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Abstract An improved rotor-blade dynamic model is
developed based on our previous works (Ma et al. in J
Sound Vib, 337:301–320, 2015; J Sound Vib 357:168–
194, 2015). In the proposed model, the shaft is dis-
cretized using a finite element method and the effects
of the swing of the rigid disk and stagger angles of the
blades are considered. Furthermore, the mode shapes
of rotor-blade systems can be obtained based on the
proposed model. The proposed model is more accurate
than our previous model, and it is also verified by com-
paring the natural frequencies obtained from the pro-
posed model with those from the finite element model
and published literature. By simplifying the casing as
a two degrees of freedom model, the single- and four-
blade rubbings are studied using numerical simulation
and experiment. Results show that for both the single-
and four-blade rubbings, amplitude amplification phe-
nomena can be observed when the multiple frequen-
cies of the rotational frequency ( fr) coincide with the
conical and torsional natural frequencies of the rotor-
blade system, natural frequencies of the casing and the
bending natural frequencies of the blades. In addition,
for the four-blade rubbing, the blade passing frequency
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(BPF, 4 fr) and its multiple frequency components also
have larger amplitudes, especially, when they coincide
with the natural frequencies of the rotor-blade system
or casing; the four-blade rubbing levels are related to
the rotor whirl, and the most severe rubbing happens
on the blade located at the right end of the whirl orbit.

Keywords Rotor-blade systems · Blade-tip rubbing ·
Vibration responses · Amplitude amplification
phenomena · Experiment

List of symbols

CRB Viscous damping matrix of
the rotor-blade system

cbX , cbY , cbZ Bearing damping in X, Y and
Z directions

ccX , ccY Damping of the casing in X
and Y directions

E Young’s modulus of blade
ec Vector of the eccentricity of

the static equilibrium posi-
tions of the rotor and casing
center line

Fc Rubbing force vector of the
casing

Fnonlinear,, Frub Nonlinear force and rubbing
force vectors of the rotor-
blade system
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1226 H. Ma et al.

Fnonlinear,b, Fnonlinear,s Nonlinear force vectors of the
blade and shaft

Fn, Ft Normal and tangential rub-
bing forces

fni The i th natural frequency of
the rotor-blade system (Hz)

fr Rotational frequency
Gb Shear modulus of the blade
Gb, Gd Coriolis matrices of the blade

and disk
Gc1, . . . , Gc6 Coupling terms of damping

matrix
Ge Gyroscopic matrix of the

Timoshenko beam element
GRB Amatrix including theCorio-

lis forcematrices of theblades,
damping matrix of bearings,
and gyroscopic matrices of
the shaft and rigid disk

g0 Gap between concentric
rotor-blade and casing

Jd , Jp Diametric and polar mass
moments of inertia of the disk

K b1, K b2 Stiffness matrices of the left
and right bearings

kbX , kbY , kbZ Stiffness of the bearing in
X,Y and Z directions

K c Stiffness matrix of the casing
kc Equivalent stiffness of the cas-

ing
kcX , kcY Stiffness of the casing in X

and Y directions
K e Stiffness matrix of the Timo-

shenko beam element
Ks The stiffness matrix of the

shaft
L Length of the blade
Mb, MRB Mass matrices of the blade

and rotor-blade system
Mc, Md Mass matrices of the casing

and disk
Mc1, Mc2, Mc3 Coupling termsofmassmatri-

ces
Me mass matrix of the Timo-

shenko beam element
Ms Mass matrix of the shaft
Mrub,X , Mrub,Y , Mrub,Z Bending moments at the disk

location in θ X and θY direc-

tions and the torque in θ Z

direction
md Mass of the disk
Nb Blade number
Ndof Number ofDOFs for i th blade
Nmod Number of modal truncation
NNs Number ofDOFs for the shaft
ni Unit normal vector to the con-

tact surface for the i th blade
qb, qc, qd, qr, qs, qRB, Generalized coordinate vec-

tors of the blade, casing, disk,
rotor, shaft and rotor-blade
system

Rc, Rd Radius of the casing and disk
Um(t), Vm(t), ψm(t) Canonical coordinates
uib Displacement vector of the

i th blade in the global coor-
dinate system

uc Displacement vector of cas-
ing

ui Displacement vector of the
i th blade-casing relative
motion in the global coordi-
nate system

u, v, w, ϕ Longitudinal deformation,
lateral deformation, swing
deformation and cross-
sectional rotation in blade
local coordinate system

Xd,Yd, Zd Displacements of the disk in
X,Y and Z directions in the
global coordinate system

Greek symbols

β Stagger angle of the blade
δ The penetration depth
δ0 Initial penetration depth
δu, δv, δϕ Independence variables of

variational operation
θ(t) The angular displacement of

the disk
θXd, θYd and θZd Swing angle of the disk in

X and Y directions and tor-
sional angle of the shaft

θ̇ Angular velocity
κ Shear correction factor of the

blade
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Rotor-blade system with blade-tip rubbing 1227

μ Friction coefficient
ξ1, ξ2 Modal damping ratios (in this

paper, ξ1 = ξ2 = 0.02)
υ Poisson’s ratio
ρb Material density of the blade
φ1m(x), φ2m(x), φ3m(x) Modal shape functions

1 Introduction

The clearance between the blade and casing is a key
parameter of turbine machinery, which influences the
gas leakage. For example, a large clearance will lead to
a reduction of the compression efficiency in turbine
machinery. However, reducing the clearance, which
can improve the compression efficiency, will increase
the risk of the blade-casing rubbing. Blade vibration
caused by blade-tip rubbing and rubbing fault diagno-
sis are attracting increasing attention [1–4]. Only con-
sidering the blade vibration, the rubbing between the
blade/bladed-disk and the casing has been investigated,
such as Legrand et al. [5,6], Lesaffre et al. [7], Sinha
[8,9], Kou and Yuan [10], Yuan and Kou [11], Almeida
et al. [12], Batailly et al. [13] and Ma et al. [14,15].

For the blade installed on a flexible rotor system, the
rotor whirl has a great influence on the blade-casing
rubbing [16]. Many researchers worked on rotor-blade
systems and investigated the dynamic characteristics
due to the blade-casing rubbing [17–27]. On the basis
of a lumped mass model (LMM), Kascak et al. [17]
investigated the responses of a rotor-bearing system
with smearing or abradable rubbing. Padovan et al. [18]
established an LMMof a rotor system and analyzed the
single- and multiple-blade rubbings responses consid-
ering the influence of unbalancemagnitude, blade/rotor
stiffness, system damping and rubbing interface fric-
tion characteristics. Based on a finite element (FE)
model which considers the rubbing between the rigid
blade and rigid casing, Lawrence et al. [19] simu-
lated the interactions between the blade and casing.
Sinha [20] developed a dynamic model for a bladed
rotor system supported by multiple bearings and dis-
cussed the transient response of the rotor due to blade-
tip rubbing during both the acceleration and decelera-
tion processes. Based on a nonsymmetric bladed rotor
system where blades are simulated by pre-twisted thin
shallow shells, Sinha [21] analyzed the rubbing load
under the blade missing. His simulation results show
that the sudden rubbing load can increase by an order of

magnitude over the unbalance force. Lesaffre et al. [22]
established a flexible bladed rotor model in the rotating
frame and observed an unstable phenomenon around
the critical speed of the stator even under frictionless
sliding. Based on a coupling model of flexible bladed
rotor and flexible casing, Parent et al. [23] analyzed the
blade-casing rubbing phenomena. Based on Ref. [23],
Parent et al. [24] analyzed the effects of 3D contact
formulation on both rubbing detection and the system
stability due to the blade-casing rubbing. Based on con-
tact dynamics, Ma et al. [25] established a rotor-blade-
casing FE model using ANSYS software and analyzed
complicated vibration responses caused by the blade-
casing rubbing. Petrov [26] proposed a multi-harmonic
analysis method to simulate whole-engine vibration
due to the blade-casing rubbing, and he also demon-
strated the high accuracy and computational efficiency
of the proposed methods using a set of test cases and an
example of analysis of a realistic gas turbine structure.
Thinery et al. [27] studied the dynamic behaviors of
a misaligned Kaplan turbine with blade-to-stator con-
tacts. In their model, the rotor is modeled using the FE
method with beam elements, while the rigid blades are
adopted to deal with the contact between the rotor and
casing.

Experimental tests have been used to study the
blade-casing rubbing [14,28–33]. By simplifying the
blade as a rotating uniform beam and the casing as an
arc structure,Ahrens et al. [28]measured contact forces
and the contact duration by experiment. Considering
the effects of elastic casing, Ma et al. [14] established
a test rig of blade-casing rubbing and analyzed the nor-
mal rubbing force under different casing materials and
rotational speeds. Padova et al. [29,30] established an
in-ground spin-pit facility (SPF)whosemaximum rota-
tional speed can reach 20000 rev/min and studied the
metal-to-metal contact due to sudden penetrations with
different penetration depths. Chen et al. [31] carried
out rubbing experiments with different rubbing posi-
tions by using a rotor experiment rig of aero-engine and
analyzed the relation of rubbing feature and rubbing
position by the cepstrum. Adopting wavelet analysis to
deal with the measured blade-casing rubbing data, Lim
and Leong [32] and Abdelrhman et al. [33] detected
the changes of rotor dynamics caused by blade-casing
rubbing.

From the above literature reviews, it can be observed
that most researchers focused on the rubbing between
cantilever blades (beam or plate) and casings. The stud-
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Fig. 1 a Neglecting the
swing of the disk in Ref.
[34], b considering the
swing of the disk in this
study

ies considering both the rotor whirl and the flexibil-
ity of the blades are very limited. Based on our previ-
ous research works [14,34], the focuses of this paper
include:

(1) An improved rotor-blade model is developed. In
the improved model, the effects of the swing of the
disk are considered (see Fig. 1b); however, they are
not considered in Ref. [34] (see Fig. 1a). The proposed
model can improve the calculation accuracy, especially
under the flexible shaft condition. In addition, the stag-
ger angle of the blade can also be considered in the
improved model.

In our previouswork [34], the shaft ismodeled using
lumped-parameter model (lumped mass points); how-
ever, it is difficult to accurately determine the masses
of these discrete points in this model. In this study, the
shaft ismodeled using an FEmethod, which adopts ele-
mentmatrices ofmass, stiffness and damping to assem-
ble the wholematrices’ of mass, stiffness and damping,
and it is convenient to implement for the modeling of
the shaft. Furthermore, the mode shapes of rotor-blade
systems can be also obtained based on the proposed
model, which is also another improvement to themodel
in Ref. [34].

(2) The rubbings between both the single and four
blades and casing are simulated based on a normal
rubbing force model presented in our previous work
[14]. In Ref. [14], the simulated normal rubbing force
is determined using the model in which the blade is
presented using a cantilever beam model to represent
the blade, and the casing is described using a two DOF
model; the simulated normal rubbing force is validated
using experimental results. In this study, the rotor whirl
is considered, and the bending vibrations of the blades,
the lateral and torsional vibrations of the shaft and cas-
ing vibration are discussed. In addition, the simulated
results are also validated using the measured results in
a test rig. Some new coupling vibration phenomena of

the rotor-blade-casing system are also evaluated using
the experiment results.

The paper is organized as follows. After this intro-
duction, an improved dynamic model of rotor-blade
systems is developed using the Hamilton’s principle in
conjunction with assumed modes method in Sect. 2.1.
The proposed model is validated by comparing the nat-
ural frequencies obtained from FE method and litera-
ture results in Sect. 2.2. A dynamic model of the rotor-
blade system with blade-casing rubbing is presented in
Sect. 3. In Sect. 4, simulated and measured vibration
responses of the system are compared and some typ-
ical fault features for single- and four-blade rubbings
are summarized. Finally, the conclusions are drawn in
Sect. 5.

2 An improved dynamic model of rotor-blade
systems

2.1 Dynamic model of rotor-blade systems

Considering the coupling effects of lateral and tor-
sional vibrations of the rotor and longitudinal and bend-
ing/flexural vibrations of the blade, a schematic of a
rotor-blade system is shown in Fig. 2. The rotor is com-
posed of a shaft and rigid disk. The cantilever Timo-
shenko beam is used to simulate flexible blade, attached
to the rigid disk. In Fig. 2, OXYZ is the global coor-
dinate, and oxdydzd is the disk body coordinate. In
addition, ox r yrzr and oxbybzb represent the rotational
coordinate and local coordinate systems of the blade,
respectively. Symbols u, v and w represent the defor-
mations in longitudinal, bending/flexural and swing
directions of the blade, and ϕ represents the cross-
sectional rotation of the blade in local coordinate sys-
tem oxbybzb (see Fig. 3).

The mathematical model of rotor-blade system is
simplified according to the following assumptions.
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Rotor-blade system with blade-tip rubbing 1229

Fig. 2 Schematic of
rotor-blade systems

Fig. 3 a Coordinate
systems of the disk, b local
coordinate systems of the
blade, c Timoshenko beam
in local coordinate system
of the blade

(1) Isotropic material is adopted, and the constitutive
relationship satisfies Hooke’s law;

(2) The contact problems of the blade, disk and shaft
are neglected;

(3) The disk is considered to be rigid, i.e., its flexibility
is neglected, and it is described using a lumped
mass point;

(4) The shaft is described using FE method;
(5) The blades are represented using uniform can-

tilever beams;
(6) The bearing is simplified by a linear spring-

damping model.

The position vector of any point Q on the blade can
be written in the global coordinate system as:

rQ =
⎡
⎣
Xd

Yd
Zd

⎤
⎦+ A4A3A2A1

⎡
⎣
Rd + x + u − yϕ

v + y
w

⎤
⎦, (1)

where four rotational transformation matrices A1, A2,

A3 and A4 are given as follows:

A1 =
⎡
⎣
1 0 0
0 cosβ − sin β

0 sin β cosβ

⎤
⎦ , (2)

A2 =
⎡
⎣
cos (ϑi + θZd) − sin (ϑi + θZd) 0
sin (ϑi + θZd) cos (ϑi + θZd) 0
0 0 1

⎤
⎦ , (3)

A3 =
⎡
⎣
1 0 0
0 cos θXd − sin θXd
0 sin θXd cos θXd

⎤
⎦

=
⎡
⎣
1 0 0
0 1 −θXd
0 θXd 1

⎤
⎦ , (4)

A4 =
⎡
⎣
cos θYd 0 sin θYd
0 1 0
− sin θYd 0 cos θYd

⎤
⎦

=
⎡
⎣
1 0 θYd
0 1 0
−θYd 0 1

⎤
⎦ . (5)

In Eqs. (2)–(5), β is the stagger angle of the blade;
ϑi = θ(t) + (i − 1) 2π

Nb
, where θ(t) is the angular dis-

placement of the disk; (i − 1) 2π
Nb
describes the position

of the i th blade in the blade group; θZd is a shaft tor-
sional angle at disk hub; and Nb is the number of the
blade. It is worth noting that the motion in the swing
direction of the blade is neglected, i.e. w = 0.

Substituting Eqs. (2)–(5) into Eq. (1) and ignoring
high-order terms, rQ can then be expressed as:
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rQ =

⎡
⎢⎢⎢⎢⎢⎢⎣

(
Xd + yθYd sin β − ((y + v) cosβ + (Rd + x) θZd) sin ϑi

+ (Rd + x + u − yϕ − yθZd cosβ) cosϑi

)

(
Yd − yθXd sin β + (Rd + x + u − yϕ − yθZd cosβ) sinϑi

+ ((y + v) cosβ + (Rd + x) θZd) cosϑi

)

(
Zd + (y + v) sin β + (yθYd cosβ + (Rd + x) θXd) sinϑi

+ (yθXd cosβ − (Rd + x) θYd) sinϑi

)

⎤
⎥⎥⎥⎥⎥⎥⎦

. (6)

The expressions of total kinetic energy Ttotal and total
potential energy Vtotal for the SDB system are as fol-
lows:

Ttotal =
Nb∑
i=1

Tblade + Tshaft + Tdisk,

Vtotal =
Nb∑
i=1

Vblade + Vshaft + Vbearing (7)

where Tblade, Tshaft and Tdisk are the kinetic energy of
the blade, shaft and disk, and Vblade, Vshaft and Vdisk
are the potential energy of the blade, shaft and disk,
respectively. More details about these energy expres-
sions can refer to [34] and the specific matrices and
vectors formulas can be found in “Appendix”.

The equations of motion of the rotor system and
blade system are assembled together to form the global
matrices of the rotor-blade system. The schematic of
the matrix assembling is shown in Fig. 4 where Ndof is
the number of DOFs for the i th blade, and NNs is the
number of DOFs for the rotor.

Equations of motion of the rotor-blade system can
then be written as follows:

MRBq̈RB + (CRB + GRB)q̇RB + KRBqRB
= Fnonlinear + Frub, (8)

where MRB is the mass matrix of the system; CRB is
the viscous damping matrix of the system, which is
simulated by the Rayleigh damping; GRB is the other
dampingmatrix of the system except for viscous damp-
ing matrix, which includes the Coriolis force matrices
of the blades, damping matrix of bearings, and gyro-
scopic matrices of the shaft and rigid disk; KRB is the
stiffness matrix of the system; qRB is the generalized
displacement vector; and Fnonlinear and Frub are the
nonlinear coupling force vector and rubbing force vec-
tor, respectively.

In the equation, generalized displacement vector of
rotor-blade systems qRB can be expressed as:

qRB = [ qb qs
]T

, (9)

where qb and qs are the displacement vectors of the
blade and shaft, respectively.

The nonlinear force vector Fnonlinear can be
expressed as:

Fnonlinear = [Fnonlinear, b Fnonlinear, s]T, (10)

where Fnonlinear,b is the nonlinear force vector of the
blade (see “Appendix 5”). Fnonlinear,s is the nonlinear
force vector of the shaft and its expression can be given
as follows:

Fnonlinear,s = [0 · · · fnonlinear,X fnonlinear,Y fnonlinear,Z

Mnonlinear,X Mnonlinear,Y

Mnonlinear,Z · · · 0]T, (11)

where fnonlinear,X , fnonlinear,Y , fnonlinear,Z ,Mnonlinear,X ,

Mnonlinear,Y and Mnonlinear,Z are nonlinear forces and
moments applied at the disk position (see “Appen-
dix 5”).

Rayleigh damping matrix CRB can be expressed as:

CRB = ζMRB + ηKRB, (12)⎧⎨
⎩

ζ = 4π fn1 fn2(ξ1 fn2−ξ2 fn1)
( f 2n2− f 2n1)

η = ξ2 fn2−ξ1 fn1
π( f 2n2− f 2n1)

, (13)

where fn1 and fn2 represent the first and second natural
frequency (Hz) of the rotor-blade system, respectively,
and ξ1 and ξ2 (in this paper, ξ1 = ξ2 = 0.02) are the
corresponding modal damping ratios.

2.2 Model verification based on natural characteristics

In this section, a flexible rotor-blade model is used to
verify the proposed model, and the detailed rotor-blade
physical dimensions are shown in Fig. 5 and Table 1.
The detailed elements used to describe the shaft, disk,
blades and bearings can be found in Ref. [34]. The
natural frequencies are calculated using both methods
[34], including an FE modeling method and an analyt-
ical method.
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Rotor-blade system with blade-tip rubbing 1231

Fig. 4 Schematic diagram of assembled matrices for rotor-blade systems: a mass matrix MRB, b damping matrix GRB, c stiffness
matrix KRB

The results are shown in Table 2. The natural fre-
quencies determined using FE and analytical methods
in [34] are given in the second and third columns. The
fifth and sixth columns show the percentage differences
between the analytical model in Ref. [34] and the pro-
posed model relative to the results of the FE model,
respectively. The results in Table 2 show that the pro-
posed model has a higher accuracy than that of the ana-
lytical method in Ref. [34], especially, for the vibration
modes related to the disk swing. For example, the per-

centage differences of natural frequencies related to the
disk swing ( fn4 and fn5) reduce from 3.9340% for the
analytic model in [34] to 0.1042% for the proposed
model. Moreover, the mode shapes obtained from the
proposedmodel also show a good agreementwith those
obtained from the FE model, as shown in Fig. 6.

Besides the comparison with the FE model, the
model is also validated by comparing the natural fre-
quencies obtained from the proposed model with those
from Yang’s method in Ref. [35], as shown in Table 3.
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Fig. 5 Physical dimensions
of a rotor-blade system: a
physical dimensions of the
shaft, b physical dimensions
of the disk and blade

Table 1 Model parameters
of the rotor-blade system

Parts Geometric parameters Material parameters

Shaft See Fig. 5 ρ = 7800 kg/m3E = 200 GPa υ = 0.3

Bearing kbX1 = kbX2 = kbY1 = kbY2 =
1.5 × 107 N/m, cbX1 = cbX2 =
cbY1 = cbY2 = 1 × 103 N s/m

Blade See Fig. 5

Disk md = 13.89 kg, Jp = 0.071 kgm2, Jd =
0.0394 kgm2

The results obtained from the proposed method are
in good agreement with those obtained from Yang’s
method, and the maximum percentage difference of
the natural frequency is 4.7919%. The trends of some
natural frequencies (see Table 3) are the same as that
in Ref. [35]. Some natural frequencies do not change
because the coupling effect between the disk and blade
is not considered for the proposed model.

3 A dynamic model of rotor-blade systems
with blade-casing rubbing

Rubbing between the blade-tip and casing can happen
due to the rotorwhirl and blade elongation.A schematic
of blade-casing rubbing forces is shown in Fig. 7 where
Fi
n and Fi

t are the normal and tangential rubbing forces
applied on the i th rubbing blade, respectively. For the
shaft, Fi

n can be translated and equivalent to a force
Fi
nr, and F

i
t can be equivalent to a force F

i
tr and a torque

Mi
tr , as shown in the left figure of Fig. 7. For the rub-

bing blade, the direction of Fi
n along the blade pointing

toward the disk center, and the tangential rubbing force
Fi
t in the local coordinate system of the blade can be

decomposed into two forces Fi
tz and Fi

ty , as shown in
the right figure of Fig. 7.

Considering the influence of the casing vibration on
the blade-tip rubbing and simplifying the casing as an
LMP with two DOFs, the equations of motion of the
rotor-blade-casing system can be written as follows:

{
MRBq̈RB + (CRB + GRB)q̇RB + KRBqRB = FRB

Mcq̈c + Dcq̇c + K cqc = Fc
,

(14)

where Mc, Dc and K c are mass, damping and stiffness
matrices of the casing, respectively; qc and Fc are the
generalized coordinate vector and rubbing force vector
of the casing, respectively. In this equation, the external
force FRB = Fnonlinear + Frub, where Fnonlinear (see
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Table 2 Natural frequencies comparison of the rotor-blade system

Natural
frequencies

FE model
[34]

Analytical
model [34]

Proposed
model

Percentage differences
between FE model and ana-
lytical model [34] (%)

Percentage differences
between FE model and pro-
posed model (%)

fn1 57.87 57.88 57.88 0.0173 0.0173

fn2 61.09 61.25 61.08 0.2616 0.0164

fn3 61.09 61.25 61.08 0.2616 0.0164

fn4 258.91 269.30 259.18 3.9340 0.1042

fn5 258.91 269.30 259.18 3.9340 0.1042

fn6 364.57 364.72 364.72 0.0411 0.0411

fn7 364.57 364.72 364.72 0.0411 0.0411

fn8 364.57 364.72 364.72 0.0411 0.0411

fn9 364.57 364.72 364.72 0.0411 0.0411

fn10 364.57 364.72 364.72 0.0411 0.0411

fn11 367.26 367.50 367.41 0.0653 0.0408

fn12 367.26 367.50 367.41 0.0653 0.0408

fn13 390.12 390.25 390.25 0.0333 0.0333

fn14 443.30 453.95 444.78 2.3739 0.3333

fn15 443.30 453.95 444.78 2.3739 0.3333

fni (i = 1, 2, . . ., 15) denotes the i th natural frequency. Percentage difference equals the absolute value of the change in value, divided
by the average of the two numbers, all multiplied by 100. Percentage difference = |V1−V2|

(V1+V2)/2
× 100 (%) where V2 denotes a reference

value and V1 is a target value

Fig. 6 Comparison of mode shapes: a fn1, b fn2, c fn4, d fn7, e fn13, f fn14

“Appendix 5”) and Frub are the nonlinear force vec-
tor and rubbing force vector of the rotor-blade system,
respectively.

The expression of Frub is

Frub =
⎡
⎢⎣Frub, b︸ ︷︷ ︸

Blade

0 Frub, d 0︸ ︷︷ ︸
Rotor

⎤
⎥⎦
T

. (15)
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Table 3 Natural frequencies comparison of a rotor-blade system considering stagger angles

Stagger angles Orders Yang’s model [35] (Hz) Proposed model (Hz) Percentage differences between
Yang’s model [35] and proposed
model (%)

β = π/6 1 80.77 80.7632 0.0084

2 81.423 81.542 0.1460

3 81.438 81.542 0.1276

4 81.496 81.542 0.0564

5 81.538 81.542 0.0049

6 81.538 81.542 0.0049

7 201.921 200.0141 0.9489

8 498.517 513.186 2.8999

9 499.185 513.186 2.7660

10 507.924 513.186 1.0306

11 510.99 513.186 0.4288

12 510.99 513.186 0.4288

13 514.986 517.5091 0.4887

β = π/4 1 81.011 81.0165 0.0068

2 81.309 81.542 0.2862

3 81.339 81.542 0.2493

4 81.455 81.542 0.1068

5 81.538 81.542 0.0049

6 81.538 81.542 0.0049

7 198.269 196.3806 0.9570

8 492.757 513.186 4.0617

9 493.538 513.186 3.9034

10 505.373 513.186 1.5341

11 510.99 513.186 0.4288

12 510.99 513.186 0.4288

13 513.067 515.9525 0.5608

β = π/3 1 81.197 81.2760 0.0972

2 81.241 81.542 0.3698

3 81.257 81.542 0.3501

4 81.414 81.542 0.1571

5 81.538 81.542 0.0049

6 81.538 81.542 0.0049

7 194.759 192.8798 0.9696

8 489.17 513.186 4.7919

9 489.954 513.186 4.6319

10 503.201 513.186 1.9648

11 510.99 513.186 0.4288

12 510.99 513.186 0.4288

13 511.33 514.5159 0.6211
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Fig. 7 Schematic of blade-casing rubbing forces

The rubbing force vector Frub,b of the blades can be

written as Frub,b =
[
· · · Fi

rub, b · · ·
]
where Fi

rub, b

denotes the rubbing force vector of the i th rubbing
blade and it can be expressed as

Fi
rub,b =

⎡
⎣

−Fi
n φ1m |x=L

−Fi
t cosβφ2m

∣∣
x=L

0

⎤
⎦
T

. (16)

The rubbing force vector applied on the disk Frub,d is

Frub,d =
Nb∑
i=1

⎡
⎢⎢⎢⎢⎢⎢⎣

Fi
t sinϑi − Fi

n cosϑi

−Fi
t cosϑi − Fi

nsinϑi

0
0
0

− (Rd + L) Fi
t

⎤
⎥⎥⎥⎥⎥⎥⎦

T

. (17)

The expressions of Mc, Dc, K c, qc and Fc are given
as follows:

Mc =
[
mc 0
0 mc

]
, K c =

[
kcX 0
0 kcY

]
,

Dc =
[
ccX 0
0 ccY

]
+ ζMc + ηK c, (18)

qc = [ Xc Yc
]T

,

Fc =
Nb∑
i=1

[−Fi
t sinϑi + Fi

n cosϑi

Fi
t cosϑi + Fi

nsinϑi

]
, (19)

where mc is the casing mass; ccX and ccY are damping
of the casing; kcX and kcY are stiffness of the casing; Xc

and Yc are displacements of the casing. The subscripts
X and Y denote X and Y directions, respectively.

Normal rubbing force Fn can be expressed as [14]:

Fn =−
⎛
⎝LΓ1kc

−5
(
αΓ1−2 δ

L

)+√
5α
√
5Γ1

(
Γ1+ 4

α
δ
L

)+12μ2 δ
L

20Γ1− 10
α

δ
L +6αμ2

⎞
⎠,

(20)

where δ is the penetration depth; kc is the equiv-
alent stiffness of the casing, here, kc = kcX ;μ is
the friction coefficient; Γ1 = Γ0

kc
;Γ0 = Eb Ib

3
L3 +

ρbAbθ̇
2
( 81
280 L + 3

8 Rd
) ;α = Rd+L

L . Minus sign
denotes the direction of normal rubbing force is from
blade-tip to the center of rotor.

The penetration depth δ, which is related to the radial
elongation of the blade, is caused by centrifugal loads
and relative geometric position between the blade-tip
and casing (see Fig. 8). In the published literature, the
effects of the casing distortion are usually considered
in the calculation of the blade-casing relative positions
[13,26]. It isworth noting that in our study, the effects of
the casing distortion are not considered because only a
small arc-shaped casing (see Fig. 8) is used to simulate
the local blade-casing rubbing in the test rig. The disk
and the casing are concentric in the original position
(see Fig. 8a), and g0 is the gap between the concentric
bladed disk and casing, g0 = Rc − (Rd + L) ≥ 0,
where Rc is the radius of the casing. However, due to
assembling misalignment, the clearance between rotor
and stator can be asymmetrical. Hence, the blade tip
may penetrate the casing due to the rotor whirl motion
and centrifugal force (see Fig. 8b).

The expression of penetration depth between the i th
blade and casing is obtained as [26]:

δi (t) = uTi ni − g0, (21)

where ni is unit normal vector to the contact surface.

ni = [cosϑi sin ϑi ]
T ,

and ui is a vector of the i th blade-casing relativemotion
in the global coordinate,

ui = uib − uc − ec,

where ec is the eccentricity vector related to the
misalignment of the rotor and casing centers; ec =[
eX eY

]T ; uib and uc are the displacement vectors
of the i th blade-tip and casing in the global coordinate,
respectively.

uib =
⎡
⎣
Xd

Yd
Zd

⎤
⎦+ A4A3A2A1

⎡
⎣
ui
vi
0

⎤
⎦ ,

uc = qc = [ Xc Yc
]T

,

ϑi = θ(t) + (i − 1)
2π

Nb
. (22)

Tangential force Ft is generated from the friction
between the blade-tip and casing, of which the direc-
tion is opposite to slip direction on the contact surface.
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Fig. 8 Schematic of blade-casing rubbing

Hence, tangential force can be written as:

Ft = μFn. (23)

Because of the effects of the blade-tip rubbing, the
equations of motion of the rotor-blade-casing system
are nonlinear. In this study, Newmark integral method
is adopted to calculate the system vibration response.
The detailed simulation flowchart is shown in Fig. 9.

4 Numerical studies and experimental verification

The physical dimensions of a rotor-blade system in the
test rig are the same as those in Ref. [34]. For the rotor-
blade system, the bearing stiffness in horizontal and
vertical directions are set as kbX1 = kbY1 = kbX2 =
kbY2 = 1.5 × 107 N/m. The bearing stiffness in axial
direction are kbZ1 = kbZ2 = 4 × 106 N/m. The bear-
ing damping in three directions are cbX1 = cbY1 =
cbX2 = cbY2 = cbZ1 = cbZ2 = 1000 Ns/m. The stag-
ger angle of the blade is β = 0◦. It is worth noting
that the torsional DOF of the right-most node (node
11) is restrained while that of the left-most node (node
1) is free, which is another revision to the system in
Ref. [34]. This is because that the right end of the shaft
is connected with the driving motor by a coupling in
this study. Other parameters are the same as those in
Ref. [34]. The simulated andmeasured natural frequen-
cies of the rotor-blade system are shown in Table 4.

This results show that the proposed model has a higher
accuracy than themodel in Ref. [34]. Percentage differ-
ences of the natural frequencies fn5 and fn6 decrease
from 4.3973% in Ref. [34] to 3.1661% in this study
(see Table 4).

In order to evaluate the rubbing-induced casing
vibration, the natural frequencies of the casing system
without and with blade-casing contact are also mea-
sured using the same test rig [34]. Themeasured natural
frequencies are listed in Table 5.

Assuming that both the directions of the rotor whirl
of rotation are counterclockwise, and the whirl velocity
and the rotational speed are the same, in this section,
two kinds of rubbing forms: single- and four-blade rub-
bings will be simulated. In addition, the experimental
results are also used to validate the simulated results.
The simulation parameters are set as follows:

Eccentricity between the geometrical center of the
rotor-blade system and its mass center is 1mm. The
casing mass is mc = 5kg and casing stiffness in hor-
izontal and vertical directions are kcX = 3 × 106 N/m
and kcY = 7 × 107 N/m, i.e., the natural frequencies
of the casing in X and Y directions are 123.3 and
595.5Hz, respectively. The casing damping in horizon-
tal and vertical directions are ccX = ccY = 2000Ns/m.
The radius of the casing is Rc = 224mm, the vector of
the eccentricity is ec = [eX eY ]T, eX = g0+δ0 (g0 =
2 mm), eY = 0where δ0 is the initial penetration depth.
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Fig. 9 Flowchart of
blade-casing rubbing
simulation

Table 4 Natural frequencies of the rotor-blade system at zero rotational speed

Orders Proposed model
(Hz)

Experiment [34] Descriptions of mode shapes Percentage dif-
ferences between
proposed model
and experimental
results (%)

1 ( fn1) 78.6 – Axial vibration –

2 ( fn2) 132.9 129.3 Conical mode in lateral direction 2.7460

3 ( fn3) 132.9 129.3 Conical mode orthogonal with fn2 2.7460

4 ( fn4) 156.6 – Torsional vibration –

5 ( fn5) 266.3 258.0 Swing of the disk 3.1661

6 ( fn6) 266.3 258.0 Swing of the disk orthogonal with fn5 3.1661

7 ( fn7) 364.7 361.3 Blade-blade coupling mode 0.9366

8 ( fn8) 365.4 364.7 Coupling mode between the rotor lateral and blade
bending vibrations

0.1918

9 ( fn9) 365.4 368.0 Coupling mode orthogonal with fn8 0.7090

10 ( fn10) 371.3 372.0 Coupling mode between the rotor torsional and blade
bending vibrations

0.1883

“–” denotes no value
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Table 5 Natural frequencies of the casing system without and with blade-casing contact

Orders 1 ( fnc1) 2 ( fnc2) 3 ( fnc3) 4 ( fnc4) 5 ( fnc5) 6 ( fnc6)

Casing system without
blade-casing contact (Hz)

124.1 197.8 585.3 834.1 1020.0 1161.0

Orders 1 ( fncr1) 2 ( fncr2) 3 ( fncr3) 4 ( fncr4) 5 ( fncr5)

Casing system with
blade-casing contact (Hz)

173.4 581.9 980.9 1205.0 1443.0

Table 6 Parameters for
simulation and experiment
under five cases

Rubbing forms Cases Rotational speeds (rev/min) Initial penetration
depths δ0(µm)

No rubbing 1 986.4 (16.44Hz) 0

Single-blade rubbing 2 986.4 (16.44Hz) 50

3 1478.4 (24.64Hz) 50

Four-blade rubbing 4 976.8 (16.28Hz) 50

5 1491 (24.85Hz) 50

The friction coefficient between the blade and casing is
μ = 0.2.

Five cases are selected to compare the simulated
results with experimental results: healthy condition
(case 1), single-blade rubbing condition (cases 2 and
3), and four-blade rubbing condition (cases 4 and 5), as
are listed in Table 6. It should be noted that one slightly
longer blade is artificially assembled under the single-
blade rubbing condition, and four blades with the same
dimension is assembled under the four-blade rubbing
condition.

4.1 No rubbing condition

The comparison of simulated and measured vibration
responses are shown in Fig. 10. The simulated lat-
eral vibration of the rotor in X direction only contains
the rotational frequency component ( fr). However, the
measured result showsmultiple frequency components
(n f r) and a frequency component between 2 fr and
3 fr , which may be excited by the rotor misalignment
and bearing nonlinearity. There are also some errors
about the vibration amplitude due to the effects of
the assumed bearing stiffness, unbalance, and system
damping.

4.2 Single-blade rubbing condition

Assuming that the rubbing between only single blade
(blade 1) and casing appears, a comparison of simu-

lated and experimental results under case 2 is shown in
Figs. 11 and 12, respectively. For the simulated results,
rotor vibration (node 9) in lateral (X) and torsional (θZ)

directions, casing vibration in X direction, blade bend-
ing vibrations in local coordinate of the blades, and
normal rubbing forces, are used to analyze the fault
features. For the experimental results, only the rotor
lateral vibration, casing vibration, and normal and tan-
gential rubbing forces are obtained due to some limita-
tions in experimental equipments. Based on the results
in Figs. 11 and 12, some dynamic phenomena can be
observed as follows:

(1) Simulated results show that amplitude amplifica-
tion phenomena occur when themultiple frequency
components coincide with the natural frequencies
of the system. The amplification phenomena can be
observed at 8 fr near the conical natural frequencies
( fn2 and fn3 in Table 4), 8 fr near the casing natural
frequency, 10 fr near the torsional natural frequency
( fn4 in Table 4), and 22 fr near the bending natural
frequencies of the blades ( fn7, fn8, fn9 and fn10
in Table 4), as shown in Fig. 11. The enlargement
degrees for the torsional vibration of the rotor, cas-
ing vibration and blade bending vibration are more
significant than that of the lateral vibration of the
rotor.

(2) The measured results also show the similar ampli-
fication phenomena when the multiple frequency
components coincide with the conical natural fre-
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Fig. 10 Vibration responses of the rotor-blade system without rubbing: a simulated results, b experimental results. Note The figures
from left to right are time-domain waveform, amplitude spectrum and rotor orbit, respectively

quencies (see Fig. 12b). The casing vibration shows
that the amplification phenomena appear at 7 fr
which is related to the casing natural frequency
( fnc1 = 124.1 Hz, see Table 5). In addition, other
higher multiple frequency components at 58 fr and
70 fr which coincide with the casing natural fre-
quencies fncr3 (or fnc5) and fnc6, respectively, also
show large amplitudes. Based on the ratio of the
maximum tangential rubbing force and correspond-
ing normal rubbing force in a rotational period,
the dynamic friction coefficient is about 0.166, as
shown in Fig. 12f, g.

(3) The measured rubbing forces and casing vibration
have a significant difference from the simulated
results. Main reasons for these errors are that (1)
the casing is overly simplified. Actually, the cas-
ing is a complicated assembly, and the simulation
can only consider the first natural frequency; (2)
the assumed system damping, bearing stiffness,
amount of unbalance have some differences with
those in real system; and (3) accurately controlling
the penetration depth is difficult due to the micro-
feeding errors of ballscrew driving, whichmay also
lead to some errors between the simulated andmea-
sured rubbing forces.

Simulated and measured responses of the system
under case 3 are shown in Figs. 13 and 14. Compared
with those under case 2, some new vibration features
are summarized as follows:

(1) Under the higher rotational speeds, the rotor lateral
vibration increase due to the increase of the rubbing
level which can be justified by the increased nor-
mal rubbing force. The dynamic friction coefficient
slightly decreases from 0.166 under case 2 (986.4
rev/min) to 0.158 under case 3 (1478.4 rev/min).

(2) Some frequencies, at which amplification phenom-
ena are observed, may lightly change due to the
effects of rubbing nonlinearity on the system nat-
ural frequencies. For example, 48 fr under case 3
are slightly larger than 70 fr under case 2.

4.3 Four-blade rubbing condition

Simulated andmeasured results under case 4 are shown
in Figs. 15 and 16, which show the following dynamic
phenomena.

(1) For the simulated results, amplitude amplifica-
tion phenomena can also be observed, for exam-
ple, 8 fr related to the conical natural frequencies
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Fig. 11 Simulated results with four-blade rubbing (case 2): a
rotor displacement waveform in X direction, b amplitude spec-
trumof the rotor in X direction, c rotor orbit,d accelerationwave-
form of casing in X direction, e amplitude spectrum of casing
acceleration in X direction, f normal rubbing force, g torsional

displacement waveform of the rotor, h torsional amplitude spec-
trum of the rotor, i bending displacement of the rubbing blade
(blade 1), j amplitude spectrum of bending displacement of the
rubbing blade (blade 1)

(see Fig. 15b) and casing natural frequency (see
Fig. 15e), 9 fr related to the torsional natural fre-
quency (see Fig. 15h), and 22 fr related to the bend-

ing natural frequencies of the blades (see Fig. 15j).
For the four-blade rubbing, bigger amplitudes can
also be observed at the blade passing frequency
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Fig. 12 Experimental results under case 2: a time-domainwave-
form of the rotor in X direction, b amplitude spectrum of the
rotor, c rotor orbit, d time-domain waveform of the casing in X

direction, e amplitude spectrum of the casing, f normal rubbing
force, g tangential rubbing force

(BPF, 4 fr) and its multiple frequencies, such as
BPF, 2BPF, 3BPF, 4BPF, 5BPF and 6BPF, i.e.,
4 fr, 8 fr, 12 fr, 16 fr, 20 fr and 24 fr (see Fig. 15b,
e, h).

(2) For the measured results, both the lateral vibration
of the rotor and casing vibration show the amplitude
amplification phenomenawhich agreewellwith the
simulated results. The similar experimental results
were also reported in Ref. [32].
Themeasured normal and tangential rubbing forces
under the four-blade and single-blade rubbing con-
ditions have some differences. There are some rea-
sons for these: (1) In order to generate rubbing for
the four blades, some blades were grinded, and the
lengths of these blades were reduced. (2) The nat-

ural frequencies of the mechanical structure, e.g.,
the triaxial force sensor, are excited by the contact
forces, which lead to an amplification and a phase
distortion of the force signals [28]. For the four-
blade rubbing, the effect of the transient vibration of
the force sensor on the measured results increases
due to the reducing rubbing period. (3) The con-
trol of the penetration depths can also lead to some
errors. These reasons also cause large errors in the
dynamic friction coefficients for the four blades.
So the dynamic friction coefficients are not sug-
gested to be measured under four-blade rubbing
conditions, and dynamic friction coefficients under
this conditionwill not be compared in the following
analysis.
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Fig. 13 Simulated results with four-blade rubbing (case 3): a
rotor displacement waveform in X direction, b amplitude spec-
trum of the rotor in X direction, c rotor orbit, d acceleration
waveform of casing in X direction, e amplitude spectrum of cas-
ing acceleration, f normal rubbing force, g torsional displace-

ment waveform of the rotor, h torsional amplitude spectrum of
the rotor, i bending displacement of the rubbing blade (blade 1),
j amplitude spectrum of bending displacement of the rubbing
blade (blade 1)

(3) Simulated and measured spectra show that the
amplitude amplification phenomena often appear
at the BPF and its multiple frequencies. These fea-

tures are especially obvious for the amplitude spec-
trum of the measured casing vibration, which indi-
cates that the rubbing-induced casing vibration can
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Fig. 14 Experimental results under case 3: a time-domainwave-
form of the rotor in X direction, b amplitude spectrum of the
rotor, c rotor orbit, d time-domain waveform of the casing in X

direction, e amplitude spectrum of the casing, f normal rubbing
force, g tangential rubbing force

appear at the high-order natural frequencies (see
Fig. 16e).

(4) Simulated and measured normal rubbing forces
show that the rubbing level of blade 1 ismost severe,
and those of blades 2 and 3 are moderate, and that
of blade 4 is the least severe. A detailed explana-
tion can be found in Fig. 17, which shows that the
penetration depth is maximal for blade 1, followed
by those for blade 2 and blade 4, and minimal for
blade 3. In addition, it is also possible that the rub-
bing between the blade 3 and casingmay not appear
due to the effects of rotor whirl under small pene-
tration depths.

The simulated results under case 5 are shown in
Fig. 18, the similar amplitude amplification phenom-
ena and frequency distributed features related to BPF
can be observed. In addition, the rubbing between the
blade 3 and casing does not appear. This also verifies
the above analysis (see Fig. 17). By increasing the pen-
etration from 50µm to 80µm, the simulated results are
shown in Fig. 19, which shows that the four-blade rub-
bing appears under relatively large penetration depths.
Fig. 20 shows the measured results of four-blade rub-
bing under case 5. The collision levels under case 5 are
slightly different from the above analysis under case 4.
The penetration depths cannot accurately agree with
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Fig. 15 Simulated results with four-blade rubbing (case 4): a
rotor displacement waveform in X direction, b amplitude spec-
trumof the rotor in X direction, c rotor orbit,d accelerationwave-
form of casing in X direction, e amplitude spectrum of casing

acceleration, f normal rubbing force, g torsional displacement
waveform of the rotor, h torsional amplitude spectrum of the
rotor, i bending displacements of the blades, j amplitude spec-
trum of bending displacements of the blade 1

the simulated conditions. This may lead to the differ-
ence between the simulated and measured results. In
addition, the blade-casing abrasions can also lead to

the change of the clearance between the blade and cas-
ing, which also affects the measured results to some
extent.
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Fig. 16 Experimental results under case 4: a time-domainwave-
form of the rotor in X direction, b amplitude spectrum of the
rotor, c rotor orbit, d time-domain waveform of the casing in

Xdirection, e amplitude spectrum of the casing, f normal rub-
bing force, g tangential rubbing force. Note Numbers 1, 4, 3 and
2 denote the rubbing time for blades 1, 4, 3 and 2

Fig. 17 A schematic of blade-casing rubbing explanation

4.4 Summary of rubbing fault features

Typical fault features for single- and four-blade rub-
bings are listed in Table 7. For the single-blade rub-
bing, simulated results show that the amplitude ampli-
fication phenomena can be observed when the multi-
ple frequency components of rotational frequency ( fr)
coincide with the conical natural frequencies, torsional
natural frequency of the rotor-blade system, casing nat-
ural frequency and bending natural frequencies of the
blades. For the four-blade rubbing, simulated results
show that BPF and its multiple frequency components
(nBPF, n = 1, 2, 3, . . .) with larger amplitudes can be
viewed as a distinguished feature besides the amplitude
amplification phenomena.
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Fig. 18 Simulated results with four-blade rubbing (case 5): a
rotor displacement waveform in X direction, b amplitude spec-
trumof the rotor in X direction, c rotor orbit,d accelerationwave-
form of casing in X direction, e amplitude spectrum of casing

acceleration, f normal rubbing force, g torsional displacement
waveform of the rotor, h torsional amplitude spectrum of the
rotor, i bending displacements of the blades, j amplitude spec-
trum of bending displacements of the blade 1
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Fig. 19 Simulated results with four-blade rubbing under δ0 =
80µm: a rotor displacement waveform in X direction, b ampli-
tude spectrum of the rotor in X direction, c rotor orbit, d acceler-
ation waveform of casing in X direction, e amplitude spectrum

of casing acceleration, f normal rubbing forces, g torsional dis-
placement waveform of the rotor, h torsional amplitude spectrum
of the rotor, i bending displacements of the blades, j amplitude
spectrum of bending displacements of the blade 1

For single- and four-blade rubbings,measured results
also show the similar amplitude amplification phenom-
ena. Moreover, BPF and its multiple frequency compo-

nents are also obvious for the four-blade rubbing. How-
ever, it should be noted that the amplitude spectra of
the casing are complicated because the adopted casing
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Fig. 20 Experimental results under case 5: a time-domainwave-
form of the rotor in X direction, b amplitude spectrum of the
rotor, c rotor orbit, d time-domain waveform of the casing in X

direction, e amplitude spectrum of the casing, f normal rubbing
force, g tangential rubbing force. Note Numbers 1, 4, 3 and 2
denote the rubbing time for blades 1, 4, 3 and 2

model is simple and it cannot completely simulate the
dynamic characteristics of the actual casing structure.

5 Conclusions

An improved rotor-blade dynamic model is developed,
and the model has some significant advantages com-
pared with our previous model in [34]. In addition, the
proposed model is also compared with finite element
model [34], analytical models [34,35], and experiment
results [34]. Then single- and four-blade rubbings are
simulated by simplifying the casing as a lumped mass
point with two degrees of freedom (DOFs). Finally, the

simulated results are also validated using the experi-
mental results. Main conclusions are summarized as
follows:

(1) Compared with the model in Ref. [34], the pro-
posed model considers the effects of the swing of
the rigid disk and stagger angle of the blade. Nat-
ural frequencies of a flexible rotor-blade system
obtained from the proposedmodel indicate that nat-
ural frequencies related to the disk swing are closer
to those obtained from finite element (FE) model.
For the case under study, the maximum percentage
differences reduce from 3.934% based on the ana-
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Table 7 Fault features summary for single- and four-blade rubbings

Rubbing forms Vibration forms Fault features of simulated results Fault features of measured results

Single-blade rubbing Lateral vibration of the shaft Amplification phenomena appear
at the 8 fr (case 2) and 5 fr (case
3) near the conical natural
frequencies

Amplification phenomena appear
at the 8 fr (case 2) and 5 fr (case
3) near the conical natural
frequencies

Torsional vibration of the
shaft

Amplification phenomena appear
at the 10 fr (case 2) and 6 fr (case
3) near the torsional natural
frequency

Casing vibration Amplification phenomena appear
at the 8 fr (case 2) and 5 fr (case
3) near the casing natural
frequency

Amplification phenomena appear
at the 7 fr , 58 fr and 70 fr (case 2)
and 5 fr , 39 fr and 48 fr (case 3)
near the casing natural
frequencies

Blade vibration Amplification phenomena appear
at the 22 fr (case 2) and 15 fr
(case 3) near bending natural
frequencies of the blades

Four-blade rubbing Lateral vibration of the shaft Large amplitude can be observed
at BPF, 2BPF and 3BPF for case
4, and at BPF, 5 fr and 2BPF for
case 5

Large amplitude can be observed
at BPF, 2BPF and 3BPF for case
4, and at BPF and 5 fr for case 5

Torsional vibration of the
shaft

Large amplitude can be observed
at BPF, 2BPF, 9 fr , 3BPF, 4BPF,
5BPF and 6BPF for case 4, and
at BPF, 6 fr, 7 fr , 2BPF, 3BPF,
15 fr and 4BPF for case 5

Casing vibration Large amplitude can be observed
at BPF, 2BPF, 3BPF, 4BPF,
5BPF and 6BPF for cases 4 and 5

Large amplitude can be observed
at BPF, 2BPF, 3BPF, 4BPF,
5BPF, 6BPF, 15BPF and 18BPF
for case 4, and at BPF, 2BPF,
3BPF, 4BPF, 7BPF, 10BPF and
12BPF for case 5

Blade vibration Amplification phenomena appear
at the 22 fr (case 4) and 15 fr
(case 5) near bending natural
frequencies of the blades

BPF blade passing frequency, nBPF n times of BPF

lytic model [34] to 0.1042% based on the proposed
model.
In addition, the shaft is discretized using FEmethod
rather than the lumped mass method, which makes
the shaft modeling more general. Furthermore, the
mode shapes of the rotor-blade systems can be also
obtained from the proposed model, which is also a
new development relative to the analytical model
in Ref. [34].

(2) Simulated rubbing responses show a good agree-
ment with the experimental results. For the single-
blade rubbing, amplitude amplification phenomena

appear when the multiple frequency of the rota-
tional frequency ( fr) coincideswith the conical and
torsional natural frequencies of the rotor-blade sys-
tem, the bending natural frequencies of the blades,
and the natural frequencies of the casing. For the
four-blade rubbing, the blade passing frequency
(BPF, 4 fr) and its multiple frequency components
are also obvious besides these frequencies related
to amplitude amplification phenomena.

(3) Rubbing levels of the blades are related to the rotor
whirl. The most severe rubbing appears for the
blade which locates at the right end of the whirl

123



1250 H. Ma et al.

orbit, i.e., is nearest to the casing. The least severe
rubbing appears for the blade located at the left end
of the whirl orbit, which is the opposite side for
the most severe rubbing blade. The rubbing levels
related to other two blades are moderate.

In this study, the casing is simulated as a two DOFs
system and only thewhole displacement of the casing is
considered, and only the rotor vibration displacements
are measured. In the future studies, more complicated
casing models such as elastic ring models will be intro-
duced in the system model, and the effects of stagger
angles of blades on the rubbing will be considered, and
the shaft torsional vibration and blade dynamic stress
will also be measured.
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Appendix 1: Vectors and matrices related to the
blades

(1) qb is the generalized coordinates vector of the
blades, where

qb =
[
q1b · · · qib · · · qNb

b

]T
,

qib =
[
U iT V iT ψ iT

]T
, (24)

here, U i = [Ui
1, . . . ,U

i
Nmod

]T, V i = [
V i
1 , . . . ,

V i
Nmod

]T
,ψ i = [ψ i

1, . . . , ψ
i
Nmod

]T.
(2) Mb is the mass matrix of the blades

Mb = diag[ M1
b · · · M i

b · · · MNb
b ], (25)

where M i
b is the mass matrix of the i th blade, and

the elements of M i
b are given as follows:

M i
b(m, n) =

Nmod∑
n=1

[
ρb

∫ L

0
Abφ1nφ1mdx

]
,

M i
b (m + Nmod, n + Nmod)

=
Nmod∑
n=1

[
ρb

∫ L

0
Abφ2nφ2mdx

]
,

M i
b (m + 2Nmod, n + 2Nmod)

=
Nmod∑
n=1

[
ρb

∫ L

0
Ibφ3mφ3ndx

]
,

here, m, n = ξ = 1, 2, . . . , Nmod, and the surplus
elements are all zero.

(3) Gb is the Coriolis force matrix of the blade:

Gb = diag[G1
b · · · Gi

b · · · GNb
b ], (26)

where Gi
b is the Coriolis force matrix of the i th

blade, and the elements of Gi
b are given as follows:

Gi
b (m, n + Nmod)

=
Nmod∑
n=1

[
−2θ̇ρbcosβ

∫ L

0
Abφ2nφ1mdx

]
,

Gi
b (m + Nmod, n)

=
Nmod∑
n=1

[
2θ̇ρbcosβ

∫ L

0
Abφ1nφ2mdx

]
,

and the surplus elements are all zero.
(4) K b is the stiffness matrix of the blades:

K b = diag
[
K 1

b · · · K i
b · · · K Nb

b

]
, (27)

where K i
b is the stiffness matrix of the i th blade, and

the elements of K i
b are given as follows:

K i
b(m, n) =

Nmod∑
n=1

[
−θ̇2ρb

∫ L

0
Abφ1nφ1mdx

+ EbAbφ
′
1nφ1m

∣∣
x=L −

∫ L

0
Eb
(
A′
bφ

′
1n

+Abφ
′′
1n

)
φ1mdx

]
,

K i
b (m, n + Nmod)

=
Nmod∑
n=1

[
−θ̈cosβρb

∫ L

0
Abφ2nφ1mdx

]
,

K i
b (m + Nmod, n)

=
Nmod∑
n=1

[
θ̈cosβρb

∫ L

0
Abφ1nφ2mdx

]
,
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K i
b (m + Nmod, n + Nmod)

=
Nmod∑
n=1

⎡
⎢⎢⎢⎢⎢⎢⎣

κGbAbφ
′
2nφ2m

∣∣
x=L −

∫ L

0
κGb

(
A′
bφ

′
2n + Abφ

′′
2n

)
φ2mdx

+ fc(x) φ′
2nφ2m

∣∣
x=L −

∫ L

0

(
f ′
c(x)φ

′
2n + fc(x)φ

′′
2n

)
φ2mdx

+Fn φ′
2nφ2m

∣∣
x=L −

∫ L

0

(
Fnφ

′′
2n + F ′

nφ
′
2n

)
φ2mdx − θ̇2cos2βρb

∫ L

0
Abφ2nφ2mdx

⎤
⎥⎥⎥⎥⎥⎥⎦

,

K i
b (m + Nmod, n + 2Nmod)

=
Nmod∑
n=1

[
− κGbAbφ3nφ2m |x=L +

∫ L

0
κGb

(
A′
bφ3n

+Abφ
′
3n

)
φ2mdx

]
,

K i
b (m + 2Nmod, n + Nmod)

=
Nmod∑
n=1

[
−
∫ L

0
κGbAbφ

′
2nφ3mdx

]
,

K i
b (m + 2Nmod, n + 2Nmod)

=
Nmod∑
n=1

⎡
⎢⎢⎣

Eb Ibφ
′
3nφ3m

∣∣
x=L −

∫ L

0
Eb
(
I ′
bφ

′
3n + Ibφ

′′
3n

)
φ3mdx

+
∫ L

0
κGbAbφ3nφ3mdx − θ̇2ρb

∫ L

0
Ibφ3nφ3mdx

⎤
⎥⎥⎦,

and the surplus elements are all zero.

Appendix 2: Coupled vectors and matrices related
to rotor-blade systems

Mass matrix

The mass coupling matrix of rotor-blade systems is

Mc = [Mc1, Mc2, Mc3, Mc4, Mc5, Mc6]. (28)

(1) Mc1 is the mass coupling term at the disk location
in X direction.

Mc1 =
[
M1

c1 · · · M i
c1 · · · MNb

c1

]T
, (29)

where the superscript i denotes the i th blade. The
elements of M i

c1 are given as follows:

M i
c1 (m, 1) = ρb cosϑi

∫ L

0
Abφ1mdx,

M i
c1 (m + Nmod, 1)

= −ρb sin ϑicosβ
∫ L

0
Abφ2mdx,

M i
c1 (m + 2Nmod, 1) = 0.

(2) Mc2 is the mass coupling term at the disk location
in Y direction.

Mc2 =
[
M1

c2 · · · M i
c2 · · · MNb

c2

]T
. (30)

The elements of M i
c2 are given as follows:

M i
c2 (m, 1) = ρb sin ϑi

∫ L

0
Abφ1mdx,

M i
c2 (m + Nmod, 1)

= ρb cosϑi cosβ

∫ L

0
Abφ2mdx,

M i
c2 (m + 2Nmod, 1) = 0.

(3) Mc3 is the mass coupling term at the disk location
in Z direction.

Mc3 =
[
M1

c3 · · · M i
c3 · · · MNb

c3

]T
. (31)

The elements of M i
c3 are given as follows:

M i
c3(m, 1) = 0,

M i
c3 (m + Nmod, 1) = ρbsinβ

∫ L

0
Abφ2mdx,

M i
c3 (m + 2Nmod, 1) = 0.
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(4) Mc4 is the mass coupling term at the disk location
in θX direction.

Mc4 =
[
M1

c4 · · · M i
c4 · · · MNb

c4

]T
. (32)

The elements of M i
c4 are given as follows:

M i
c4 (m, 1) = 0,

M i
c4 (m + Nmod, 1)

= ρb sin ϑi sin β

∫ L

0
(Rd + x) Abφ2mdx,

M i
c4 (m + 2Nmod, 1)

= ρb sin ϑi sin β

∫ L

0
Ibφ3mdx .

(5) Mc5 is the mass coupling term at the disk location
in θY direction.

Mc5 =
[
M1

c5 · · · M i
c5 · · · MNb

c5

]T
. (33)

The elements of M i
c5 are given as follows:

M i
c5(m, 1) = 0,

M i
c5(m + Nmod, 1)

= −ρb cosϑi sin β

∫ L

0
(Rd + x) Abφ2mdx,

M i
c5 (m + 2Nmod, 1)

= −ρb cosϑi sin β

∫ L

0
Ibφ3mdx .

(6) Mc6 is the mass coupling term at the disk location
in θZ direction.

Mc6 =
[
M1

c6 · · · M i
c6 · · · MNb

c6

]T
. (34)

The elements of M i
c6 are given as follows:

M i
c6 (m, 1) = 0,

M i
c6 (m + Nmod, 1)

= ρbcosβ
∫ L

0
(Rd + x) Abφ2mdx,

M i
c6 (m + 2Nmod, 1)

= ρbcosβ
∫ L

0
Ibφ3mdx .

Damping matrix

The damping coupling matrix of rotor-blade systems
at the disk location is

Gc = [Gc1, Gc2, Gc3, Gc4, Gc5, Gc6], (35)

where Gci = 0(i = 1, 2. . .5), and the expression of
Gc6 is

Gc6 =
[
G1

c6 · · · Gi
c6 · · · GNb

c6

]T
, (36)

where the elements of Gi
c6 are given as follows:

Gi
c6(m, 1) = −2θ̇ρb

∫ L

0
Ab (Rd + x) φ1mdx,

Gi
c6 (m + Nmod, 1) = 0,

Gi
c6 (m + 2Nmod, 1) = 0.

Stiffness matrix

The stiffness coupling matrix of rotor-blade systems
related to the acceleration at the disk location is

K ac = [K ac1, K ac2, K ac3, K ac4, K ac5, K ac6], (37)

where K aci = 0(i = 1, 2. . .5), and the expression
of K ac6 is

K ac6 =
[
K 1

ac6 · · · K i
ac6 · · · K Nb

ac6

]T
. (38)

The elements of K i
ac6 are given as follows:

K i
ac6 (m, 1) = −θ̈ρb

∫ L

0
Ab (Rd + x) φ1mdx,

K i
ac6 (m + Nmod, 1) = 0,

K i
ac6 (m + 2Nmod, 1) = 0.

The stiffness coupling matrix of rotor-blade systems is

K c = [K c1, K c2, K c3, K c4, K c5, K c6], (39)

where K ci = 0 (i = 1, 2. . .5), and the expression of
K c6 is

K c6 =
[
K 1

c6 · · · K i
c6 · · · K Nb

c6

]T
. (40)

The elements of K i
c6 are given as follows:

K i
c6(m, 1) = 0,

K i
c6(m + Nmod, 1) = −θ̇2 cosβρb

∫ L

0
Ab (Rd + x) φ2mdx,

K i
c6 (m + 2Nmod, 1) = −θ̇2 cosβρb

∫ L

0
Ibφ3mdx .

Appendix 3: Other vectors and matrices related to
the rotor-blade system

(1) M̃d is the added mass matrix at the disk location.
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M̃d=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

M̃XX 0 0 0 0 M̃XθZ

0 M̃YY 0 0 0 M̃Y θZ

0 0 M̃Z Z M̃ZθX M̃ZθY 0
0 0 M̃θX Z M̃θX θX M̃θX θY M̃θX θZ

0 0 M̃θY Z M̃θY θX M̃θY θY M̃θY θZ

M̃θZ X M̃θZ Y 0 M̃θZ θX M̃θZ θY M̃θZ θZ

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, (41)

where, M̃XX = ∑Nb
i=1

∫ L
0 ρbAbdx, M̃YY = ∑Nb

i=1∫ L
0 ρbAbdx, M̃Z Z =∑Nb

i=1

∫ L
0 ρbAbdx ,

M̃θX θX =
Nb∑
i=1

(
sin2 ϑi

∫ L

0
ρbAb (Rd + x)2dx

+ sin2 β

∫ L

0
ρb Ibdx + cos2 ϑi cos

2 β

∫ L

0
ρb Ibdx

)
,

M̃θY θY =
Nb∑
i=1

(
cos2 ϑi

∫ L

0
ρbAb (Rd + x)2dx

+ sin2 β

∫ L

0
ρb Ibdx + sin2 ϑi cos

2 β

∫ L

0
ρb Ibdx

)
,

M̃θZ θZ = mde
2 +

Nb∑
i=1

(∫ L

0
ρbAb (Rd + x)2dx

+
∫ L

0
ρb Ibcos

2βdx

)
,

M̃XθZ = M̃θZ X =
Nb∑
i=1

∫ L

0
−ρbAb (Rd + x) sinϑidx,

M̃Y θZ = M̃θZ Y =
Nb∑
i=1

∫ L

0
ρbAb (Rd + x) cosϑidx,

M̃ZθX = M̃θX Z =
Nb∑
i=1

∫ L

0
ρbAb (Rd + x) sinϑidx,

M̃ZθY = M̃θY Z =
Nb∑
i=1

∫ L

0
−ρbAb (Rd + x) cosϑidx,

M̃θX θY = M̃θY θX

=
Nb∑
i=1

(∫ L

0
−ρbAb (Rd + x)2 sinϑi cosϑidx

+
∫ L

0
ρb Ibsinϑi cosϑicos

2βdx

)
,

M̃θX θZ = M̃θZ θX =
Nb∑
i=1

∫ L

0
ρb Ibsinϑi sinβcosβdx,

M̃θY θZ = M̃θZ θY =
Nb∑
i=1

∫ L

0
−ρb Ib cosϑi sinβcosβdx .

(2) G̃d is the added dampingmatrix at the disk location.

G̃d =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 G̃θX θX G̃θX θY 0
0 0 0 G̃θY θX G̃θY θY 0
0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

, (42)

where G̃θX θX = ∑Nb
i=1

(
2θ̇ sin ϑi cosϑi

∫ L
0 ρbAb

(Rd + x)2 dx−2θ̇ sin ϑi cosϑi cos2 β
∫ L
0 ρb Ibdx

)
,

G̃θY θY =
Nb∑
i=1

(
−2θ̇ sin ϑi cosϑi

∫ L

0
ρbAb (Rd + x)2dx

+2θ̇ sin ϑi cosϑi cos
2 β

∫ L

0
ρb Ibdx

)
,

G̃θX θY =
Nb∑
i=1

(
2θ̇ sin2 ϑi

∫ L

0
ρbAb (Rd + x)2dx

+2θ̇ cos2 ϑi cos
2 β

∫ L

0
ρb Ibdx

)
,

G̃θY θX =
Nb∑
i=1

(
−2θ̇ cos2 ϑi

∫ L

0
ρbAb (Rd + x)2dx

−2θ̇ sin2 ϑi cos
2 β

∫ L

0
ρb Ibdx

)
.

(3) K̃d is the added stiffness matrix at the disk location.

K̃d =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 K̃θX θX K̃θX θY 0
0 0 0 K̃θY θX K̃θY θY 0
0 0 0 0 0 K̃θZ θZ

⎤
⎥⎥⎥⎥⎥⎥⎦

,

(43)

where
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K̃θX θX =
Nb∑
i=1

⎛
⎜⎜⎝

(
θ̈ sin ϑi cosϑi − θ̇2 sin2 ϑi

) ∫ L

0
ρbAb (Rd + x)2dx

+
(
−θ̈ sin ϑi cosϑicos

2β − θ̇2 cos2 ϑicos
2β
) ∫ L

0
ρb Ibdx

⎞
⎟⎟⎠ ,

K̃θY θY =
Nb∑
i=1

⎛
⎜⎜⎝

(
−θ̈ sin ϑi cosϑi − θ̇2 cos2 ϑi

) ∫ L

0
ρbAb (Rd + x)2dx

+
(
θ̈ sin ϑi cosϑicos

2β − θ̇2 sin2 ϑicos
2β
) ∫ L

0
ρb Ibdx

⎞
⎟⎟⎠ ,

K̃θX θY =
Nb∑
i=1

⎛
⎜⎜⎝

(
θ̈ sin2 ϑi + θ̇2 sin ϑi cosϑi

) ∫ L

0
ρbAb (Rd + x)2dx

+
(
θ̈ cos2 ϑicos

2β − θ̇2 sin ϑi cosϑicos
2β
) ∫ L

0
ρb Ibdx

⎞
⎟⎟⎠ ,

K̃θY θX =
Nb∑
i=1

⎛
⎜⎜⎝

(
−θ̈ cos2 ϑi + θ̇2 sin ϑi cosϑi

) ∫ L

0
ρbAb (Rd + x)2dx

−
(
θ̈ sin2 ϑicos

2β + θ̇2 sin ϑi cosϑicos
2β
) ∫ L

0
ρb Ibdx

⎞
⎟⎟⎠ ,

K̃θZ θZ =
Nb∑
i=1

(
−
∫ L

0
ρbAb (Rd + x)2 θ̇2dx −

∫ L

0
ρb Ibθ̇

2cos2βdx

)
.

Appendix 4: Element matrices of the rotational
shaft

The element consistent mass matrix of Timoshenko
beam Me is

Me = ρAsl

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a
0 a
0 0 1/3
0 −c 0 g Symmetric
c 0 0 0 g
0 0 0 0 0 J/(3As)

b 0 0 0 d 0 a
0 b 0 −d 0 0 0 a
0 0 1/6 0 0 0 0 0 1/3
0 d 0 f 0 0 0 c 0 g
−d 0 0 0 f 0 −c 0 0 0 g
0 0 0 0 0 J/(6As) 0 0 0 0 0 J/(3As)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (44)

where

a =
13
35 + 7

10φ + 1
3φ2 + 6

5 (rg/ l)2

(1 + φ)2
,

b =
9
70 + 3

10φ + 1
6φ2 − 6

5 (rg/ l)2

(1 + φ)2
,

c =
[ 11
210 + 11

120φ + 1
24φ2 + ( 1

10 − 1
2φ
)
(rg/ l)2

]
l

(1 + φ)2
,

d =
[ 13
420 + 3

40φ + 1
24φ2 − ( 1

10 − 1
2φ
)
(rg/ l)2

]
l

(1 + φ)2
,

f =
[ 1
140 + 1

60φ + 1
120φ2 + ( 1

30 + 1
6φ − 1

6φ2
)
(rg/ l)2

]
l2

(1 + φ)2
,

g =
[ 1
105 + 1

60φ + 1
120φ2 + ( 2

15 + 1
6φ + 1

3φ2
)
(rg/ l)2

]
l2

(1 + φ)2
,

in which the transverse shear parameterφ = 12E I
κ1AsGl2

; I

is the area moment of inertia; κ1 = 6(1+υ)
7+6υ is the shape

of factor; As is the shaft cross-sectional area;G is shear
modulus; l is element length; J is polar area moment
of inertia; the radius of gyration rg = √

I/As .
Element stiffness matrix of Timoshenko beam K e is
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K e =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h
0 h
0 0 As E/ l
0 −i 0 j Symmetric
i 0 0 0 j
0 0 0 0 0 GJ/ l

−h 0 0 0 −i 0 h
0 −h 0 i 0 0 0 h
0 0 −As E/ l 0 0 0 0 0 As E/ l
0 −i 0 k 0 0 0 i 0 j
i 0 0 0 k 0 −i 0 0 0 j
0 0 0 0 0 −GJ/ l 0 0 0 0 0 GJ/ l

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (45)

where h = 12E I
l3(1+φ)

, i = 6E I
l2(1+φ)

, j = (4+φ)E I
l(1+φ)

and

k = (2−φ)E I
l(1+φ)

.
Gyroscopic matrix of Timoshenko beam Ge is

Ge = 2θ̇ρAsl

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
−p 0
0 0 0

−q 0 0 0 Antisymmetric
0 −q 0 −s 0
0 0 0 0 0 0
0 −p 0 −q 0 0 0
p 0 0 0 −q 0 −p 0
0 0 0 0 0 0 0 0 0

−q 0 0 0 w 0 q 0 0 0
0 −q 0 −w 0 0 0 q 0 −s 0
0 0 0 0 0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (46)

where p = 6r2g/5

l2(1+φ)2
, q = −

(
1
10− 1

2φ
)
r2g

l(1+φ)2
, s =

(
2
15+ 1

6φ+ 1
3φ2

)
r2g

(1+φ)2

and w = −
(

1
30+ 1

6φ− 1
6φ2

)
r2g

(1+φ)2
.

Appendix 5: Nonlinear forces of the rotor-blade sys-
tem

(1) Fi
nonlinear, b is a nonlinear force vector of i th blade:

Fi
nonlinear, b (m, 1) = θ̇2ρb∫ L

0
(Rd + x) φ1m Abdx,

Fi
nonlinear, b (m + Nmod, 1)

=

⎛
⎜⎜⎝

−θ̈cosβ
−2 sin ϑi sin βθ̇Yd θ̇ − sin ϑi sin βθYd θ̈

− cosϑi sin βθYdθ̇
2 − 2 cosϑi sin βθ̇Xd θ̇

− cosϑi sin βθXd θ̈ + sin ϑi sin βθXd θ̇
2

⎞
⎟⎟⎠

ρb

∫ L

0
Ab (Rd + x) φ2mdx, (47)

Fi
nonlinear,b (m + 2Nmod, 1)

= −θ̈cosβρb

∫ L

0
Ibφ3mdx . (48)

(2) fnonlinear,X is a nonlinear force applied on the disk
in X direction.
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fnonlinear, X = emd cos (θ + θZd)
(
θ̇ + θ̇Zd

)2
+emd sin (θ + θZd)

(
θ̈ + θ̈Zd

)

+
Nb∑
i=1

Nmod∑
i=1

⎛
⎜⎜⎝
2θ̇ sin ϑi

∫ L

0
ρbAbφ1mU̇mdx

+
(
θ̇2 cosϑi + θ̈ sin ϑi

) ∫ L

0
ρbAbφ1mUmdx

⎞
⎟⎟⎠

+
Nb∑
i=1

Nmod∑
i=1

⎛
⎜⎜⎝
2θ̇ cosϑicosβ

∫ L

0
ρbAbφ2mV̇mdx

+
(
−θ̇2 sin ϑi + θ̈ cosϑi

)
cosβ

∫ L

0
ρbAbφ2mVmdx

⎞
⎟⎟⎠

+
Nb∑
i=1

((
2θ̇Zd θ̇ cosϑi − θZd θ̇

2 sin ϑi + θZd θ̈ cosϑi

+θ̇2 cosϑi + θ̈ sin ϑi

)

∫ L

0
ρbAb (Rd + x) dx

)
. (49)

(3) fnonlinear,Y is a nonlinear force applied on the disk
in Y direction.

fnonlinear,Y = emdsin (θ + θZd)
(
θ̇ + θ̇Zd

)2
−emd cos (θ + θZd)

(
θ̈ + θ̈Zd

)

+
Nb∑
i=1

Nmod∑
i=1

(
−2θ̇ cosϑi

∫ L
0 ρbAbφ1mU̇mdx

+ (θ̇2 sin ϑi − θ̈ cosϑi
) ∫ L

0 ρbAbφ1mUmdx

)

+
Nb∑
i=1

Nmod∑
i=1

(
2θ̇ sin ϑicosβ

∫ L
0 ρbAbφ2mV̇mdx

+ (θ̇2 cosϑi + θ̈ sin ϑi
)
cosβ

∫ L
0 ρbAbφ2mVmdx

)

+
Nb∑
i=1

((
2θ̇zd θ̇ sin ϑi + θZdθ̇

2 cosϑi + θZdθ̈ sin ϑi

+θ̇2 sin ϑi − θ̈ cosϑi

)

∫ L

0
ρbAb (Rd + x) dx

)
. (50)

(4) fnonlinear,Z is a nonlinear force applied on the disk
in Z direction.

fnonlinear,Z =
Nb∑
i=1

((−2θ̇Yd θ̇ sin ϑi − θYdθ̈ sin ϑi − θYdθ̇
2 cosϑi

−2θ̇Xd θ̇ cosϑi − θXd θ̈ cosϑi + θXd θ̇
2 sin ϑi

)

∫ L

0
ρbAb (Rd + x) dx

)
. (51)
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(5) Mnonlinear,X is a nonlinear bendingmoment applied
on the disk in θX direction.

Mnonlinear, X = −Jp θ̇Yd θ̇Zd

+
Nb∑
i=1

((−2θ̇Zd θ̇cosϑi − θZd θ̈ cosϑi

+θZd θ̇
2 sin ϑi − θ̈ sin ϑi − θ̇2 cosϑi

)

sin β cosβ

∫ L

0
ρb Ibdx

)

+
Nb∑
i=1

Nmod∑
i=1

×
⎛
⎝−2θ̇cosϑi sin β

∫ L

0
ρb Ibφ3mψ̇mdx

+ (−θ̈ cosϑi + θ̇2 sin ϑi
)
sin β

∫ L
0 ρb Ibφ3mψmdx

⎞
⎠

(52)

(6) Mnonlinear,Y is a nonlinear bending moment applied
on the disk in θY direction.

Mnonlinear, Y = Jp
(
θ̈ θXd + θ̈ZdθXd + θ̇Zd θ̇Xd

)

+
Nb∑
i=1

((−2θ̇Zd θ̇ sin ϑi − θZd θ̈ sin ϑi

−θZd θ̇
2 cosϑi + θ̈ cosϑi − θ̇2 sin ϑi

)

sin β cosβ

∫ L

0
ρb Ibdx

)

+
Nb∑
i=1

Nmod∑
i=1

×
⎛
⎝−2θ̇sinϑi sin β

∫ L

0
ρb Ibφ3mψ̇mdx

+ (−θ̈ sin ϑi − θ̇2 cosϑi
)
sin β

∫ L
0 ρb Ibφ3mψmdx

⎞
⎠

. (53)

(7) Mnonlinear,Z is a nonlinear torque applied on the disk
in θz direction.

Mnonlinear, Z = emd sin (θ + θZd) Ẍd

−emd cos (θ + θZd) Ÿd − e2md θ̈ − Jpθ̈

+Jp
(
θ̇Xd θ̇Yd + θXd θ̈Yd

)

−
Nb∑
i=1

(
θ̈ρb

∫ L

0

(
Ab (Rd + x)2 + Ib cos

2 β
)
dx

)
.

(54)
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