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Abstract Animproved rotor-blade dynamic model is
developed based on our previous works (Ma et al. in J
Sound Vib, 337:301-320, 2015; J Sound Vib 357:168—
194, 2015). In the proposed model, the shaft is dis-
cretized using a finite element method and the effects
of the swing of the rigid disk and stagger angles of the
blades are considered. Furthermore, the mode shapes
of rotor-blade systems can be obtained based on the
proposed model. The proposed model is more accurate
than our previous model, and it is also verified by com-
paring the natural frequencies obtained from the pro-
posed model with those from the finite element model
and published literature. By simplifying the casing as
a two degrees of freedom model, the single- and four-
blade rubbings are studied using numerical simulation
and experiment. Results show that for both the single-
and four-blade rubbings, amplitude amplification phe-
nomena can be observed when the multiple frequen-
cies of the rotational frequency ( f;) coincide with the
conical and torsional natural frequencies of the rotor-
blade system, natural frequencies of the casing and the
bending natural frequencies of the blades. In addition,
for the four-blade rubbing, the blade passing frequency
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(BPF, 4 f;) and its multiple frequency components also
have larger amplitudes, especially, when they coincide
with the natural frequencies of the rotor-blade system
or casing; the four-blade rubbing levels are related to
the rotor whirl, and the most severe rubbing happens
on the blade located at the right end of the whirl orbit.

Keywords Rotor-blade systems - Blade-tip rubbing -
Vibration responses - Amplitude amplification
phenomena - Experiment

List of symbols

CrB Viscous damping matrix of
the rotor-blade system
Bearing damping in X, ¥ and
Z directions

CbX, CbY, CbZ

CeX s CeY Damping of the casing in X
and Y directions

E Young’s modulus of blade

ec Vector of the eccentricity of
the static equilibrium posi-
tions of the rotor and casing
center line

F. Rubbing force vector of the

casing

Nonlinear force and rubbing
force vectors of the rotor-
blade system

Fnonlinear, s Frub
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F pontinear.bs Fronlinear,s Nonlinear force vectors of the

Fn’ Ft

fni

Jr

Gy

Gy, Gy

GC]a LR ] GCﬁ
G¢

GRrp

80
Ja, Jp
Ky, Kp2

kvx, kvy , kpz

My, Mg

M., My

M, M, M3

Me

M

Mo, x, Myub,y , Mub, z
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blade and shaft

Normal and tangential rub-
bing forces

The ith natural frequency of
the rotor-blade system (Hz)
Rotational frequency

Shear modulus of the blade
Coriolis matrices of the blade
and disk

Coupling terms of damping
matrix

Gyroscopic matrix of the
Timoshenko beam element
A matrix including the Corio-
lis force matrices of the blades,
damping matrix of bearings,
and gyroscopic matrices of
the shaft and rigid disk

Gap between concentric
rotor-blade and casing
Diametric and polar mass
moments of inertia of the disk
Stiffness matrices of the left
and right bearings

Stiffness of the bearing in
X, Y and Z directions
Stiffness matrix of the casing
Equivalent stiffness of the cas-
ing

Stiffness of the casing in X
and Y directions

Stiffness matrix of the Timo-
shenko beam element

The stiffness matrix of the
shaft

Length of the blade

Mass matrices of the blade
and rotor-blade system

Mass matrices of the casing
and disk

Coupling terms of mass matri-
ces

mass matrix of the Timo-
shenko beam element

Mass matrix of the shaft
Bending moments at the disk
location in 0 x and @y direc-

mq
Ny
Naof
Nmod
NNs
n;

9v:9c>9d> 91 45> 9RB,

RC9 Rd
Un (1), Vin(0), Y (1)
u,

uj

u,v,w, e

Xd, Yd, Zq

Greek symbols

B
8

8o
du, 8v, §¢
0(t)

Oxd, Oya and Ozq

tions and the torque in 6z
direction

Mass of the disk

Blade number

Number of DOFs forith blade
Number of modal truncation
Number of DOFs for the shaft
Unitnormal vector to the con-
tact surface for the ith blade
Generalized coordinate vec-
tors of the blade, casing, disk,
rotor, shaft and rotor-blade
system

Radius of the casing and disk
Canonical coordinates
Displacement vector of the
ith blade in the global coor-
dinate system

Displacement vector of cas-
ing

Displacement vector of the
ith blade-casing relative
motion in the global coordi-
nate system

Longitudinal deformation,
lateral deformation, swing
deformation and cross-
sectional rotation in blade
local coordinate system
Displacements of the disk in
X, Y and Z directions in the
global coordinate system

Stagger angle of the blade
The penetration depth

Initial penetration depth
Independence variables of
variational operation

The angular displacement of
the disk

Swing angle of the disk in
X and Y directions and tor-
sional angle of the shaft
Angular velocity

Shear correction factor of the
blade
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1% Friction coefficient

&,& Modal damping ratios (in this
paper, §; = § = 0.02)

v Poisson’s ratio

Ob Material density of the blade

A1 (X), P2 (x), P31, (x) Modal shape functions

1 Introduction

The clearance between the blade and casing is a key
parameter of turbine machinery, which influences the
gas leakage. For example, a large clearance will lead to
a reduction of the compression efficiency in turbine
machinery. However, reducing the clearance, which
can improve the compression efficiency, will increase
the risk of the blade-casing rubbing. Blade vibration
caused by blade-tip rubbing and rubbing fault diagno-
sis are attracting increasing attention [1-4]. Only con-
sidering the blade vibration, the rubbing between the
blade/bladed-disk and the casing has been investigated,
such as Legrand et al. [5,6], Lesaffre et al. [7], Sinha
[8,9], Kou and Yuan [10], Yuan and Kou [11], Almeida
et al. [12], Batailly et al. [13] and Ma et al. [14, 15].
For the blade installed on a flexible rotor system, the
rotor whirl has a great influence on the blade-casing
rubbing [16]. Many researchers worked on rotor-blade
systems and investigated the dynamic characteristics
due to the blade-casing rubbing [17-27]. On the basis
of a lumped mass model (LMM), Kascak et al. [17]
investigated the responses of a rotor-bearing system
with smearing or abradable rubbing. Padovan et al. [18]
established an LMM of a rotor system and analyzed the
single- and multiple-blade rubbings responses consid-
ering the influence of unbalance magnitude, blade/rotor
stiffness, system damping and rubbing interface fric-
tion characteristics. Based on a finite element (FE)
model which considers the rubbing between the rigid
blade and rigid casing, Lawrence et al. [19] simu-
lated the interactions between the blade and casing.
Sinha [20] developed a dynamic model for a bladed
rotor system supported by multiple bearings and dis-
cussed the transient response of the rotor due to blade-
tip rubbing during both the acceleration and decelera-
tion processes. Based on a nonsymmetric bladed rotor
system where blades are simulated by pre-twisted thin
shallow shells, Sinha [21] analyzed the rubbing load
under the blade missing. His simulation results show
that the sudden rubbing load can increase by an order of

magnitude over the unbalance force. Lesaffre et al. [22]
established a flexible bladed rotor model in the rotating
frame and observed an unstable phenomenon around
the critical speed of the stator even under frictionless
sliding. Based on a coupling model of flexible bladed
rotor and flexible casing, Parent et al. [23] analyzed the
blade-casing rubbing phenomena. Based on Ref. [23],
Parent et al. [24] analyzed the effects of 3D contact
formulation on both rubbing detection and the system
stability due to the blade-casing rubbing. Based on con-
tact dynamics, Ma et al. [25] established a rotor-blade-
casing FE model using ANSYS software and analyzed
complicated vibration responses caused by the blade-
casing rubbing. Petrov [26] proposed a multi-harmonic
analysis method to simulate whole-engine vibration
due to the blade-casing rubbing, and he also demon-
strated the high accuracy and computational efficiency
of the proposed methods using a set of test cases and an
example of analysis of a realistic gas turbine structure.
Thinery et al. [27] studied the dynamic behaviors of
a misaligned Kaplan turbine with blade-to-stator con-
tacts. In their model, the rotor is modeled using the FE
method with beam elements, while the rigid blades are
adopted to deal with the contact between the rotor and
casing.

Experimental tests have been used to study the
blade-casing rubbing [14,28-33]. By simplifying the
blade as a rotating uniform beam and the casing as an
arc structure, Ahrens et al. [28] measured contact forces
and the contact duration by experiment. Considering
the effects of elastic casing, Ma et al. [14] established
a test rig of blade-casing rubbing and analyzed the nor-
mal rubbing force under different casing materials and
rotational speeds. Padova et al. [29,30] established an
in-ground spin-pit facility (SPF) whose maximum rota-
tional speed can reach 20000 rev/min and studied the
metal-to-metal contact due to sudden penetrations with
different penetration depths. Chen et al. [31] carried
out rubbing experiments with different rubbing posi-
tions by using a rotor experiment rig of aero-engine and
analyzed the relation of rubbing feature and rubbing
position by the cepstrum. Adopting wavelet analysis to
deal with the measured blade-casing rubbing data, Lim
and Leong [32] and Abdelrhman et al. [33] detected
the changes of rotor dynamics caused by blade-casing
rubbing.

From the above literature reviews, it can be observed
that most researchers focused on the rubbing between
cantilever blades (beam or plate) and casings. The stud-
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Fig. 1 a Neglecting the
swing of the disk in Ref.
[34], b considering the
swing of the disk in this
study

ies considering both the rotor whirl and the flexibil-
ity of the blades are very limited. Based on our previ-
ous research works [14,34], the focuses of this paper
include:

(1) An improved rotor-blade model is developed. In
the improved model, the effects of the swing of the
disk are considered (see Fig. 1b); however, they are
not considered in Ref. [34] (see Fig. 1a). The proposed
model can improve the calculation accuracy, especially
under the flexible shaft condition. In addition, the stag-
ger angle of the blade can also be considered in the
improved model.

In our previous work [34], the shaft is modeled using
lumped-parameter model (lumped mass points); how-
ever, it is difficult to accurately determine the masses
of these discrete points in this model. In this study, the
shaftis modeled using an FE method, which adopts ele-
ment matrices of mass, stiffness and damping to assem-
ble the whole matrices’ of mass, stiffness and damping,
and it is convenient to implement for the modeling of
the shaft. Furthermore, the mode shapes of rotor-blade
systems can be also obtained based on the proposed
model, which is also another improvement to the model
in Ref. [34].

(2) The rubbings between both the single and four
blades and casing are simulated based on a normal
rubbing force model presented in our previous work
[14]. In Ref. [14], the simulated normal rubbing force
is determined using the model in which the blade is
presented using a cantilever beam model to represent
the blade, and the casing is described using a two DOF
model; the simulated normal rubbing force is validated
using experimental results. In this study, the rotor whirl
is considered, and the bending vibrations of the blades,
the lateral and torsional vibrations of the shaft and cas-
ing vibration are discussed. In addition, the simulated
results are also validated using the measured results in
a test rig. Some new coupling vibration phenomena of
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the rotor-blade-casing system are also evaluated using
the experiment results.

The paper is organized as follows. After this intro-
duction, an improved dynamic model of rotor-blade
systems is developed using the Hamilton’s principle in
conjunction with assumed modes method in Sect. 2.1.
The proposed model is validated by comparing the nat-
ural frequencies obtained from FE method and litera-
ture results in Sect. 2.2. A dynamic model of the rotor-
blade system with blade-casing rubbing is presented in
Sect. 3. In Sect. 4, simulated and measured vibration
responses of the system are compared and some typ-
ical fault features for single- and four-blade rubbings
are summarized. Finally, the conclusions are drawn in
Sect. 5.

2 An improved dynamic model of rotor-blade
systems

2.1 Dynamic model of rotor-blade systems

Considering the coupling effects of lateral and tor-
sional vibrations of the rotor and longitudinal and bend-
ing/flexural vibrations of the blade, a schematic of a
rotor-blade system is shown in Fig. 2. The rotor is com-
posed of a shaft and rigid disk. The cantilever Timo-
shenko beam is used to simulate flexible blade, attached
to the rigid disk. In Fig. 2, OXYZ is the global coor-
dinate, and ox9y4z9 is the disk body coordinate. In
addition, ox"y'z" and ox?yPz" represent the rotational
coordinate and local coordinate systems of the blade,
respectively. Symbols u, v and w represent the defor-
mations in longitudinal, bending/flexural and swing
directions of the blade, and ¢ represents the cross-
sectional rotation of the blade in local coordinate sys-
tem 0xPyPz" (see Fig. 3).

The mathematical model of rotor-blade system is
simplified according to the following assumptions.
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Fig. 2 Schematic of
rotor-blade systems

Fig. 3 a Coordinate
systems of the disk, b local
coordinate systems of the
blade, ¢ Timoshenko beam
in local coordinate system
of the blade

(1) Isotropic material is adopted, and the constitutive
relationship satisfies Hooke’s law;

(2) The contact problems of the blade, disk and shaft
are neglected;

(3) Thediskis considered to be rigid, i.e., its flexibility
is neglected, and it is described using a lumped
mass point;

(4) The shaft is described using FE method;

(5) The blades are represented using uniform can-
tilever beams;

(6) The bearing is simplified by a linear spring-
damping model.

The position vector of any point Q on the blade can
be written in the global coordinate system as:

X4 Ri+x+u—yp
ro= Yq | + A4A3A,A, v+y , (1)
Zd w

where four rotational transformation matrices A, As,
A3z and Ay are given as follows:

1 0 0
A1=|0 cosf —sing |, 2)
0 sinf cosp

Bearing 2

(c)

)’
V= a_v v
The ith blade root Ax

! )/3 W 4
> o(0°) g/

bl il )
¢ ( xb
[(cos (8 +0z4) —sin (¥ +0zq9) O
Ay = | sin (¢ +0zq) cos (P + 0zq) 01, 3
| 0 0 1
1 0 0
A3 =10 cosfOxq —sinfxq
| 0 sinfxg cosfxq
1 0 0
=0 1 —0x4 |, 4)
|0 Oxa 1
[ cos Byq 0 sinfygq
Ag =10 1 0
| —sinfyq 0 cosfyq
1 0 6Oyq
=0 1 o |. (5)
| —Ora 0 1

In Egs. (2)—(5), B is the stagger angle of the blade;
9 =0)+ @G —1) ?V—’E, where 0(¢) is the angular dis-
placement of the disk; (i — 1) ?V—Zdescribes the position
of the ith blade in the blade group; 6z, is a shaft tor-
sional angle at disk hub; and Ny is the number of the
blade. It is worth noting that the motion in the swing
direction of the blade is neglected, i.e. w = 0.
Substituting Egs. (2)—(5) into Eq. (1) and ignoring
high-order terms, r ¢ can then be expressed as:

@ Springer



1230 H. Ma et al.

Xa+ yOyasin B — ((y +v) cos B + (Rgq + x) 0z4) sin ¥
4+ (Rqg+x +u — yp — yOzq cos ) costy;
(Yd — yOxasin B+ (Rqg+x +u — yp — y0zq cos B) sim‘}i)

+((y + v) c0s B + (Rq + %) 624) cos 0 ©)

I‘Q=

(Zd + (y +v)sin B + (yOyq cos B + (Rq + x) Ox4q) sinz?i)

+ (y0xa cos B — (Rq + x) byq) sint;

The expressions of total kinetic energy 7o and total
potential energy Vi for the SDB system are as fol-
lows:

Np
Tiotal = Z Tolade + Tshatt + Tdisks

i=1

Np
Viotal = Z Vblade + Vshatt + Vbearing (7N

i=1
where Tylade, Tshaft and Tgyisk are the Kinetic energy of
the blade, shaft and disk, and Vpjade, Vshatt and Vgisk
are the potential energy of the blade, shaft and disk,
respectively. More details about these energy expres-
sions can refer to [34] and the specific matrices and
vectors formulas can be found in “Appendix”.

The equations of motion of the rotor system and
blade system are assembled together to form the global
matrices of the rotor-blade system. The schematic of
the matrix assembling is shown in Fig. 4 where Ngor is
the number of DOFs for the ith blade, and Ny is the
number of DOFs for the rotor.

Equations of motion of the rotor-blade system can
then be written as follows:

MRpirp + (CrB + GrB){rp + KRBGRB
= Fnonlinear + Frub» (8)

where MRp is the mass matrix of the system; CRrp is
the viscous damping matrix of the system, which is
simulated by the Rayleigh damping; Ggrg is the other
damping matrix of the system except for viscous damp-
ing matrix, which includes the Coriolis force matrices
of the blades, damping matrix of bearings, and gyro-
scopic matrices of the shaft and rigid disk; Krp is the
stiffness matrix of the system; grp is the generalized
displacement vector; and Fpoplinear and Fryp, are the
nonlinear coupling force vector and rubbing force vec-
tor, respectively.

In the equation, generalized displacement vector of
rotor-blade systems grp can be expressed as:

qre = [ 4v ‘Is]T, )]
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where g, and g, are the displacement vectors of the
blade and shaft, respectively.

The nonlinear force vector Fpoplinear Can be
expressed as:

T
F rontinear = [F nonlinear, b F nonlinear, sl s (10)

where Fponlinear,b 15 the nonlinear force vector of the
blade (see “Appendix 5”). Fyonlinear,s 1S the nonlinear
force vector of the shaft and its expression can be given
as follows:

F nonlinear,s = [O e f nonlinear, X f nonlinear, Y f nonlinear, Z

M nonlinear, X M nonlinear,Y
T
Mnonlinear,Z e 0] P (1 1)

where fronlinear, X » fnonlinear, Y fnonlinear, Z» Muonlinear, X »
Monlinear,y and Mponlinear,z are nonlinear forces and
moments applied at the disk position (see “Appen-
dix 57).

Rayleigh damping matrix Crp can be expressed as:

CrB = {MRgp + nKgg, (12)
— 4T[fnlfn2($lfn2_$2fnl)
C= T 03
n= & /ma—&1/ni ’

”(fnzz_fnzl)

where f;1 and f» represent the first and second natural
frequency (Hz) of the rotor-blade system, respectively,
and &; and & (in this paper, £; = & = 0.02) are the
corresponding modal damping ratios.

2.2 Model verification based on natural characteristics

In this section, a flexible rotor-blade model is used to
verify the proposed model, and the detailed rotor-blade
physical dimensions are shown in Fig. 5 and Table 1.
The detailed elements used to describe the shaft, disk,
blades and bearings can be found in Ref. [34]. The
natural frequencies are calculated using both methods
[34], including an FE modeling method and an analyt-
ical method.
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(a) NbXNmodXNdof (b) NbemodXNdof
3 ([ 2@
% M, £ G
=] =]
g < & c
= s
% s
= M, = G
ny n
ny ny
M, ng -G N4
n Shaft " Shaft
_ nys O
ll ny --- ngn; nN/s nyny --- nqn; nys
Shaft Shaft
(©)  NpxNima*Naot
I:l Matrices of blades
% 1
2'3 kK, l:’ Matrices of the shaft
< o
3 E I:l Coupling matrices of rotor-blade systems
= 2
% o = - Bearing location
- Disk location
n
ny
-K. + K ng
Shaft
nj
nns
nn --- Ng nj nys
Shaft

Fig. 4 Schematic diagram of assembled matrices for rotor-blade systems: a mass matrix Mrg, b damping matrix Ggg, c¢ stiffness

matrix Krp

The results are shown in Table 2. The natural fre-
quencies determined using FE and analytical methods
in [34] are given in the second and third columns. The
fifth and sixth columns show the percentage differences
between the analytical model in Ref. [34] and the pro-
posed model relative to the results of the FE model,
respectively. The results in Table 2 show that the pro-
posed model has a higher accuracy than that of the ana-
lytical method in Ref. [34], especially, for the vibration
modes related to the disk swing. For example, the per-

centage differences of natural frequencies related to the
disk swing ( fna and fy5) reduce from 3.9340 % for the
analytic model in [34] to 0.1042 % for the proposed
model. Moreover, the mode shapes obtained from the
proposed model also show a good agreement with those
obtained from the FE model, as shown in Fig. 6.
Besides the comparison with the FE model, the
model is also validated by comparing the natural fre-
quencies obtained from the proposed model with those
from Yang’s method in Ref. [35], as shown in Table 3.
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Fig. 5 Physical dimensions (@) Unit: mm
of a rotor-blade system: a L ; 2 . .
X ; ; : Left bearing Disk Py Right bearing
physical dimensions of the
shaft, b physical dimensions ~ [|7 7~ L S o S - -
of the disk and blade 50 148 473
741
(b)
44
= Eight identical blades
N
I 4
Y 5g | Disk Shaft
Zﬁv_ s - - — m ___________________________
kpy1 g comt 1
Left bearing ]

Table 1 Model parameters Parts Geometric parameters Material parameters
of the rotor-blade system

Shaft See Fig. 5 p = 7800 kg/m*E =200 GPav = 0.3

Bearing kpx1 = kpx2 = kpy1 = kpy2 =

1.5 x 10’ N/m, cpx1 = cpx2 =
Cpyl = Cpy2 = 1 x 103Ns/m

Blade See Fig. 5
Disk my = 13.89kg, J, = 0.071kgm?, J; =
0.0394 kg m”

The results obtained from the proposed method are
in good agreement with those obtained from Yang’s
method, and the maximum percentage difference of
the natural frequency is 4.7919 %. The trends of some
natural frequencies (see Table 3) are the same as that
in Ref. [35]. Some natural frequencies do not change
because the coupling effect between the disk and blade
is not considered for the proposed model.

3 A dynamic model of rotor-blade systems
with blade-casing rubbing

Rubbing between the blade-tip and casing can happen
due to the rotor whirl and blade elongation. A schematic
of blade-casing rubbing forces is shown in Fig. 7 where
Fr’1 and Fti are the normal and tangential rubbing forces
applied on the ith rubbing blade, respectively. For the
shaft, FI’; can be translated and equivalent to a force

F!, and F! canbe equivalent to a force F. and a torque

@ Springer

Mtir, as shown in the left figure of Fig. 7. For the rub-
bing blade, the direction of F! along the blade pointing
toward the disk center, and the tangential rubbing force
F! in the local coordinate system of the blade can be
decomposed into two forces F, and Ft"y, as shown in
the right figure of Fig. 7.

Considering the influence of the casing vibration on
the blade-tip rubbing and simplifying the casing as an
LMP with two DOFs, the equations of motion of the

rotor-blade-casing system can be written as follows:

5

MpRgggrg + (CrB + GrB)GRrp + KrBGRE = FRB
M.G.+ D.g.+ Keq. = Fc

(14)

where M, D and K are mass, damping and stiffness
matrices of the casing, respectively; g, and F are the
generalized coordinate vector and rubbing force vector
of the casing, respectively. In this equation, the external
force FRB = Fronlinear + Frub, Where Fuonlinear (S€€
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Table 2 Natural frequencies comparison of the rotor-blade system

Natural FE model Analytical Proposed Percentage differences
frequencies [34] model [34] model between FE model and ana-
lytical model [34] (%)

Percentage differences
between FE model and pro-
posed model (%)

Sl 57.87 57.88 57.88 0.0173 0.0173
2 61.09 61.25 61.08 0.2616 0.0164
3 61.09 61.25 61.08 0.2616 0.0164
T4 258.91 269.30 259.18 3.9340 0.1042
Js 258.91 269.30 259.18 3.9340 0.1042
fn6 364.57 364.72 364.72 0.0411 0.0411
S 364.57 364.72 364.72 0.0411 0.0411
Jas 364.57 364.72 364.72 0.0411 0.0411
Jfno 364.57 364.72 364.72 0.0411 0.0411
Ja1o 364.57 364.72 364.72 0.0411 0.0411
Jall 367.26 367.50 367.41 0.0653 0.0408
Jfa12 367.26 367.50 367.41 0.0653 0.0408
fa13 390.12 390.25 390.25 0.0333 0.0333
Jala 443.30 453.95 444.78 2.3739 0.3333
Jals 443.30 453.95 444.78 2.3739 0.3333
fuii = 1,2, ..., 15) denotes the ith natural frequency. Percentage difference equals the absolute value of the change in value, divided
by the average of the two numbers, all multiplied by 100. Percentage difference = % x 100 (%) where V; denotes a reference

value and Vj is a target value

Fig. 6 Comparison of mode shapes: a fy1, b fu2, € fug, d fu7. € fu13. £ fa1a

“Appendix 5”) and Fy, are the nonlinear force vec-

tor and.rubbmg force vector of the rotor-blade system, Frb = | Frup.b
respectively. —
Blade

The expression of Fryy is

0 Fupa O
—_— —

Rotor

5)
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Table 3 Natural frequencies comparison of a rotor-blade system considering stagger angles

Stagger angles Orders Yang’s model [35] (Hz) Proposed model (Hz) Percentage differences between
Yang’s model [35] and proposed
model (%)

B=m/6 1 80.77 80.7632 0.0084

2 81.423 81.542 0.1460
3 81.438 81.542 0.1276
4 81.496 81.542 0.0564
5 81.538 81.542 0.0049
6 81.538 81.542 0.0049
7 201.921 200.0141 0.9489
8 498.517 513.186 2.8999
9 499.185 513.186 2.7660
10 507.924 513.186 1.0306
11 510.99 513.186 0.4288
12 510.99 513.186 0.4288
13 514.986 517.5091 0.4887
B=m/4 1 81.011 81.0165 0.0068
2 81.309 81.542 0.2862
3 81.339 81.542 0.2493
4 81.455 81.542 0.1068
5 81.538 81.542 0.0049
6 81.538 81.542 0.0049
7 198.269 196.3806 0.9570
8 492.757 513.186 4.0617
9 493.538 513.186 3.9034
10 505.373 513.186 1.5341
11 510.99 513.186 0.4288
12 510.99 513.186 0.4288
13 513.067 515.9525 0.5608
B=mn/3 1 81.197 81.2760 0.0972
2 81.241 81.542 0.3698
3 81.257 81.542 0.3501
4 81.414 81.542 0.1571
5 81.538 81.542 0.0049
6 81.538 81.542 0.0049
7 194.759 192.8798 0.9696
8 489.17 513.186 4.7919
9 489.954 513.186 4.6319
10 503.201 513.186 1.9648
11 510.99 513.186 0.4288
12 510.99 513.186 0.4288
13 511.33 514.5159 0.6211
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AY

The ith blade

The ith blade-tip

Fig. 7 Schematic of blade-casing rubbing forces

The rubbing force vector Fpyp p of the blades can be
written as Frpp = |- Fﬁub,b ] where F;'ub’b
denotes the rubbing force vector of the ith rubbing

blade and it can be expressed as

_AFrl; ¢1m|x=L
—F/ cos Bom| _, | - (16)
0

i —
rub,b —

The rubbing force vector applied on the disk Fp q is

Flsin®; — F! cos 0;

i i .
—F! cos¥; — Flsind;
No

0
Frpa = Z 0 ) (17)
i=1 0
— (R4 + L) F}

The expressions of M¢, D, K, q. and F are given
as follows:

_ | Mc 0 _ ch 0
S FS B |

0
D. = [gcx ]—}—;Mc—f—nKC, (18)
Cey

qcz[Xc Yc]Ta

N , ,
_ Zb: —F!sin®; + Fj cos ¥; (19
€T « | F{ cosdi + Fising; |’

i=

where m. is the casing mass; ccx and c.y are damping
of the casing; k. x and k.y are stiffness of the casing; X
and Y, are displacements of the casing. The subscripts
X and Y denote X and Y directions, respectively.
Normal rubbing force F;, can be expressed as [14]:

5 (1 —28)+/50, /STy (Ii+ 2 8)+12:22
Fa=—{ Lk 2057 — 103 62 :
1 L o JL

o

(20)

where § is the penetration depth; k. is the equiv-

alent stiffness of the casing, here, k. = kcx; p is
the friction coefficient; I} = i—i); Iy = EbIb% +
/obAbé2 (%L + %Rd) T = %. Minus sign

denotes the direction of normal rubbing force is from
blade-tip to the center of rotor.

The penetration depth §, which is related to the radial
elongation of the blade, is caused by centrifugal loads
and relative geometric position between the blade-tip
and casing (see Fig. 8). In the published literature, the
effects of the casing distortion are usually considered
in the calculation of the blade-casing relative positions
[13,26]. Itis worth noting that in our study, the effects of
the casing distortion are not considered because only a
small arc-shaped casing (see Fig. 8) is used to simulate
the local blade-casing rubbing in the test rig. The disk
and the casing are concentric in the original position
(see Fig. 8a), and g is the gap between the concentric
bladed disk and casing, g0 = Rc — (Rg+ L) > 0,
where R, is the radius of the casing. However, due to
assembling misalignment, the clearance between rotor
and stator can be asymmetrical. Hence, the blade tip
may penetrate the casing due to the rotor whirl motion
and centrifugal force (see Fig. 8b).

The expression of penetration depth between the ith
blade and casing is obtained as [26]:

‘ T
8'(t) =u;ni — go. (21)
where n; is unit normal vector to the contact surface.
n; = [cos?; sin ﬁi]T,
and u; is a vector of the i th blade-casing relative motion
in the global coordinate,
u; =ul —u. — e,
where e. is the eccentricity vector related to the
misalignment of the rotor and casing centers; e, =

T .

[ex ey] :uj and u. are the displacement vectors
of the ith blade-tip and casing in the global coordinate,
respectively.

. X4 u
up, = | Ya |+ As43A2A, | v |,
Zg 0
T
uczqcz[xc Yc] )
. 2
9 =0@) +( —1) . (22)
Np

Tangential force F; is generated from the friction
between the blade-tip and casing, of which the direc-
tion is opposite to slip direction on the contact surface.
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(a) Before rubbing
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(b) After rubbing
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————— >
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; 2 j
4 @ Cex
Blade 4 \

Fig. 8 Schematic of blade-casing rubbing

Hence, tangential force can be written as:

Fy = pky. (23)
Because of the effects of the blade-tip rubbing, the

equations of motion of the rotor-blade-casing system

are nonlinear. In this study, Newmark integral method

is adopted to calculate the system vibration response.

The detailed simulation flowchart is shown in Fig. 9.

4 Numerical studies and experimental verification

The physical dimensions of a rotor-blade system in the
test rig are the same as those in Ref. [34]. For the rotor-
blade system, the bearing stiffness in horizontal and
vertical directions are set as kpx1 = kpy1 = kpx2 =
kpy2 = 1.5 x 107 N/m. The bearing stiffness in axial
direction are kpz; = kpz» = 4 x 10° N/m. The bear-
ing damping in three directions are cpx1 = cpy1 =
chx2 = Cpy2 = Ccpz1 = cpz2 = 1000 Ns/m. The stag-
ger angle of the blade is B = 0°. It is worth noting
that the torsional DOF of the right-most node (node
11) is restrained while that of the left-most node (node
1) is free, which is another revision to the system in
Ref. [34]. This is because that the right end of the shaft
is connected with the driving motor by a coupling in
this study. Other parameters are the same as those in
Ref. [34]. The simulated and measured natural frequen-
cies of the rotor-blade system are shown in Table 4.
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This results show that the proposed model has a higher
accuracy than the model in Ref. [34]. Percentage differ-
ences of the natural frequencies fy5 and f,6 decrease
from 4.3973 % in Ref. [34] to 3.1661 % in this study
(see Table 4).

In order to evaluate the rubbing-induced casing
vibration, the natural frequencies of the casing system
without and with blade-casing contact are also mea-
sured using the same testrig [34]. The measured natural
frequencies are listed in Table 5.

Assuming that both the directions of the rotor whirl
of rotation are counterclockwise, and the whirl velocity
and the rotational speed are the same, in this section,
two kinds of rubbing forms: single- and four-blade rub-
bings will be simulated. In addition, the experimental
results are also used to validate the simulated results.
The simulation parameters are set as follows:

Eccentricity between the geometrical center of the
rotor-blade system and its mass center is 1 mm. The
casing mass is m, = 5kg and casing stiffness in hor-
izontal and vertical directions are k.x = 3 X 10° N/m
and k.y = 7 x 107 N/m, i.e., the natural frequencies
of the casing in X and Y directions are 123.3 and
595.5Hz, respectively. The casing damping in horizon-
tal and vertical directions are c.x = c.y = 2000 Ns/m.
The radius of the casing is R. = 224 mm, the vector of
the eccentricity is e = [ex ey]T, ex = go+380 (g0 =
2 mm), ey = 0 where § is the initial penetration depth.
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Fig. 9 Flowchart of ‘

Energy equations of

‘ ‘ Energy equations of ‘

blade-casing rubbing single blade rotor
simulation
Variational Assumed / Finite element
operation mode method  / method

A reduced-order model

‘ Finite element model of the rotor

of the blade
[

Note:

LMM: lumped mass model

F,': normal rubbing force of the ith blade

F: tangential rubbing force of the ith blade
Fp: rubbing force vector of rotor-blade systems
F.: rubbing force vector of the casing

dtinax: maximum step size

dtpin: minimum step size
go: gap between the blade and casing

F, determined at time #; as
the exciting load is applied

Assembly of multiple- |on the casing at time 7o+, .
blade and rotor system LMM of the casing ‘

t=tg, dt=dtmax

t=ty,
d=dtg,

Relative position between the
blade and casing f
8'(t)=un, g,

Yes

Calculating £/ and FY,
dr=dtmin

to=ty+dt
to=to+dt
Unbal fc d A
et e || PR B ]
/ Newmark
~7  integral method
Responses of the rotor,
blade and casing at time #,
( Single- blade rubblng) CMultlple blade rubbing
induced responses induced responses
Table 4 Natural frequencies of the rotor-blade system at zero rotational speed
Orders Proposed model Experiment [34] Descriptions of mode shapes Percentage  dif-
(Hz) ferences between
proposed model
and experimental
results (%)
1 (fa1) 78.6 - Axial vibration -
2 (fa2) 132.9 129.3 Conical mode in lateral direction 2.7460
3 (fn3) 132.9 129.3 Conical mode orthogonal with f,» 2.7460
4 (fna) 156.6 - Torsional vibration -
5 (fns) 266.3 258.0 Swing of the disk 3.1661
6 (fne) 266.3 258.0 Swing of the disk orthogonal with fs5 3.1661
7 (fa7) 364.7 361.3 Blade-blade coupling mode 0.9366
8 (fng) 365.4 364.7 Coupling mode between the rotor lateral and blade 0.1918
bending vibrations
9 (fn9) 365.4 368.0 Coupling mode orthogonal with fg 0.7090
10 (fa10) 371.3 372.0 Coupling mode between the rotor torsional and blade 0.1883

bending vibrations

“~” denotes no value
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Table S Natural frequencies of the casing system without and with blade-casing contact
Orders 1 (fac1) 2 (fac2) 3 (fac3) 4 (fnca) 5 (faes) 6 (faco)
Casing system without 124.1 197.8 585.3 834.1 1020.0 1161.0
blade-casing contact (Hz)
Orders 1 (fncrl) 2 (fncr2) 3 (fnch) 4 (fncr4) 5 (fnch)
Casing system with 173.4 581.9 980.9 1205.0 1443.0
blade-casing contact (Hz)
Table 6 Parameters f or Rubbing forms Cases Rotational speeds (rev/min) Initial penetration
simulation and experiment depths 8o (jum)
under five cases P 0
No rubbing 1 986.4 (16.44Hz) 0
Single-blade rubbing 2 986.4 (16.44Hz) 50
3 1478.4 (24.64 Hz) 50
Four-blade rubbing 4 976.8 (16.28 Hz) 50
5 1491 (24.85Hz) 50

The friction coefficient between the blade and casing is
u=0.2.

Five cases are selected to compare the simulated
results with experimental results: healthy condition
(case 1), single-blade rubbing condition (cases 2 and
3), and four-blade rubbing condition (cases 4 and 5), as
are listed in Table 6. It should be noted that one slightly
longer blade is artificially assembled under the single-
blade rubbing condition, and four blades with the same
dimension is assembled under the four-blade rubbing
condition.

4.1 No rubbing condition

The comparison of simulated and measured vibration
responses are shown in Fig. 10. The simulated lat-
eral vibration of the rotor in X direction only contains
the rotational frequency component ( f;). However, the
measured result shows multiple frequency components
(nf,) and a frequency component between 2 f; and
3 f, which may be excited by the rotor misalignment
and bearing nonlinearity. There are also some errors
about the vibration amplitude due to the effects of
the assumed bearing stiffness, unbalance, and system
damping.

4.2 Single-blade rubbing condition

Assuming that the rubbing between only single blade
(blade 1) and casing appears, a comparison of simu-
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lated and experimental results under case 2 is shown in
Figs. 11 and 12, respectively. For the simulated results,
rotor vibration (node 9) in lateral (X) and torsional (67)
directions, casing vibration in X direction, blade bend-
ing vibrations in local coordinate of the blades, and
normal rubbing forces, are used to analyze the fault
features. For the experimental results, only the rotor
lateral vibration, casing vibration, and normal and tan-
gential rubbing forces are obtained due to some limita-
tions in experimental equipments. Based on the results
in Figs. 11 and 12, some dynamic phenomena can be
observed as follows:

(1) Simulated results show that amplitude amplifica-
tion phenomena occur when the multiple frequency
components coincide with the natural frequencies
of the system. The amplification phenomena can be
observed at 8 f; near the conical natural frequencies
(fa2 and fi3 in Table 4), 8 f; near the casing natural
frequency, 10 f; near the torsional natural frequency
(fna in Table 4), and 22 f; near the bending natural
frequencies of the blades (fy7, fug, fno and fuio
in Table 4), as shown in Fig. 11. The enlargement
degrees for the torsional vibration of the rotor, cas-
ing vibration and blade bending vibration are more
significant than that of the lateral vibration of the
rotor.

The measured results also show the similar ampli-
fication phenomena when the multiple frequency
components coincide with the conical natural fre-

@
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Fig. 10 Vibration responses of the rotor-blade system without rubbing: a simulated results, b experimental results. Note The figures
from left to right are time-domain waveform, amplitude spectrum and rotor orbit, respectively

quencies (see Fig. 12b). The casing vibration shows
that the amplification phenomena appear at 7 f;
which is related to the casing natural frequency
(fac1 = 124.1 Hz, see Table 5). In addition, other
higher multiple frequency components at 58 f; and
70 f; which coincide with the casing natural fre-
quencies fner3 (Or fues) and firee, respectively, also
show large amplitudes. Based on the ratio of the
maximum tangential rubbing force and correspond-
ing normal rubbing force in a rotational period,
the dynamic friction coefficient is about 0.166, as
shown in Fig. 12f, g.

(3) The measured rubbing forces and casing vibration
have a significant difference from the simulated
results. Main reasons for these errors are that (1)
the casing is overly simplified. Actually, the cas-
ing is a complicated assembly, and the simulation
can only consider the first natural frequency; (2)
the assumed system damping, bearing stiffness,
amount of unbalance have some differences with
those in real system; and (3) accurately controlling
the penetration depth is difficult due to the micro-
feeding errors of ballscrew driving, which may also
lead to some errors between the simulated and mea-
sured rubbing forces.

Simulated and measured responses of the system
under case 3 are shown in Figs. 13 and 14. Compared
with those under case 2, some new vibration features
are summarized as follows:

(1) Under the higher rotational speeds, the rotor lateral
vibration increase due to the increase of the rubbing
level which can be justified by the increased nor-
mal rubbing force. The dynamic friction coefficient
slightly decreases from 0.166 under case 2 (986.4
rev/min) to 0.158 under case 3 (1478.4 rev/min).

(2) Some frequencies, at which amplification phenom-
ena are observed, may lightly change due to the
effects of rubbing nonlinearity on the system nat-
ural frequencies. For example, 48 f; under case 3
are slightly larger than 70 f; under case 2.

4.3 Four-blade rubbing condition

Simulated and measured results under case 4 are shown

in Figs. 15 and 16, which show the following dynamic

phenomena.

(1) For the simulated results, amplitude amplifica-
tion phenomena can also be observed, for exam-
ple, 8 f; related to the conical natural frequencies

@ Springer



1240

H. Ma et al.
(a) ; (b) . ©
. x10 5 X10 . e
=) - 9 X10" 2>
5\{ 2 E 19fr 2] ﬁ- .;
£ 52 £:(16.44) | <
£ 0 g | £
5] = 5]
= g1 %60 350 400 g
2 < & §
a 0 1 &
555 560 5.65 570 5.75 0 200 A 2 0 2
Time (s) Frequency (Hz) Displacement X(x10->m)
(GY) (e) ® )
o~ 20 =~ 3 <10
E E
g
?5-’ 10 o 2t 8k -
E=I) = £ s
B 8 1 =
8 -10 8
<9 )
< <
20 0 -1.0
555 5.60 5.65 570 5.75 0 500 1000 1500 555 560 5.65 570 5.75
Time (s) Frequency (Hz) Time (s)
h
(g) <109 (h) 105
=1 " 1.5
Q <
= 2 E 107
8~ & _ 10
% g 0 =] 'g
e )
ER .5 0.5
(=) 7]
e 2 g | ‘ 2
E = 0 |||||” I.Illlnnl?fl:
555 560 565 570 5.75 0 200 400
Time (s) Frequency (Hz)
; .
(3 5 x10-4 W 5 x10°
é 2,
5y ~~ ~~
s \E/ 0 g,
2o < o
S 3 £ '
2z 2 B
= < |
Q
m - 0 Illnn..
555 560 5.65 570 5.75 0 500 1000
Time (s) Frequency (Hz)

Fig. 11 Simulated results with four-blade rubbing (case 2): a
rotor displacement waveform in X direction, b amplitude spec-
trum of the rotor in X direction, ¢ rotor orbit, d acceleration wave-
form of casing in X direction, e amplitude spectrum of casing
acceleration in X direction, f normal rubbing force, g torsional

(see Fig. 15b) and casing natural frequency (see
Fig. 15e), 9 f; related to the torsional natural fre-
quency (see Fig. 15h), and 22 f; related to the bend-
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displacement waveform of the rotor, h torsional amplitude spec-
trum of the rotor, i bending displacement of the rubbing blade
(blade 1), j amplitude spectrum of bending displacement of the
rubbing blade (blade 1)

ing natural frequencies of the blades (see Fig. 15j).
For the four-blade rubbing, bigger amplitudes can
also be observed at the blade passing frequency
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Fig. 12 Experimental results under case 2: a time-domain wave- direction, e amplitude spectrum of the casing, f normal rubbing

form of the rotor in X direction, b amplitude spectrum of the
rotor, ¢ rotor orbit, d time-domain waveform of the casing in X
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(BPF, 4f; and its multiple frequencies, such as
BPF, 2BPF, 3BPF, 4BPF, 5BPF and 6BPF, i.c.,
4 £, 8fr, 12 f1, 16 f, 20 f; and 24 f; (see Fig. 15b,
e, h).

For the measured results, both the lateral vibration
of the rotor and casing vibration show the amplitude
amplification phenomena which agree well with the
simulated results. The similar experimental results
were also reported in Ref. [32].

The measured normal and tangential rubbing forces
under the four-blade and single-blade rubbing con-
ditions have some differences. There are some rea-
sons for these: (1) In order to generate rubbing for
the four blades, some blades were grinded, and the
lengths of these blades were reduced. (2) The nat-

force, g tangential rubbing force

ural frequencies of the mechanical structure, e.g.,
the triaxial force sensor, are excited by the contact
forces, which lead to an amplification and a phase
distortion of the force signals [28]. For the four-
blade rubbing, the effect of the transient vibration of
the force sensor on the measured results increases
due to the reducing rubbing period. (3) The con-
trol of the penetration depths can also lead to some
errors. These reasons also cause large errors in the
dynamic friction coefficients for the four blades.
So the dynamic friction coefficients are not sug-
gested to be measured under four-blade rubbing
conditions, and dynamic friction coefficients under
this condition will not be compared in the following
analysis.
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Fig. 13 Simulated results with four-blade rubbing (case 3): a
rotor displacement waveform in X direction, b amplitude spec-
trum of the rotor in X direction, ¢ rotor orbit, d acceleration
waveform of casing in X direction, e amplitude spectrum of cas-
ing acceleration, f normal rubbing force, g torsional displace-

(3) Simulated and measured spectra show that the
amplitude amplification phenomena often appear
at the BPF and its multiple frequencies. These fea-
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ment waveform of the rotor, h torsional amplitude spectrum of
the rotor, i bending displacement of the rubbing blade (blade 1),
j amplitude spectrum of bending displacement of the rubbing
blade (blade 1)

tures are especially obvious for the amplitude spec-
trum of the measured casing vibration, which indi-
cates that the rubbing-induced casing vibration can
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Fig. 14 Experimental results under case 3: a time-domain wave-
form of the rotor in X direction, b amplitude spectrum of the
rotor, ¢ rotor orbit, d time-domain waveform of the casing in X

appear at the high-order natural frequencies (see
Fig. 16e).

(4) Simulated and measured normal rubbing forces
show that the rubbing level of blade 1 is most severe,
and those of blades 2 and 3 are moderate, and that
of blade 4 is the least severe. A detailed explana-
tion can be found in Fig. 17, which shows that the
penetration depth is maximal for blade 1, followed
by those for blade 2 and blade 4, and minimal for
blade 3. In addition, it is also possible that the rub-
bing between the blade 3 and casing may not appear
due to the effects of rotor whirl under small pene-
tration depths.

direction, e amplitude spectrum of the casing, f normal rubbing
force, g tangential rubbing force

The simulated results under case 5 are shown in
Fig. 18, the similar amplitude amplification phenom-
ena and frequency distributed features related to BPF
can be observed. In addition, the rubbing between the
blade 3 and casing does not appear. This also verifies
the above analysis (see Fig. 17). By increasing the pen-
etration from 50pm to 80pwm, the simulated results are
shown in Fig. 19, which shows that the four-blade rub-
bing appears under relatively large penetration depths.
Fig. 20 shows the measured results of four-blade rub-
bing under case 5. The collision levels under case 5 are
slightly different from the above analysis under case 4.
The penetration depths cannot accurately agree with

@ Springer



1244 H. Maetal.
(@) (b) (©)
%10 Ls %105 fé\
E 2 T pae2d  x1ot 5, [After rubbing
s g ' 24 X1
g 2 1 8f, 2.5 E/
5 0 2 | | 5 0
8 = 0 | . g
. g 05 300 350 400 g
z < 4 g -1
/2 0 1. L 1$ﬁ & Before rubbing
5.6 5.7 5.8 0 200 400 A 2 0 5
Time (s) Frequency (Hz) Displacement X(x10-m)
(d) (e) ® x102
— 20 ~ 6 0
% Nw 8./1:
g 10 g al o
s =} —~
2 .2 &
g 0 g 6fc = -0.5
5 8 2|20
8 -10 8 e 24f;
5) s} '“ ] T —Blade 1—Blade2
< 5 < o Ll L 1o L—Blade 3+ Bladcls
5.6 5.7 5.8 0 500 1000 1500 56 5.7 5.8
Time (s) Frequency (Hz) Time (s)
® ® o
= o : 8
£ E o
=7 g ~ 121,
ZEO0 = g 0.5 s
=3 g = '
g 2 16f: 201,
"
E -2 = o Ll L1 Il Lol oy lllJ
5.6 5.7 5.8 0 200 400
Time (s) Frequency (Hz)
; .
i) 5 10 W x10°5
5 — Blade | — Blade 2 3 22
g 2 2| ——Blade3—Blade4 7
= 1 3 2
g0 g
g E 0 % 9%
£ !
g <
m 0
5.6 5.7 5.8 0 500 1000
Time (s) Frequency (Hz)

Fig. 15 Simulated results with four-blade rubbing (case 4): a
rotor displacement waveform in X direction, b amplitude spec-
trum of the rotor in X direction, ¢ rotor orbit, d acceleration wave-
form of casing in X direction, e amplitude spectrum of casing

the simulated conditions. This may lead to the differ-
ence between the simulated and measured results. In
addition, the blade-casing abrasions can also lead to
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acceleration, f normal rubbing force, g torsional displacement
waveform of the rotor, h torsional amplitude spectrum of the
rotor, i bending displacements of the blades, j amplitude spec-
trum of bending displacements of the blade 1

the change of the clearance between the blade and cas-
ing, which also affects the measured results to some
extent.
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Fig. 16 Experimental results under case 4: a time-domain wave-

form of the rotor in X direction, b amplitude spectrum of the
rotor, ¢ rotor orbit, d time-domain waveform of the casing in
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Fig. 17 A schematic of blade-casing rubbing explanation

Xdirection, e amplitude spectrum of the casing, f normal rub-
bing force, g tangential rubbing force. Note Numbers /, 4, 3 and
2 denote the rubbing time for blades /, 4, 3 and 2

4.4 Summary of rubbing fault features

Typical fault features for single- and four-blade rub-
bings are listed in Table 7. For the single-blade rub-
bing, simulated results show that the amplitude ampli-
fication phenomena can be observed when the multi-
ple frequency components of rotational frequency ( f;)
coincide with the conical natural frequencies, torsional
natural frequency of the rotor-blade system, casing nat-
ural frequency and bending natural frequencies of the
blades. For the four-blade rubbing, simulated results
show that BPF and its multiple frequency components
(nBPF,n =1, 2, 3, ...) with larger amplitudes can be
viewed as a distinguished feature besides the amplitude
amplification phenomena.
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Fig. 18 Simulated results with four-blade rubbing (case 5): a
rotor displacement waveform in X direction, b amplitude spec-
trum of the rotor in X direction, ¢ rotor orbit, d acceleration wave-
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acceleration, f normal rubbing force, g torsional displacement
waveform of the rotor, h torsional amplitude spectrum of the
rotor, i bending displacements of the blades, j amplitude spec-
trum of bending displacements of the blade 1
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Fig. 19 Simulated results with four-blade rubbing under 6y =
80wm: a rotor displacement waveform in X direction, b ampli-
tude spectrum of the rotor in X direction, ¢ rotor orbit, d acceler-
ation waveform of casing in X direction, e amplitude spectrum

For single- and four-blade rubbings, measured results
also show the similar amplitude amplification phenom-
ena. Moreover, BPF and its multiple frequency compo-

of casing acceleration, f normal rubbing forces, g torsional dis-
placement waveform of the rotor, h torsional amplitude spectrum
of the rotor, i bending displacements of the blades, j amplitude
spectrum of bending displacements of the blade 1

nents are also obvious for the four-blade rubbing. How-
ever, it should be noted that the amplitude spectra of
the casing are complicated because the adopted casing
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Fig.20 Experimental results under case 5: a time-domain wave-
form of the rotor in X direction, b amplitude spectrum of the
rotor, ¢ rotor orbit, d time-domain waveform of the casing in X

model is simple and it cannot completely simulate the
dynamic characteristics of the actual casing structure.

5 Conclusions

An improved rotor-blade dynamic model is developed,
and the model has some significant advantages com-
pared with our previous model in [34]. In addition, the
proposed model is also compared with finite element
model [34], analytical models [34,35], and experiment
results [34]. Then single- and four-blade rubbings are
simulated by simplifying the casing as a lumped mass
point with two degrees of freedom (DOFs). Finally, the
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direction, e amplitude spectrum of the casing, f normal rubbing
force, g tangential rubbing force. Note Numbers 1, 4, 3 and 2
denote the rubbing time for blades /, 4, 3 and 2

simulated results are also validated using the experi-
mental results. Main conclusions are summarized as
follows:

(1) Compared with the model in Ref. [34], the pro-
posed model considers the effects of the swing of
the rigid disk and stagger angle of the blade. Nat-
ural frequencies of a flexible rotor-blade system
obtained from the proposed model indicate that nat-
ural frequencies related to the disk swing are closer
to those obtained from finite element (FE) model.
For the case under study, the maximum percentage
differences reduce from 3.934 % based on the ana-
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Table 7 Fault features summary for single- and four-blade rubbings

Rubbing forms

Vibration forms

Fault features of simulated results

Fault features of measured results

Single-blade rubbing

Four-blade rubbing

Lateral vibration of the shaft

Torsional vibration of the

shaft

Casing vibration

Blade vibration

Lateral vibration of the shaft

Torsional vibration of the
shaft

Casing vibration

Blade vibration

Amplification phenomena appear
at the 8 f; (case 2) and 5 f; (case
3) near the conical natural
frequencies

Amplification phenomena appear
at the 10 f; (case 2) and 6 f; (case
3) near the torsional natural
frequency

Amplification phenomena appear
at the 8 f; (case 2) and 5 f; (case
3) near the casing natural
frequency

Amplification phenomena appear
at the 22 f; (case 2) and 15 f;
(case 3) near bending natural
frequencies of the blades

Large amplitude can be observed
at BPF, 2BPF and 3BPF for case
4, and at BPF, 5 f; and 2BPF for
case 5

Large amplitude can be observed
at BPF, 2BPF, 9 f;, 3BPF, 4BPF,
5BPF and 6BPF for case 4, and
at BPF, 6 f;, 7 fr, 2BPF, 3BPF,
15 f; and 4BPF for case 5

Large amplitude can be observed
at BPF, 2BPF, 3BPF, 4BPF,
5BPF and 6BPF for cases 4 and 5

Amplification phenomena appear
at the 22 f; (case 4) and 15 f;
(case 5) near bending natural
frequencies of the blades

Amplification phenomena appear
at the 8 f; (case 2) and 5 f; (case
3) near the conical natural
frequencies

Amplification phenomena appear
at the 7 f;, 58 f; and 70 f; (case 2)
and 5 f;, 39 f; and 48 f; (case 3)
near the casing natural
frequencies

Large amplitude can be observed
at BPF, 2BPF and 3BPF for case
4, and at BPF and 5 f; for case 5

Large amplitude can be observed
at BPF, 2BPF, 3BPF, 4BPF,
5BPF, 6BPF, 15BPF and 18BPF
for case 4, and at BPF, 2BPF,
3BPF, 4BPF, 7BPF, 10BPF and
12BPF for case 5

BPF blade passing frequency, nBPF n times of BPF

@

lytic model [34] to 0.1042 % based on the proposed
model.

In addition, the shaft is discretized using FE method
rather than the lumped mass method, which makes
the shaft modeling more general. Furthermore, the
mode shapes of the rotor-blade systems can be also
obtained from the proposed model, which is also a
new development relative to the analytical model
in Ref. [34].

Simulated rubbing responses show a good agree-
ment with the experimental results. For the single-
blade rubbing, amplitude amplification phenomena

3

appear when the multiple frequency of the rota-
tional frequency ( f;) coincides with the conical and
torsional natural frequencies of the rotor-blade sys-
tem, the bending natural frequencies of the blades,
and the natural frequencies of the casing. For the
four-blade rubbing, the blade passing frequency
(BPF, 4 f;) and its multiple frequency components
are also obvious besides these frequencies related
to amplitude amplification phenomena.

Rubbing levels of the blades are related to the rotor
whirl. The most severe rubbing appears for the
blade which locates at the right end of the whirl

@ Springer



1250

H. Ma et al.

orbit, i.e., is nearest to the casing. The least severe
rubbing appears for the blade located at the left end
of the whirl orbit, which is the opposite side for
the most severe rubbing blade. The rubbing levels
related to other two blades are moderate.

In this study, the casing is simulated as a two DOFs
system and only the whole displacement of the casing is
considered, and only the rotor vibration displacements
are measured. In the future studies, more complicated
casing models such as elastic ring models will be intro-
duced in the system model, and the effects of stagger
angles of blades on the rubbing will be considered, and
the shaft torsional vibration and blade dynamic stress
will also be measured.
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Appendix 1: Vectors and matrices related to the
blades

(1) gy, is the generalized coordinates vector of the
blades, where

T
i N
. T
g=[v" vi" "], (24)
here, U' = [Uf,...,Uy 1T, V' = [V],...,

Vi v =y
(2) My, is the mass matrix of the blades
M, = diag[ M} Mi . ML (25)

where M {3 is the mass matrix of the ith blade, and
the elements of M} are given as follows:

@ Springer

) Nmod L
Miom,n) = > [pb /0 Ab¢1n¢1mdx},

n=1

Mi) (m + Nmod, 1 + Nmod)

Nmod L
=, |:,0b/0 Ab¢2n¢2de],

n=1

Mﬁ (m + 2Nmod, 1 + 2Nmod)

Nmod L
= z [pbA Ib¢3m¢3ndx:|’

n=1
here, m,n = & = 1,2, ..., Nmod, and the surplus
elements are all zero.
(3) Gy, is the Coriolis force matrix of the blade:

Gy = diagl G} - G} G\"l. (26

where G{) is the Coriolis force matrix of the ith
blade, and the elements of Gy are given as follows:

i) (m5 n + N]‘l’l()d)
Nmod

L
= Z |:—2éprOS,3/0 Ab¢2n¢lmdxj|,

n=1
i) (m 4+ Nmod, n)

Nmod

L
= Z |:2épbcos,3/0 Ab¢1n¢2mdx:|,

n=1
and the surplus elements are all zero.
(4) Ky is the stiffness matrix of the blades:

Ky=diag|[ K} - Kj K] @

where K {, is the stiffness matrix of the ith blade, and

the elements of K i) are given as follows:

Nmod

. . L
Kim.n)y=> [—ezpb /0 Appindimdx

n=1
L
+ EbAbqbén(blmix:L _A Eb (A{)(ﬁén

+Avd1,) d1mdx]
Ki (m,n + Nmod)

Nmod

L
= Z [—écosﬂpb/o Ab¢2n¢lmdxi|,

n=1
K& (m + Nmod, 1)

Nmod

L
=> [5005ﬁpb /0 Ab¢ln¢2mdxi|y

n=1
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Ki (m + Nimod, 7t + Nimod)

L
kG Andhbom| _, — /0 kG (A, + Avdl,) pamd

Nmod L

= 3" | +£e0) Broml,_, - /O

n=1

(fL)ph, + fo(x)Ph,) pamdx ,

L

L
+Fo $ubom|_, — /O (Fadl, + Flbh,) $amdx — 6%cos>Bpn /O Apbanbomdr

K{) (m =+ Nmod, 1 + 2Nmod)
Nmod

L
=> [— K GoAb3nPam =1 +/0 kG (A

n=1

Ki (m 4 2Nmod, 1 + Nimod)

Nmod L
=> [— / KGbAb¢§n¢3mdx},
n=1 0
K]l:) (m + 2Nmod, 1 + 2Nmod)

L L
n=1 +/0 KGbAb¢3n¢3mdx—92,0b/0 Iv@3nP3mdx

L
M, (m, 1) = pycos ﬁi/ ApPrmdx,
0
ML, (m + Nmod, 1)
L
= —pp sin ﬂicosﬂ/ Appomdx,
0

M, (m + 2Npod, 1) = 0.

(2) M, is the mass coupling term at the disk location

in Y direction.

L
Voot | BTl om |, /0 Eo (I}, + oY) damdx

k]

and the surplus elements are all zero.

Appendix 2: Coupled vectors and matrices related
to rotor-blade systems

Mass matrix
The mass coupling matrix of rotor-blade systems is
M. =M, M, M3, My, Mcs, M 6. (28)

(1) M, is the mass coupling term at the disk location
in X direction.

Mc = | M! i w1 o
cl = Mcl Mcl Mcl . (29)

where the superscript i denotes the ith blade. The
elements of M, are given as follows:

Mo =|M! i w1 30
2= Mc2 M02 MCZ - (30

The elements of M 22 are given as follows:
My (m, 1) = pysin, /0 " Apgindr.
My (m + Nawod, 1)

= pp cos ¥ cos B /OL Apdondx,

M, (m + 2Npod, 1) = 0.
(3) M3 is the mass coupling term at the disk location
in Z direction.
) T
M = | ML, My - MR] . GD
The elements of M 23 are given as follows:
Mis(m, 1) =0,

L
M3 (m + Nimod, 1) = pbsinﬁ/ Appomdr,
0

M5 (m + 2Npod, 1) = 0.
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(4) M4 is the mass coupling term at the disk location
in Ox direction.

Mey=|M., - M, MCNf]T. (32)
The elements of M 24 are given as follows:
M, (m, 1) =0,
MLy (m + Nimog, 1)
= pp sin ¥; sin B /OL (Rq + x) Appomdx,
Ly (m + 2Nmod, 1)
= pp sin ¥; sin B /OL TIy3dx.

(5) M5 is the mass coupling term at the disk location
in By direction.

1 i Ny 1"
M = [Mcs MlCS MCS"] . (33
The elements of M 25 are given as follows:
Mis(m, 1) =0,
Mlcs(m + Nmod, 1)
L
= —pp COS V; sinﬂ/ (R4 + x) Apgomdx,
0
MiS (m 4+ 2Nmod, 1)
L
= —ppCcost; sinﬂ/ Top3mdx.
0

(6) M e is the mass coupling term at the disk location
in 67 direction.

, T
Mcéz[M§6 M MCN;] . (4
The elements of M 26 are given as follows:

Mg (m, 1) =0,

Mlc(s (m + Nmod, 1)

L
= PbCOSﬁ/ (Rq + x) Apgonmdx,
0

Mg (m +2Nmod, 1)

L
= PbCOSﬂ/ Typ3mdx.
0

Damping matrix

The damping coupling matrix of rotor-blade systems
at the disk location is

Gc = [GCls GC27 GC37 GC45 G057 GcG]» (35)

@ Springer

where Go; = 0(i = 1,2...5), and the expression of
GC() is

. N 1T
Gs=[Gly -~ Gy - GR]. 6o

where the elements of Gf:6 are given as follows:

L
G o(m. 1) = —26py /0 Ap (Rq + %) dimdx,

G (m + Nimod, 1) =0,
Gle (m + 2Nmod, 1) = 0.

Stiffness matrix

The stiffness coupling matrix of rotor-blade systems
related to the acceleration at the disk location is

Kac = [Kacla Kac27 Kac3a Kac4’ KacS’ Kac6]7 (37)

where K,.; = 0(i = 1,2...5), and the expression
of K, 18

Kac6=|:K1 Ki KNb ]T. (38)
ac6 ac6

ac6

The elements of K 206 are given as follows:

L
Ko (m, 1) = —GPb/O Ap (Rd + x) p1mdx,

K6 (M + Nioa, 1) = 0,

K. ¢ (m+2Nmod, 1) = 0.

The stiffness coupling matrix of rotor-blade systems is
K.=[Kc1, K2, Kc3, Kea, Kes, Kesl, (39)

where K.;; = 0(i = 1,2...5), and the expression of
Kc6 is

I ‘ M 1"
Ke = [KC() Kig - Kcé’] . (40)
The elements of K 26 are given as follows:

Kl (m, 1) =0,

L
Kl (m + Ninod, 1) = —6% cos ﬂﬂb/o Ap (Rg + x) o dx,

L
K g (m +2Nmod, 1) = —62 cos Bov / TIypzmdx.
JO

Appendix 3: Other vectors and matrices related to
the rotor-blade system

(1) M d 1s the added mass matrix at the disk location.
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_MXX 0 0 0 0 MX@Z ]
0 Myy 0 0 0 MY(-)Z
N M M M
My= 0 0 Mzz  Mzoxy Mzg, O @l
0 0 Moyz  Moyoy Moyo, Moye,
0~ O., M@yz A{@y@x M@y@y A{@y(‘)z
_Mer M@zY 0 M@z@x Mezey M@z@z_
Y No L Y b
where, Mxx = Zi:l fO PoApdx, Myy = > .7,

fOL ,ObAbdx;vMZZ = > fOL prApdx,

b L
Moyoy = Z (Sin2 191‘/0 PbAb (R + x)*dx

i=1

L L
+sin? 5/0 oblpdx + cos? Vi cos® ﬂ/o prbdx) ,

Np

L
My, o, = Z (C052 Vi /0 PbAb (Rq + x)*dx
i=1

L L
+sin? /3/0 P lpdx + sin? Vi cos? ,3/0 ,oblbdx) R

Np L
Moo, = mae® + Z (/ PbAb (Rq + x)%dx
0

i=1

L
+/ prbcosz,de),
0

Ny L

Wixe, = Mayx =S / ~ b A (Ra + x) sindidr,
. 0
i=1

~ ~ Nb L

Mye, = Mo,y = Z/ PbAb (Rd + x) costhidx,
. 0
i=1

~ ~ Nb L

Mzoy = Moz = / poAb (Rq +x) sind;dx,
; JO
i=1

No .

Mz, = Moz =3, [ =podn (Ra-+ ) costid,
. 0
i=1

M@x@y = Mayex

Np L
= Z (/ —pbAp (Rg + )c)2 sin?d; cos ¥;dx
i=1 0
L
+/ pbIpsind; cos z?icoszﬂdx) s
0

Ny L
Myyo, = My,o, = Z/O obIpsind;sinBcosBdx,
i=1

Np L
Mo,0, = Mg,0, = Z/o —pbIp cos ¥;sinBcosBdx.
i=1

(2) Gqistheadded damping matrix at the disk location.

0O 0 0 O 0 0

0O 0 0 O 0 0

~ 0O 0 0 O 0 0
Gy = ~ ~ , (42
¢ 0 0 0 C59X9X (39X9Y 0 42)

0 0 0 Gop, Gopp O

0O 0 0 O 0 0
where Ggyo, = ZlN:bl (29 sin ¥; cos U; fOL PbAb

(Rq + x)? dx —26 sin 9; cos 9; cos2 B fOL Polpdx),

Np L
Goyoy = (—Zé sin ¥; cos ¥; / oAb (Rq + x)2dx
i=1 0
. L
+26 sin 9; cos B; cos® ,8/ pb]bdx) ,
0

Ny L
Goyoy = z (29 sin® lﬁ‘i/o poAb (Ra + x)*dx
i=1

L
+26 cos? A cos? /8/ prbdx) ,
0

Mo L
Goyoy = Z (—20 cos® ; /0 pbAb (Ra + x)dx

i=1

L
—26 sin® U cos® ﬂ/ pblbdx) .
0

(3) Kqis the added stiffness matrix at the disk location.

0O 0 0 O 0 0
0 0 0 O 0 0

7 0O 0 0 O 0 0

4= 0 0 0 I§9X9X I§9x9y 0 '
0 0 0 Kgoey Kooy 0~
0O 0 0 O 0 Ko,0,
(43)
where
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L
+ (—5 sin ¥ cos 19,-0052,3 — 6% cos? ﬁicoszﬂ) / b lpdx
0

L
+ (5 sin ¥ cos ﬂicosz,B — 6% sin? 0icos2ﬂ) / oblpdx
0

L
(é sin ¥; cos ¥; — 62 sin? 19,-) / PbAb (Rq + x)zdx
0

)

L
(—0 sin 9; cos ¥; — 6% cos® 19,-) / PbAb (Rq + x)2dx
0

’

L
(é sin’ 9 + 62 sin i cos 19,-) / PbAp (Rg + x)zdx
0

L )
+ (5 cos’ z?icos2,3 — 6% sin ¥; cos ¥ cosz,B) / b lpdx
0

’

L
_ Ny (—é cos’ v + 62 sin ¥; cos ﬁi) / PbAp (Rq + x)zdx
Koox =2 | ° . ° L
i=1\ — (9 sin® L?icosz,B + 6% sin ; cos z&‘,-cosz,B) / P lpdx
0
Ny

L L
(—/ ObAp (Rq + x)2 6%dx —/ ,oblbézcoszﬂdx) .
0 0

_ Lo + 509 + 2597 = (0 = 29) e/ D]
Appendix 4: Element matrices of the rotational - (14 ¢)? ’
shaft ;- Lo+ a6+ ot + (3 + 5 = 40°) (/D]
The el i ix of Timoshenk ) (1o |
e element consistent mass matrix of Timoshenko
beam M® is _ s + 0+ @ + (55 + 69 + 30°) G/ D] 2
(1+¢)? ’
w 5
0 a
0 0 1/3
0 — 0 g Symmetric
c 0 0 0 g
0 0 0 0 0 J/(BAy)
e _
Mi=pAdly o 0 0 d o0 a ’ @4
0 b 0 —-d 0 0 0 a
0 0 1/6 0 0 0 0O 0 1/3
0 d 0 f 0 0 0 ¢ 0 g
—-d 0 0 0 f o — 0 0 0 g
| 0 0 o0 0 0 J/BA;) O 0 O 0 0 J/BAy) |
where
By To+ 192+ 80 /1)? in which the transverse shear parameter ¢ = Kllij’lz 3 1
= ( ¥ $)2 ’ is the area moment of inertia; k1 = 6%2? is the shape
% + 30+ %¢2 _ g(,g /1?2 of factor; Ay is the shaft cross-sectional area; G is shear
b= (1+¢)2 ' modulus; / is element length; J is polar area moment
1 11 12 11 2 of inertia; the radius of gyration r, = /1 /A;.
35+ 10¢ + 250° + (15— 5 n?)1 g
c= Lo + 0% 243 n ¢()120 2#) t/ '] ) Element stiffness matrix of Timoshenko beam K¢ is
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h
0 h
0 0 AgE/l
0 —i 0 j Symmetric
i 0 0 0 J
0 0 0 0 O GJ/l
e _
k= —h 0 0 0 —i 0 h ’ “3)
0 —h 0 i 0 0 0 h
0 0 —As;E/l 0 O 0 0 0 AsE/l
0 —i 0 kK 0 0 0 i 0 j
i 0 0 0 & 0 —i 0 0 0 j
| 0 0 0 0 0 —-GJ/I 0 O 0 0 0 GJ/I]
_ _12EI . _ _6EI . _ (4+®EI
where h = 5751 = piggyJ = Ture 2
k= C=0EI
[(1+¢)
Gyroscopic matrix of Timoshenko beam G°® is
- o -
-p 0
0 0 0
—-q 0 0 O Antisymmetric
0O —g 0 —s O
. 0 0 0 0 0 O
e _
G® =20pAl 0 —p 0 —g 0 0 0 , (46)
p o 0 0 —¢gq 0 —p O
0 0 0 0 0 0 0 O 0
—-q 0 0 O w 0 g O 0 0
0O —¢g 0 —w O O 0 ¢ 0 —s 0
| 0 0 0 0 0 0 0 O 0 0 0 0
ez ~(hde)r (Rrberied)
Wherep—lz(ler))z,q— TS (179
_ L_‘_l(p_l(pz 2
and w = “BHB4)E .
(1+¢) ,Ob/ Ap (R4 + x) pomdx, 47)
0
Appendix 5: Nonlinear forces of the rotor-blade sys- F ;mnlinear,b (m 4 2Nmod, 1)
tem .. L
= —QCOSﬂpb/ Iypzdx. 48)
. 0
(1) F ;Onnnear’ p is a nonlinear force vector of ith blade:

; . (2) fuonlinear,x 18 a nonlinear force applied on the disk
Fnonlinear, b (m, 1) =6"pp in X direction.

L
/ (R4 + x) p1m Apdx,
0

Fflonlinear, b (m + Nmod, 1)
—Gcosp
—2sin ¥; sin B0y 40 — sin ¥; sin BOy 40
— cos 1; sin ﬁ@Yd92 — 2 cos v sin BOx40
—cos ¥; sin ,BGXdé + sin ¥%; sin ,BGXdéz
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..
Jnonlinear, x = emgqcos (6 4+ 0z4) (9 + QZd)
+emq sin (6 + 62q) (6 + 624)

L
No Nmod [ 26 sin z?i/ P AbP1m Upmdx
0

2.2

L
i=1 i=1 —}—(ézcosﬁi—}—ésinﬂ,')/ PoAbP1 Upmdx
0

L
26 cos ¥;cosp / PbAbP2m Vindx
0

23

” ME
2
a

L
+ (—92 sin 9 + 6 cos z?i) cosﬂ/ PbAbDam Vindx
0

+ % 20746 cos ¥; — 07467 sin ¥; + 6,46 cos ¥
+62 cos ¥; + 6 sin 9

L
/ PbApb (Rq + x) dx) .
0

(49)

(3) fhonlinear,y is a nonlinear force applied on the disk
in Y direction.

. . . 2
fnonlinear,Y = emgysin (6 + 0z4) (6 + GZd)
—emgq cos (6 + 02q) (6 + 624)

+§:Ni‘j —26 cos D [ poAbpim Updx
pr e + (6% sind; — G cos ;) [ poApimUndx

Nb Nmod S L Y
260 sin¥;cosB [y poAv@am Vindx
Y ( | % x

P— + (92 cos ¥; + 6 sin 19,-) cosp fo P AbD2m Vindx

. % 26,46 sin 9; + 07462 cos 9; + 6746 sin V;
+62 sin 9 — 6 cos Vi

L
/ PbAp (Rg + X)dX) .
0

(50)

(4) fnonlinear,z 1S a nonlinear force applied on the disk
in Z direction.

o (( —20y 40 sin ¥; — Oy4b sin ¥; — Oy 62 cos ¥ )

Frontinear.2 = Zl: —20x46 cos ¥; — Oxaf cos V; + Oxa6? sin ¥;
i=

L
/ PbAp (Rg + x) dx) .
0

(51D

@ Springer



Rotor-blade system with blade-tip rubbing

1257

(5) Mhonlinear, x 1s anonlinear bending moment applied
on the disk in Ox direction.

Mnonlinear. X = 7Jp9'YdéZd
Ni . . .

N i —2046cosd; — 6746 cos V;
— +0746% sin®¥; — 6 sin ¥; — 62 cos ¥
im

L
sin 8 cos B / pblbdx)
0

No Nmod

2.2

i=1 i=1

L
, —26cosv; sin /3/ b Ipp3m Vmdx
0
+ (—f cos ¥; + 6% sin ;) sin B jbl‘ P Ib®3m Ymdx
(52)

(6) Mhyonlinear,y 1s a nonlinear bending moment applied
on the disk in 8y direction.

Muontinear, ¥ = Jpp (00xd + 62404 + 0za0xa)
" % —ZéZdé sin ¥; — QZdé sin ¥;
— —07462 cos 9; + 6 cos ¥; — 62 sin V;
i=

L
sin 8 cos ,B/ pblbdx)
0

No Nmod

22

i=1 i=1

L
N <—2ésim9,— sin B / 06 b P3m Ymdx )
0

+ (=f'sin ¥ — 62 cos ;) sin B fOL 0bIbP3m Ymdx
(53)

(7) Mponlinear, z 18 anonlinear torque applied on the disk
in Oz direction.

Myonlinear, z = emq sin (6 + 6zq) Xd
—emg cos (0 + 0zq) Yd — ezmdé — Jpé
+Jp (Oxabya + Oxabya)

Nb L
— Z (épb/ (Ab (Rq + x)2 + I cos? ﬂ)dx).
0

i=1

(54)
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