed through the
numerical continuation software package XPP-AUTO
[42], with the pseudo-arclength method embedded. The
equilibrium solutions’ stability is determined by check-
ing that the real part of each eigenvalue of the linearized
system matrix is negative or not.

5.2 Modulation equations for two-to-one resonant
interaction

A reasonable multiple scale expansion, or equiva-
lently a reliable reduced dynamic model(i.e., mod-
ulation equations) requires that the cable’s response
amplitudes and the detuning parameters for resonant
interactions/excitations should be small. Therefore, for
reduced model’s higher precision, we would use the
2:1 resonant modulation equations derived by the 2nd-
order expansions in the following, i.e., Eqs. (38) and
(39). Setting p = 1 in Eqs. (38) and (39), and using the
polar transformation

Ak (t) = 1

2
ak (t) eiβk (t), k = 1, 2 (50)

we obtain the amplitude equations

a′
1 = −μ1a1 + Γ1

4ω1
a1a2 sin (γ3) − Λ1

2ω1
Z0 sin (γ4)

(51)

a′
2 = −μ2a2 − Γ2

4ω2
a2

1 sin (γ3) (52)

and the (relative) phase equations

γ ′
3 = σ3 + Γ1

2ω1
a2 cos (γ3) − Γ2

4ω2

a2
1

a2
cos (γ3)

−Λ1

ω1

Z0

a1
cos (γ4) − K22

8ω2
a2

2 − K21

8ω2
a2

1 + K11

4ω1
a2

1

+K12

4ω1
a2

2 (53)
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γ ′
4 = σ4 + Γ1

4ω1
a2 cos (γ3) − Λ1

2ω1

Z0

a1
cos (γ4)

+K11

8ω1
a2

1 + K12

8ω1
a2

2 (54)

where γ3 = β2 − 2β1 + σ1t , and γ4 = σ2t − β1.
Thus we obtain the autonomous modulation equations
in the polar form, i.e., Eqs. (51)–(54). After solving
these equations for a1, a2, γ3, and γ4, we derive cable’s
2nd-order asymptotic responses as

w (x, t) = ε {a1 cos (Ωt − γ4) φ1 (x)

+ a2 cos (2Ωt + γ3 − 2 γ4) φ2 (x)}
+ 1

2
ε2
{
a2

1

[
cos (2Ωt − 2γ4) Ψ11 (x) + χ11 (x)

]

+ a2
2

[
cos (4Ωt + 2γ3 − 4γ4) Ψ22 (x) + χ22 (x)

]

+ a2a1
[
cos (3Ωt + γ3 − 3γ4) Ψ21 (x)

+ cos (Ωt + γ3 − γ4) χ21 (x)
]+ · · · }+O(ε3) · · ·

(55)

where the 2nd-order shape functions Ψ11, Ψ22, Ψ21,

χ11, χ22, χ21 are determined by in a similar way of
Lacarbonara [15], which is not repeated here. And
ε = 1 is used in the numerical simulation.

Similar to Sect. 5.1, setting a′
1 = a′

2 = 0 in Eqs.
(51) and (52) and γ ′

3 = γ ′
4 = 0 in Eqs. (53) and (54),

the equilibrium solutions are obtained by the Newton–
Raphson algorithm. And the frequency response dia-
grams are then constructed by the pseudo-arclength
method included in AUTO.

5.3 Numerical validations: finite-difference method

To validate the approximate analytical results of the
reduced model obtained by the multiple scale method,
based upon the finite-difference method, we use a
time-stepping program coded by C++ to simulate
the cable’s dynamic responses directly. We note that
the finite-difference method was also used to study
cable’s nonlinear dynamics by the authors in refer-
ences [20,43]. Briefly, using the second-order finite-
difference scheme,

∂ ( )

∂x
≈ ( )i+1 − ( )i−1

2�x
,

∂2 ( )

∂x2 ≈ ( )i+1 − 2 ( )i + ( )i−1

�x2 ,

∂ ( )

∂t
≈ ( ) j+1 − ( ) j−1

2�t
,

∂2 ( )

∂t2 ≈ ( ) j+1 − 2 ( ) j + ( ) j−1

�t2 ,

(56)

we present the discretized version of the cable dynam-
ics in Eq. (1) as

wi, j+1 = 1

(1 + c�t)�x2

{(
1 + αS�t2

)
wi−1, j

− (1 − c�t)�x2wi, j−1

+
(

2�x2 − 2�t2 − 2αS�t2
)

wi, j

+
(
�t2+αS�t2

)
wi+1, j −8α f S�t2�x2

}
(57)

where S is the integral term in the cable equation and
is obtained by the Simpson’s integral rule

S =
∫ 1

0

(
y′w′ + 1

2
w′2
)

dx

≈ �x

3

⎧
⎨

⎩
s0 + 2

n/2−1∑

i=1

s2i + 4
n/2∑

i=1

s2i−1 + sn

⎫
⎬

⎭

si
�= 4 f (1 − 2�xi)

wi+1 − wi−1, j

2�x

+1

2

(
wi+1 − wi−1, j

2�x

)
, i = 0, 1, · · · n (58)

And the support-induced boundary excitation, Eq. (2),
i.e., is discretized as

w0, j = 0, wn, j = Z0 cos
(
Ω t j

)
, t j = j�t (59)

We split the cable into 1000 segments, i.e., the space
step �x = 0.001, and set the time step �t = 0.0001.
To make the responses reach steady, the total simulation
time T is chosen long enough and we have to admit that
the simulation is really time-consuming (The number
of time steeping N = T/�t ranges from 4e6 to 1.5e7 in
our simulation, depending on the guessed initial condi-
tions each time.). After the cable’s steady responses
are obtained, we compare the numerical results to
the approximate analytical ones by two complemen-
tal approaches.

The first approach is to extract modal amplitudes
and frequencies from the numerical multimodal time
history responses using the fast Fourier transforma-
tion technique (FFT) and then compare the extracted
modal quantities with those frequency response dia-
grams based upon the modulation equations.

The second approach is to reconstruct cable’s time
history responses using the approximate analytical
modal results from the modulation equations. And
these reconstructed time history responses are then
compared with those responses obtained directly by
the finite- difference program.
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Table 1 Cable’s triad resonance coefficients and boundary res-
onance coefficients (α = 760)

λ σ1 Γk (k = 1, 2, 3) Λ3(Λ7)

13.88 −0.0005 6835.5 −50.9398

13.96 −0.0500 6844.4 −51.2830

Table 2 Cable’s boundary resonance coefficient and 2:1 reso-
nant nonlinear coefficients (α = 760, λ = 9.26, σ1 = 0.005)

Λ1 Γ1 Γ2 K11 K22 K12
(=K21)

−17.761 1355.890 677.946 1.770e6 −2.668e7 3.017e6

5.4 Results and discussions

We calculate the cable’s triad and two-to-one resonant
coefficients and corresponding boundary coefficients in
Tables 1 and 2, respectively. (Note that Λ3 in Table 1 is
actually the boundary coefficient associated with ω7, as
the triad resonant modes ω1, ω3, ω7 have been denoted
by ω1, ω2, ω3 in our theoretical formulations.)

In the following figures, both the approximate ana-
lytical results from the multiple scale method(MSM)
and the finite-difference method(FDM) are presented.
The stable and unstable equilibrium solutions from
MSM are denoted by solid and dotted lines, respec-
tively. And the results from FDM are represented by
filled circles.

Frequency responses for triad mode resonance, with
detuning parameter σ1 = −0.0005(∼0) and −0.05
(<0), are illustrated in Figs. 3 and 4, respectively.
In both cases, the single-mode equilibrium solutions
lose stability and bifurcate into stable triad mode cou-
pled solution at points PF1 and PF2, i.e., pitchfork
bifurcations. These stable triad coupled solutions turn
unstable through saddle-node bifurcations at SN1 and
SN4, and regain stability finally at SN2 and SN3, again
through saddle-node bifurcations. It is noted that the
frequency response diagram is nearly symmetric for
σ1 = −0.0005 ∼ 0, while bending to the left or the
left for σ1 = −0.005 < 0. Our further numerical sim-
ulations(not shown) also indicate that the frequency
response diagram would bend to the right, if a positive
detuning parameter is chosen, say σ1 = 0.005 > 0.

Also shown in Figs. 3 and 4 are modal quanti-
ties extracted from the results of the finite-difference

method(FDM), denoted by filled circles. We note that in
the main parameter domain, the agreement between our
approximate analytical results(using MSM) and those
from FDM is satisfactory. Note that in both Figs. 3
and 4, the left-most (σ2 = −0.045) numerical results
from FDM are attractive to cable’s single-mode solu-
tion, rather than the triad coupled one.

Furthermore, in Figs. 5 and 6, typical time history
responses obtained by FDM and those reconstructed
from MSM’s results are also compared. For Fig. 5, both
the response amplitude and corresponding power spec-
trum, coincide very well, except for the phases of time
history responses.

We point out that there is no need to be bothered by
the phase issue and actually the phase difference of time
responses can be expected. This is because different ini-
tial conditions used by the simulation program, would
lead to different phases of the steady responses, even
though whose amplitude and spectrum are the same.
This is also pointed out by Srinil and Regea [43]. Even
more, physically, it is impossible to compare these two
kinds of time responses at the same or synchronized
time, as the MSM-reconstructed one is a born steady
response, while the finite-difference program should
run for a long enough time to damp the transient before
reaching steady responses. Therefore, in our paper, for
the illustration purpose, the duration time for the MSM-
reconstructed response is fixed as [0, 10], and that for
the FDM-produced response is chosen carefully after
the transient has been damped out, with a fixed length
of 10, say [890, 900] in Fig. 5 and [1490, 1500] in
Fig. 6.

We note that the agreement in Fig. 6 is less satisfac-
tory. Actually, we have to admit that, for both modal
quantities and time history responses, as the detuning
parameters σ1 and σ2 deviates from zero by a consider-
able amount, say σ1 = −0.05 and σ2 = 0.045 in Fig. 6,
(recall that the multiple scale expansion requires both
σ1 and σ2 to be small), our reduced models get more
challenged, this is indicated in Figs. 4 and 6. A higher-
order multiple scale expansion would improve such a
situation. Therefore, in the following study for 2:1 res-
onance, we would use the reduced model derived by a
second-order multiple scale expansion.

The frequency responses for two-to-one resonance
under boundary/support motions are illustrated in
Figs. 7, 8, 9 and Fig. 10, with the support motion
amplitudes Z0 = 1.5e−5, 2.0e−5, and 7.0e−5, respec-
tively.
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Fig. 3 Typical frequency
responses for triad mode
interactions with boundary
resonance:
σ1 = −0.0005, Z0 =
0.000008, μi = 0.02
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For Z0 = 1.5e−5, the response is relatively simple.
The responses in the considered parameter domain are
all stable and no bifurcation is found. The agreement
between our approximate results(denoted by MSM)
and those numerical results from FDM is very good, in
the sense of both the modal quantities and the time his-
tory responses, as depicted in Figs. 7 and 8, validating
our reduced models based on the boundary modulation
concept and multiple scale expansion.

For Z0 = 2.0e−5, different from the previous
case, bifurcation and instability arise in the frequency
response. We note form Fig. 9 that the response turns
unstable through a saddle-node bifurcation at SN1 and
then regains stability at SN2, again, through a saddle-
node bifurcation. Also shown in Fig. 9 are the extracted

modal quantities using results of the FDM, which con-
firm our approximate analytical results by the MSM.

Furthermore, in Fig. 10, we present the time history
responses and power spectrum, for both those recon-
structed from the MSM, and those obtained directly by
the FDM, which again agree with each other very well.

Besides that, although the above frequency response
diagrams characterize the dominated two-to-one reso-
nant responses, another interesting feather concerning
the response component of zero-frequency is neglected,
which is contained in the time history responses
of Fig. 10. We note that this is captured by both
our approximate analytical method and the finite-
difference method. We point out that this component
corresponds to the drift term in the 2nd-order solutions
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Fig. 4 Typical frequency
responses for triad mode
interactions with boundary
resonance
σ1 = −0.05, Z0 =
0.000008, μi = 0.02
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of the cable’s responses, which would not occur if only
a first-order expansion was sought.

As the support motion amplitude increases further,
say, Z0 = 7.0e−5, the frequency response diagram
becomes more complex and more bifurcations arise.
Explicitly, from Fig. 11, we note that the response
becomes unstable through a saddle-node bifurcation
at SN1 and then regains stability at the response
peak through another saddle-node bifurcation; then,
the response is reduced, and loses stability at the
saddle-node bifurcation point SN2 and regains stabil-
ity finally at SN3, again through a saddle-node bifur-
cation.

Also, in both Figs. 11 and 12, the agreement between
our approximate analytical results(denoted by MSM)

and those numerical results from FDM is satisfactory,
in the sense of both the modal quantities and the time
history responses, which validates again our reduced
models established by the multiple scale expansion and
boundary modulations.

However, one more warning is that, we have not
verified the MSM’s results larger than a1 = 2e−3, or
above the dash-dot line, as indicated in Fig. 11 (The
corresponding a2 branch is also not verified.).

Firstly, we have to admit that it is difficult to find sta-
ble solutions larger thana1 = 2e−3. This is because the
numerical solutions are always attracted to the lower
branch in the simulations, rather than the upper branch.
Note that two branches of stable solutions of the mod-
ulation equations exist in this domain.
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Fig. 5 Typical time history
responses and power
spectrum for triad
interaction under boundary
resonance: σ1 =
−0.0005, σ2 = 0.0, Z0 =
0.000008, μi = 0.02

890 892 894 896 898 900
−1

−0.5

0

0.5

1
x 10

−3

time t

w
(0

.4
,t)

FDM

0 10 20 30
0

2

4

6
x 10

−4

frequency ω

po
w

er
 s

pe
ct

ru
m

FDM

0 2 4 6 8 10
−1

−0.5

0

0.5

1
x 10

−3

time t

w
(0

.4
,t)

MSM

0 10 20 30
0

2

4

6
x 10

−4

frequency ω

po
w

er
 s

pe
ct

ru
m

MSM

Fig. 6 Typical time history
responses and power
spectrum for triad
interaction under boundary
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−0.05, σ2 = 0.045, Z0 =
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1490 1492 1494 1496 1498 1500
−1

−0.5

0

0.5

1
x 10

−3

time t

w
(0

.4
,t)

FDM

0 10 20 30
0

2

4

6
x 10

−4

frequency ω

po
w

er
 s

pe
ct

ru
m

FDM

0 2 4 6 8 10
−1

−0.5

0

0.5

1
x 10

−3

time t

w
(0

.4
,t)

MSM

0 10 20 30
0

1

2

3

4
x 10

−4

frequency ω

po
w

er
 s

pe
ct

ru
m

MSM

123



1274 T. Guo et al.

Fig. 7 Typical frequency
responses for triad mode
interactions with boundary
resonance
σ1 = −0.005, Z0 =
0.000015, μi = 0.02
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Fig. 8 Time history
responses and power
spectrum for triad
interaction under boundary
resonance σ1 =
−0.005, σ2 = 0.00, Z0 =
0.000015, μi = 0.02
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Fig. 9 Typical frequency
responses for 2:1 interaction
with low-frequency
boundary resonance:
σ1 = 0.005, Z0 =
0.00002, μi = 0.02
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Fig. 10 Typical time
history responses and power
spectrum for 2:1 interaction
under boundary resonance:
σ1 = 0.005, σ2 =
−0.03, Z0 =
0.00002, μi = 0.02
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Fig. 11 Typical frequency
responses for 2:1 interaction
with low-frequency
boundary resonance:
σ2 = 0.005, Z0 =
0.00007, μi = 0.02
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Fig. 12 Typical time
history responses and power
spectrum for 2:1 interaction
under boundary resonance:
σ1 = 0.005, σ2 =
−0.05, Z0 =
0.00007, μi = 0.02
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Secondly, noting SN1 occurs at σ2 = −0.105 <

−0.1, we can therefore find a unique stable solutions
at σ2 = −0.1 using the FDM. However, the agreement
turns out to be unsatisfactory. Our explanation is that
the solution amplitude is too large to admit a reasonable
multiple scale expansion. In other words, although our
reduced models (modulation equations) are derived in a
correct way, their accuracy is not reliable in the domain
with large response amplitudes. Recall that our multiple
scale expansion is reasonable in an asymptotic sense,
requiring both the response amplitudes a1, a2, and the
detuning parameters σ1, σ2 to be small. Therefore, for
the present example, we do not recommend our reduced
model in the domain a1 > 2e−3.

6 Summary and conclusions

Based upon the boundary resonant modulation concept,
cable’s triad and two-to-one mode interactions under
support motions are solved in a unified way, through
attacking the continuous dynamic equations directly by
the multiple scale method. Boundary resonance coef-
ficients are introduced to characterize this boundary
effect, and their analytical forms are presented. It is
found that, both cable’s mode function and initial sag
affect this boundary coefficient. After obtaining mod-
ulation equation’s equilibrium solutions (correspond-
ing to cable’s periodic oscillation), frequency response
diagrams are constructed by the numerical continua-
tion method, with stability and bifurcation properties
determined. All these approximate analytical results
are verified by the finite- difference method, therefore
validating our reduction approach based upon resonant
boundary modulations.
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Appendix 1

Suspended cable’s linear modal analysis can be found
in reference [3]. We restrict our attention to cable’s in-
plane symmetric modes in this paper, and these modes
are given by

φi (x) = ci
[
1 − tan

(ωi

2

)
sin ωi x − cos ωi x

]
,

i = 1, 3, 5 · · · (60)

where ci is the normalization constants. And the asso-
ciated eigenfrequencies are determined by

1

2
ωi − tan

(
1

2
ωi

)
− 1

2λ2 ω3
i = 0 (61)

where λ2 = E A/mgl(8b/ l)3 is the elasto-geometric
parameter. The above nonlinear transcendental equa-
tions can be solved by the Newton–Raphson method.

Appendix 2

Π12 (x) = α
〈
φ′

1, φ
′
2

〉
y′′ + α

〈
y′, φ′

2

〉
φ′′

1 + α
〈
y′, φ′

1

〉
φ′′

2

(62)

Π31 (x) = α
〈
φ′

1, φ
′
3

〉
y′′ + α

〈
y′, φ′

3

〉
φ′′

1 + α
〈
y′, φ′

1

〉
φ′′

3

(63)

Π32 (x) = α
〈
φ′

2, φ
′
3

〉
y′′ + α

〈
y′, φ′

3

〉
φ′′

2 + α
〈
y′, φ′

2

〉
φ′′

3

(64)

Π1 (x) = (α/2)
〈
φ′

1, φ
′
1

〉
y′′ + α

〈
y′, φ′

1

〉
φ′′

1 (65)

Π21 (x) = α
〈
φ′

1, φ
′
2

〉
y′′ + α

〈
y′, φ′

2

〉
φ′′

1 + α
〈
y′, φ′

1

〉
φ′′

2

(66)

Appendix 3

Single-mode solutions associated with triad mode res-
onance and two-to-one resonance, and their stability
analysis, are determined by following reference [18].

The single-mode equilibrium solutions of cable’s
modulation equations are obtained through setting
a1 = a2 = a′

3 = γ ′
2 = 0 in Eqs. (44)–(46) and Eqs.

(47) and (48)

a3 = 1

2ω3

Λ3Z0√
μ2

3 + σ 2
2

(67)

For coupled-mode solutions, the cable’s high-frequency
mode a3 is saturated at (i.e., keeping constant if arriving
at a critical value, irrespective of the excitation)
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a∗
3 = 4

|Γk |
√

ω1ω2
√

μ1μ2

[

1 +
(

σ1 + σ2

μ1 + μ2

)2
] 1

2

(68)

In other words, 0 ≤ a3 ≤ a∗
3 . Furthermore, the single-

mode equilibrium solution in Eq. (67) is stable if a3 <

a∗
3 , otherwise unstable.
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