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Abstract This paper investigates the nonlinear dyna-
mic response of hybrid laminated plates resting on
elastic foundations in thermal environments. The plate
consists of conventional fiber-reinforced composite
(FRC) layers and carbon nanotube-reinforced com-
posite (CNTRC) layers. Each layer may have matrix
cracks, and the damage is described by a refined self-
consistent model. The motion equations are based on a
higher-order shear deformation theory with a von Kár-
mán type of kinematic nonlinearity. The thermal effects
are included, and the material properties of both FRC
and CNTRC are assumed to be temperature dependent.
The plate–foundation interaction is also included. The
motion equations are solved by a two-step perturbation
technique to determine the dynamic response ofmatrix-
cracked hybrid laminated plates. The boundary condi-
tion is assumed to be simply supported with in-plane
displacements “movable” or “immovable.” The effects
of stiffness reduction due to matrix cracks, the founda-
tion stiffness, the temperature change, the percentage
and distribution of carbon nanotubes in CNTRC layers
are discussed in detail through a parametric study.
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1 Introduction

As is well known, fiber-reinforced composite (FRC)
materials have been widely used in aerospace industry
due to its outstanding properties. However, cracks in
a structural element cause local stiffness reduction [1]
and change the global static and dynamic characteris-
tics [2]. Hence, it is of prime importance to understand
the vibration characteristics of cracked structures in
structural health monitoring and nondestructive dam-
age evaluation because the predicted vibration data can
be used to detect, locate and quantify the extent of the
cracks or damages in a structure. The problem of vibra-
tional behavior of cracked composite plates has been
extensively discussed in the last years [3–9].However, a
few of them [7–9] focus on the damage ofmatrix crack-
ing which may be initiated as the first damage mode
when the plate is subjected to tension or bending load
[10,11]. A test and prediction of natural frequencies of
matrix-cracked square laminated plate were presented
by Moon et al. [7]. In their analysis, the matrix crack
was assumed to be located at 90-plies of the plate, and
the reduction in laminate stiffness was derived based
on a shear-lag model. Umesh and Ganguli [8] studied
the vibration control of a cantilevered smart laminated
plate with matrix cracks. The reduced stiffness for the
plate withmatrix cracks was obtained by using the self-
consistent method. They found that the matrix cracks
could reduce the natural frequency and the deflection
for free and forced vibration, respectively. Adali and
Makins [9] investigated the vibration characteristics
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of unsymmetric cross-ply laminated plate with matrix
cracks. In their studies, the crack was modeled by a
self-consistent method. They found that the effect of
matrix crack located at the 90-ply was more signif-
icant on the linear frequencies than the same matrix
crack located at the 0-ply. It is worth noting that in all
the above studies, the classical laminate thin plate the-
ory was adopted. The effect of transverse shear defor-
mation is neglected in the classical thin plate theory
based on the Kirchhoff hypothesis. Due to low trans-
verse shear modulus relative to the in-plane Young’s
modulus, transverse shear deformations play a much
important role in the kinematics of composite lami-
nates. Neglecting the transverse shear effects and rotary
inertia yields incorrect results even for the thin com-
posite laminated plates when the ratio of the two in-
plane Young’s moduli of a lamina is more than 25 [12].
To account for the effect of transverse shear deforma-
tion in plates, several higher-order shear deformation
plate theories have been developed, and the major dif-
ference of these higher-order shear deformation plate
theories lies in that they use different shape functions
in the displacement field. Reddy [13] developed a sim-
ple higher-order shear deformation plate theory. This
theory not only allows parabolic variation of transverse
shear strains but also satisfies the condition of the van-
ishing of transverse shear stresses at the top and bottom
surface of the plate. Unlike the first-order shear defor-
mation theory, no shear correction factors are required
in this higher-order shear deformation theory, though
there are the same numbers of independent unknowns
in both the theories.

In the previous works, numerous models focus on
the cases of cross-ply laminated plates with cracks
only at 90-plies [14] and usually focus on the cases
of cross-ply laminated plates with symmetric layup.
For a cross-ply laminated plate, the matrix cracks may
occur in both 0- and 90-plies. This is called doubly
periodic matrix cracking [15,16]. A number of models
have been proposed to predict the stiffness reduction
for this matrix cracking, for example self-consistent
approach [17–19], variational principles [20–22] and
equivalent constraint model [23–25]. As a simple and
analytical way, the self-consistent method is applica-
ble to the laminated plates with any kinds of cross-ply
layup under different kinds of loading conditions.

Carbon nanotubes (CNTs) have shown the potential
to become the important constituent of a new genera-
tion of composite materials, by virtue of their superior

mechanical, thermal and electrical properties [26]. One
of the potential applications of CNTRCs is in micro-
electromechanical systems (MEMS) and nanoelectro-
mechanical systems (NEMS) where CNTRCs can be
used as key structural components [27]. Comparedwith
the conventional carbon fiber-reinforced laminates,
carbon nanotube-reinforced composites (CNTRCs)
have the potential of significantly better strength and
stiffness. The reinforcement effect of CNTs can be
maximized if the CNTs are aligned in a given direc-
tion. This can be achieved as reported in recent pub-
lications [28,29]. Several studies have been reported
on the linear and nonlinear vibration of functionally
gradedCNTRCplates [30–34]. They found that a small
percentage of nanotube reinforcement leads to signif-
icant improvements in plate vibration characteristics.
The nonlinear vibration behaviors of a matrix-cracked
hybrid laminated beam which contains CNTRC layers
and resting on elastic foundations in thermal environ-
ments were recently studied by Fan and Wang [35]. In
their analysis, a refined shear-lag model was adopted.
Their results showed that the crack density plays an
important role in the linear vibration of the hybrid lam-
inated beam, but the effect of crack density is less pro-
nounced on the nonlinear-to-linear frequency ratios of
the same beam.

In the present work, the nonlinear free and forced
vibrations of matrix-cracked hybrid laminated plates
containing CNTRC layers resting on elastic founda-
tions in thermal environments are investigated. The
novelty of presentwork is to introduce thematrix crack-
ing in both FRC and CNTRC layers. Unlike in [35],
a self-consistent model instead of a refined shear-lag
model is used to describe the stiffness reduction in plate
due to the matrix cracks. Motion equations are derived
based on Reddy’s higher-order shear deformation plate
theory and solved by means of a two-step perturbation
approach. The plate–foundation interaction and ther-
mal effects are both taken into account, and the mate-
rial properties of both FRC layers and CNTRC layers
are assumed to be temperature dependent. The numer-
ical illustrations show the effects of matrix cracks on
the nonlinear dynamic responses of hybrid laminated
plates under different conditions.

2 Self-consistent method for modeling

On the macroscale, the cracked unidirectional compos-
ite laminates can be regarded as an orthotropic homoge-
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Fig. 1 Geometry of a cross-ply laminate and the distribution of
matrix cracks

neous solid as shown in Fig. 1. The elastic properties of
the matrix are identical with those of the fibrous com-
posite and can be easily evaluated. When cracks are
introduced, the macroscopic or overall elastic moduli
of the solid may change. To make the concept of over-
all moduli meaningful, it is necessary to consider over-
all uniform loading. Thus, we introduce uniform over-
all average stresses σ̄ and strains ε̄, with components
arranged in column vectors and related by constitutive
equations

ε̄ = Sσ̄ (1)

where S is the overall compliancematrix of the cracked
composite.

Since we are concerned only with a 2-phase model
(in which the intact composite is the matrix), here we
use the subscript 0 to denote the properties of the intact
composite. Following [36], the self-consistent esti-
mates for the overall stiffness and compliance matrices
can be expressed by

S = S0 + ρ̄crk� (2)

where

ρ̄crk = 1

4
πρcrk (3)

in which the detailed expression of the crack density
parameter ρcrk is defined as [18]

ρcrk = 4ηl2 (4)

where η is the number of cracks per unite area and l
is the half length of two adjacent cracks. Note that the
surface layer containing cracks may be regarded as half
of a layer of the thickness. Thismeans the crack density
of a surface layer is twice as much as that of interior
layer with the same angle-ply. The coordinate system
presented is different from that used in [36], in which

the fiber is aligned in the Z -direction, whereas in the
present work the fiber is aligned in the X -direction, as
shown in Fig. 1. Accordingly, the matrix � has three
nonzero components, which are expressed in terms of
compliances Si j of effective medium as

�22 = S11S22 − S212
S11

(
√

α1 + √
α2) (5)

�44 =
√

(S11S22 − S212)(S11S33 − S213)

S11(√
α1 + √

α2
)

(6)

�66 = √
S55S66 (7)

where α1 and α2 are roots of(
S11S22 − S212

)
α2−[S11S44 + 2(S11S23 − S12S13)]α

+S11S33 − S213 = 0 (8)

These results imply that only three compliance coeffi-
cients S22, S44 and S66 are affected by the cracks. S66
can be obtained from Eqs. (2) and (7), while Eq. (8)
can be solved by Newton–Raphson method as reported
in [18]. In Eqs. (5)–(8), the compliance matrix S̄ can
be expressed as
⎡
⎢⎢⎢⎢⎢⎢⎣

S̄11
S̄12
S̄22
S̄16
S̄26
S̄66

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

c4 2s2c2 s4 s2c2

s2c2 1 − 2s2c2 s2c2 −s2c2

s4 2s2c2 c4 s2c2

2sc3 2sc(s2 − c2) −2s3c sc(s2 − c2)
2s3c 2sc(c2 − s2) −2sc3 sc(c2 − s2)
4s2c2 −8s2c2 4s2c2 1 − 4s2c2

⎤
⎥⎥⎥⎥⎥⎥⎦

×

⎡
⎢⎢⎣

S11
S12
S22
S66

⎤
⎥⎥⎦ (9)

where

c = cos θ, s = sin θ (10)

where θ is the lamination angle with respect to the
direction of X -axis. The relationships between stiffness
coefficients Q̄i jand compliance coefficients S̄i jare

Q̄11 = S̄22
S̄11 S̄22 − S̄212

, Q̄12 = − S̄12
S̄11 S̄22 − S̄212

, Q̄22

= S̄11
S̄11 S̄22 − S̄212

Q̄44 = 1

S̄44
, Q̄55 = 1

S̄55
, Q̄66 = 1

S̄66
(11)

Since we consider cross-ply laminated plate here, only
0-plies and 90-plies are needed to be taken into account.
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2.1 Material properties of FRC 90-plies

It is assumed that the 90-plies are made of FRCs and
the material properties of a FRC layer can be expressed
as follows [37]

E11 = V f E
f
11 + VmE

m,

1

E22
= V f

E f
22

+ Vm
Em

−V f Vm
V 2
f E

m/E f
22 + V 2

mE
f
22/E

m − 2v f vm

V f E
f
22 + VmEm

,

1

Gi j
= V f

G f
i j

+ Vm
Gm

(ij = 12, 13 and 23)

ρ = V f ρ
f + Vmρm,

ν12 = V f ν
f + Vmνm, (12)

where E f
11, E f

22, G
f
12, G f

13, G
f
23 and ν f are the

Young’s moduli, shear moduli and Poisson’s ratio,
respectively, of the fiber, while Em , Gm and νm are
corresponding properties for the matrix. ρ f , ρmand ρ

are the mass densities of the fiber, matrix and the ply.
V f and Vm are the fiber and matrix volume fractions
and are related by V f + Vm = 1.

2.2 Material properties of CNTRC 0-plies

The 0-plies are assumed to bemade of CNTRCs. Based
on extended rule of mixture, the effective properties of
CNTRC plies can be defined by [38]

E11 = η1VCN E
CN
11 + VmE

m,

η2

E22
= VCN

ECN
22

+ Vm
Em

,

η3

G12
= VCN

GCN
12

+ Vm
Gm

,

ρ = VCNρCN + Vmρm,

ν12 = V ∗
CNνCN

12 + Vmνm, (13)

in which ECN
11 , ECN

22 , GCN
12 , νCN

12 and ρCN are the
Young’s and shear moduli, Poisson’s ratio and mass
density of the single-walled carbon nanotubes (SWC-
NTs), respectively. η j ( j = 1, 2, 3) are the CNT effi-
ciency parameters, and VCN is the volume fraction of
the CNT, which satisfies the relationship of VCN +
Vm = 1. Two types of FG-CNTRCs, i.e., FG-V, and
FG-�, as defined in [39] are considered. The corre-
sponding volume fraction VCN for each type is

VCN = 2

(
Z − t0
t1 − t0

)
V ∗
CN (FG-V),

VCN = 2

(
t1 − Z

t1 − t0

)
V ∗
CN (FG − �), (14)

in which Z = t1 and Z = t0, respectively, denote the
values in Z-direction at the top surface and bottom sur-
face of a 0-ply. In Eq. (14), V ∗

CN depends on the mass
densities of CNTs and matrix, and the detailed defini-
tion is

V ∗
CN = wCN

wCN + (
ρCN/ρm

) − (
ρCN/ρm

)
wCN

(15)

in which wCN is the mass fraction of SWCNTs. For

UD-CNTRC 0-plies, VCN is equal to V ∗
CN .

In the longitudinal and transverse directions, the
thermal expansion coefficients α11and α22 for an arbi-
trary layer can be expressed by [40]

α11 = Vi Ei
11α

i
11 + VmEmαm

Vi Ei
11 + VmEm

(i = f or CN ),

α22 =
(
1 + vi12

)
Viα

i
22 + (

1 + vm
)
Vmαm

−v12α11 (i = f or CN ), (16)

in which αi
11, αi

22(i = f or CN ) and αm are thermal
expansion coefficients, respectively, of the carbon fiber
(or carbon nanotube) and the matrix.

The material properties of carbon nanotube and
matrix are assumed to be functions of temperature, so
that the effective material properties of both FRC and
CNTRC plies are functions of temperature.

3 Motion equations of hybrid laminated plate

It is assumed that a laminated plate with length a, width
b and thickness h rests on an elastomeric substrate with
finite depth. This substratemaybemodeled as an elastic
foundation of Pasternak type. The plate and foundation
are assumed to be bonded perfectly, that is, the plate
and foundation are not separated after the deformation
occurs. This is truly an ideal state. The coupling effect
of plate and foundation can be expressed by an inter-
action force

p(X,Y ) = K̄1W̄ − K̄2∇2W̄ (17)

inwhich p is the force per unit area,∇2 is Laplace oper-
ator, K̄1 is theWinkler stiffness, and K̄2 is the shearing
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layer stiffness of the foundation. The material of elas-
tomeric substrate is assumed to be temperature depen-
dent. Hence, theWinkler stiffness may be expressed by
[41]:

K̄1 = EF [5 − (2γ 2
1 + 6γ1 + 5) exp(−2γ1)]

4b(1 − ν20 )(2 − c1)2
(18)

where c1 = (γ1 + 2) exp(−γ1), γ1 = Hs/b, EF =
Es/(1 − ν2s ) and ν0 = νs/(1 − νs), in which Es and
vs areYoung’smodulus and Poisson’s ratio of the foun-
dation, respectively, and Hs is the depth of the foun-
dation. The shear layer stiffness K̄2 is assumed to be
one-tenth of the Winkler stiffness K̄1. The initial and
additional deflections are expressed by W̄ ∗(X,Y ) and
W̄ (X,Y ), respectively. The plate is exposed to elevated
temperature and is subjected to a transverse dynamic
load Q(X, Y, t). Based on Reddy’s higher-order shear
deformation theory with a von Kármán type of kine-
matic nonlinearity, Shen [42] derived a set of general
von Kármán-type equations which can be expressed
in terms of a transverse displacement W̄ , two rota-
tions Ψ̄x and Ψ̄y , and stress function F̄ as defined
by

N̄X = ∂2 F̄

∂Y 2 , N̄Y = ∂2 F̄

∂X2 , N̄XY = − ∂2 F̄

∂X∂Y
(19)

where N̄X , N̄X and N̄XY are stress resultants.
These equations can be expressed by [12]

L̃11(W̄ ) − L̃12(Ψ̄x ) − L̃13(Ψ̄y) + L̃14(F̄)

− L̃15(N̄
T ) − L̃16(M̄

T )

= L̃(W̄ , F) + L̃17(
¨̄W ) + I8(

¨̄Ψx,X + ¨̄Ψy,Y )

− (K̄1W̄ − K̄2∇2W̄ ) + Q (20)

L̃21(F̄) + L̃22(Ψ̄x ) + L̃23(Ψ̄y)

− L̃24(W̄ ) − L̃25(N̄
T ) = −1

2
L̃(W̄ , W̄ ) (21)

L̃31(W̄ ) + L̃32(Ψ̄x ) − L̃33(Ψ̄y) + L̃34(F̄)

− L̃35(N̄
T ) − L̃36(S̄

T ) = I9
¨̄W,X +I10

¨̄Ψx (22)

L̃41(W̄ ) − L̃42(Ψ̄x ) + L̃43(Ψ̄y) + L̃44(F̄)

− L̃45(N̄
T ) − L̃46(S̄

T ) = I9
¨̄W,Y +I10

¨̄Ψy (23)

in which the linear operators L̃i j (·) and the nonlinear
operators Li j (·) are defined as in [12]. Ii are defined in
Eqs. (31) and (32) below. In the above equations, the
superposed dots indicate differentiation with respect
to time t . It has been reported that von Kármán-type
nonlinearity is accurate for flexural vibration analy-
sis of laminated plates [43]. In the frame work of

HSDT, both Green-Lagrange and von Kármán strain-
displacement relationships may be used. The complete
Green-Lagrange strain expressionsmake the governing
equations nonlinear in all the displacement parameters
of the plate. TheGreen-Lagrange strain expressions are
particularly applicable for in-plane vibrational problem
[44,45],whereas the vonKármán strain expressions are
simple and convenient to derive governing equations
of W̄ − F̄ type which are particularly applicable for a
mixed boundary value problem.

Considering the effects of thermal environment, the
constitutive relations of the plate are

⎡
⎣

N̄
M̄
P̄

⎤
⎦ =

⎡
⎣

A B E
B D F
E F H

⎤
⎦

⎡
⎣

ε0

κ0

κ2

⎤
⎦ +

⎡
⎢⎣

N̄
T

M̄
T

P̄
T

⎤
⎥⎦ (24a)

[
Q̄
R̄

]
=

[
A D
D F

] [
ε0

κ2

]
(24b)

where A, B, D, etc., are plate stiffness, and the
detailed definition can be found in Eq. (30) below. ε0

is the strain of mid-plane, while κ0 and κ2 are curva-

tures of mid-plane. N̄
T
, M̄

T
and P̄

T
are the thermal

forces, moments and higher-order moments caused by
the temperature change �T (X,Y, Z) and are defined
by
⎡
⎣

N̄ T
x M̄T

x P̄T
x

N̄ T
y M̄T

y P̄T
y

N̄ T
xy M̄T

xy P̄T
xy

⎤
⎦ =

N∑

i=1

hk∫

hk−1

⎡
⎣
Ax

Ay

Axy

⎤
⎦
k

(1, Z , Z2)�T dZ (25a)⎡
⎣
S̄Tx
S̄Ty
S̄Txy

⎤
⎦ =

⎡
⎣
M̄T

x
M̄T

y
M̄T

xy

⎤
⎦ − 4

3h2

⎡
⎣
P̄T
x

P̄T
y

P̄T
xy

⎤
⎦ (25b)

In Eq. (25a),
⎡
⎣
Ax

Ay

Axy

⎤
⎦ = −

⎡
⎣
Q̄11 Q̄12 Q̄16

Q̄12 Q̄22 Q̄26

Q̄16 Q̄26 Q̄66

⎤
⎦

⎡
⎣

c2 s2

s2 c2

2cs −2cs

⎤
⎦

×
[

α11

α22

]
(26)

inwhichα11 andα22 are thermal expansion coefficients
of kth layer in longitudinal and transverse directions.

Partly inversing Eq. (24a), we obtain
⎡
⎣

ε0

M∗
P∗

⎤
⎦ =

⎡
⎣

A∗ B∗ E∗
−(B∗)T D∗ (F∗)T
−(E∗)T F∗ H∗

⎤
⎦

⎡
⎣
N∗
κ0

κ2

⎤
⎦ (27)
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where the superscript T represents transpose of matrix,
and

N∗ = N̄ − N̄
T
, M∗ = M̄ − M̄

T
, P∗ = P̄ − P̄

T
(28)

The reduced matrices A∗, B∗, etc., are defined by

A∗ = A−1, B∗ = −A−1B, D∗ = D − BA−1B, E∗

= −A−1E

F∗ = F − EA−1B, H∗ = H − EA−1E (29)

Generally, A∗, D∗ and H∗ are symmetric matrices,
while B∗, E∗ and F∗ may not always be. The plate
stiffnesses Ai j , Bi j , Di j , etc., are defined as

(Ai j , Bi j , Di j , Ei j , Fi j , Hi j )

=
N∑

k=1

hk∫

hk−1

(Q̄i j )k(1, Z , Z2, Z3, Z4, Z6)dZ ,

(i, j = 1, 2, 6) (30a)

(Ai j , Di j , Fi j ) =
N∑

k=1

hk∫

hk−1

(Q̄i j )k(1, Z
2, Z4)dZ ,

(i, j = 4, 5) (30b)

and the generalized inertia Ii (i = 1, 2, 3, 4, 5, 7) is
defined as

(I1, I2, I3, I4, I5, I7)

=
N∑

k=1

hk∫

hk−1

ρk(1, Z , Z2, Z3, Z4, Z6)dZ (31)

and

Ī2 = I2 − 4

3h2
I4, Ī5 = I5 − 4

3h2
I7, Ī3

= I3 − 8

3h2
I5 + 16

9h4
I7

I8 = I2 Ī2
I1

− Ī3 − 4

3h2
Ī5, I9 = 4

3h2

(
Ī5 − Ī2 I4

I1

)
,

I10 = Ī2 Ī2
I1

− Ī3 (32)

It is assumed that four edges of plate are simply sup-
ported. Based on the in-plane behavior at the edges,
two cases of boundary conditions (immovable edges
and movable edges) are considered
X = 0, a;

W̄ = Ψ̄y = 0 (33a)

M̄x = P̄x = 0 (33b)

∫ b

0
N̄xdY = 0 (movable) (33c)

Ū = 0 (immovable) (33d)

Y = 0, b;

W̄ = Ψ̄x = 0 (33e)

M̄y = P̄y = 0 (33f)
∫ b

0
N̄ydX = 0 (movable) (33g)

V̄ = 0 (immovable) (33h)

In Eq. (33), the in-plane immovable conditions of Eqs.
(33d) and (33h) can be expressed, respectively, by

b∫

0

a∫

0

{
A∗
11

∂2 F̄

∂Y 2 + A∗
12

∂2 F̄

∂X2

+
[(

B∗
11 − 4

3h2
E∗
11

)
∂Ψ̄x

∂X
+

(
B∗
12 − 4

3h2
E∗
12

)
∂Ψ̄y

∂Y

]

− 4

3h2

(
E∗
11

∂2W̄

∂X2 + E∗
12

∂2W̄

∂Y 2

)
− 1

2

(
∂W̄

∂X

)2

− (A∗
11 N̄

T
x + A∗

12 N̄
T
y )

}
dXdY = 0 (34a)

a∫

0

b∫

0

{
A∗
22

∂2 F̄

∂X2 + A∗
12

∂2 F̄

∂Y 2

+
[(

B∗
21− 4

3h2
E∗
21

)
∂Ψ̄x

∂X
+

(
B∗
22− 4

3h2
E∗
22

)
∂Ψ̄y

∂Y

]

− 4

3h2

(
E∗
21

∂2W̄

∂X
+ E∗

22
∂2W̄

∂Y 2

)
− 1

2

(
∂W̄

∂Y

)2

−
(
A∗
12 N̄

T
x + A∗

22 N̄
T
y

) }
dYdX = 0 (34b)

4 Solutions for free and forced vibrations

Before carrying out the solution process, it is conve-
nient to first define the following dimensionless quan-
tities for such plates. Introduce dimensionless coeffi-
cients

x = π
X

a
, y = π

Y

b
, β = a

b
,

W = W

[D∗
11D

∗
22A

∗
11A

∗
22]1/4

, F = F̄

[D∗
11D

∗
22]1/2

,

(Ψx , Ψy) = a

π

(Ψ̄x , Ψ̄y)

[D∗
11D

∗
22A

∗
11A

∗
22]1/4

, γ14 =
[
D∗
22

D∗
11

]1/2

,
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γ24 =
[
A∗
11

A∗
22

]1/2

, γ5 = − A∗
12

A∗
22

,

(γT 1, γT 2) = a2

π2

(ATx , ATy )

[D∗
11D

∗
22]1/2

, (γT 3, γT 4, γT 6, γT 7)

= a2

π2hD∗
11

(
DT
x , DT

y ,
4

3h2
FT
x ,

4

3h2
FT
y

)
,

(K1, K2) =
(

K̄1a
4

π4D∗
11

,
K̄2a

2

π2D∗
11

)
, (Mx , Px )

= a2

π2

(
M̄x ,

4
3h2

P̄x
)

D∗
11[D∗

11D
∗
22A

∗
11A

∗
22]1/4

, t̃ = π t

a

√
E0
ρ0

,

ωL = ΩL
a

π

√
ρ0

E0
, γ170

= − I1E0a
2

π2ρ0D
∗
11

, γ171 = 4E0(I5 I1 − I4 I2)

3ρ0h2 I1D
∗
11

(γ80, γ90, γ10) = (I8, I9, I10)
E0

ρ0D
∗
11

, λq

= qa4

π4D∗
11[D∗

11D
∗
22A

∗
11A

∗
22]1/4

(35)

where ρ0 and E0 are, respectively, the values of ρm

and Em at the reference temperature (T = 300K).
AT
x , DT

x , FT
x , etc., are defined by

[
AT
x DT

x FT
x

AT
y DT

y FT
y

]
= −

n∑

k=1

hk∫

hk−1

[
Ax

Ay

]

(1, Z , Z3) dZ (36)

where Ax and Ay are given in Eq. (26).
In uniform temperature field, L15(NT ) = L25(NT )

= L35(NT ) = L45(NT ) = 0; then, Eqs. (20)–(23) can
be expressed in dimensionless form as

L11(W ) − L12(Ψx ) − L13(Ψy)

+ γ14L14(F) − L16(M
T )

= γ14β
2L(W, F) + L17(Ẅ )

+ γ80

(
∂Ψ̈x

∂x
+ β

∂Ψ̈y

∂y

)

− (K1W − K2∇2W ) + λq (37)

L21(F) + γ24L22(Ψx )

+ γ24L23(Ψy) − γ24L24(W )

= −1

2
γ24β

2L(W,W ) (38)

L31(W ) + L32(Ψx ) − L33(Ψy)

+ γ14L34(F) − L36(S
T )

= γ90
∂Ẅ

∂x
+ γ10Ψ̈x (39)

L41(W ) − L42(Ψx ) + L43(Ψy)

+ γ14L44(F) − L46(S
T )

= γ90β
∂Ẅ

∂y
+ γ10Ψ̈y (40)

in which linear operators Li j (·) are defined as in [12].
The boundary conditions of Eqs. (33a)–(33h) can be

rewritten as
x = 0, π ;

W = Ψy = 0 (41a)

Mx = Px = 0 (41b)∫ π

0
β2 ∂2F

∂y2
dy = 0 (movable) (41c)

∫ π

0

∫ π

0

[
γ 2
24β

2 ∂2F

∂y2
− γ5

∂2F

∂x2

+ γ24

(
γ511

∂Ψx

∂x
+ γ233β

∂Ψy

∂y

)

− γ24

(
γ611

∂2W

∂x2
+ γ244β

2 ∂2W

∂y2

)

− 1

2
γ24

(
∂W

∂x

)2

+ (γ 2
24γT 1 − γ5γT 2)�T

]

dxdy = 0 (immovable) (41d)

y = 0, π ;

W = Ψx = 0 (41e)

My = Py = 0 (41f)
∫ π

0

∂2F

∂x2
dy = 0 (movable) (41g)

∫ π

0

∫ π

0

[
∂2F

∂x2
− γ5β

2 ∂2F

∂y2

+ γ24

(
γ220

∂Ψx

∂x
+ γ522β

∂Ψy

∂y

)

− γ24

(
γ240

∂2W

∂x2
+ γ622β

2 ∂2W

∂y2

)

− 1

2
γ24β

2
(

∂W

∂y

)2

+ (γT 2 − γ5γT 1)�T

]

dydx = 0 (immovable) (41h)

Equations (37)–(40) can be solved by means of a two-
step perturbation technique [12]. Because bending–
stretching coupling exists in functionally graded
CNTRC 0-plies, the initial deflection caused by ther-
mal bending moments should be determined firstly.
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It is assumed that the solutions of Eqs. (37)–(40)
are

W (x, y, t̃) = W ∗(x, y) + W̃ (x, y, t̃)

Ψx (x, y, t̃) = Ψ ∗
x (x, y) + Ψ̃x (x, y, t̃)

Ψy(x, y, t̃) = Ψ ∗
y (x, y) + Ψ̃y(x, y, t̃)

F(x, y, t̃) = F∗(x, y) + F̃(x, y, t̃) (42)

in which W ∗(x, y) is initial deflection caused by ther-
mal bending moments and W̃ (x, y, t̃) is additional
dynamic deflection. Ψ ∗

x (x, y), Ψ ∗
y (x, y) and F∗(x, y)

are rotations and stress function corresponding to
W ∗(x, y), while Ψ̃x (x, y, t̃), Ψ̃y(x, y, t̃) and F̃(x, y, t̃)
corresponding to W̃ (x, y, t̃) have the similar defin-
itions as Ψ ∗

x (x, y), Ψ ∗
y (x, y) and F∗(x, y). For the

conditions of in-plane movable ends, W ∗(x, y) =
Ψ ∗
x (x, y) = Ψ ∗

y (x, y) = F∗(x, y) = 0, while for
the conditions of in-plane immovable ends, W ∗(x, y),
Ψ ∗
x (x, y), Ψ ∗

y (x, y) and F∗(x, y) should satisfy non-
linear thermal bending equations. The second set of
equations gives the homogeneous solution of vibration
characteristics on the initial deflected plate that can be
expressed by

W̃ (x, y, t̃) = ε
[
A(1)
11 (t̃) sin mx sin ny

]

+ ε3
[
A(3)
11 (t̃) sin mx sinmy

+ A(3)
31 (t̃) sin 3mx sin ny

+A(3)
13 (t̃) sin mx sin 3ny

]
+ O(ε4) (43)

F̃(x, y, t̃) = −B(0)
00 y2/2−b(0)

00 x
2/2

+ ε
[
B(1)
11 (t̃) + B̈(3)

11 (t̃)
]
sin mx sin ny

+ ε
[
−B(2)

00 y2/2−b(2)
00 x

2/2 + B(2)
02 (t̃) cos 2ny

+ B(2)
20 (t̃) cos 2mx

]

+ ε3
[
−B(2)

00 y2/2−b(2)
00 x

2/2 + B(2)
02 (t̃) cos 2ny

+ B(2)
20 (t̃) cos 2mx

]

+ O(ε4) (44)

Ψ̃x (x, y, t̃) = ε
[
C (1)
11 (t̃) + C̈ (3)

11 (t̃)
]

× cos mx sin ny + ε2C (2)
20 (t̃) sin 2mx

+ ε3
[
D(3)
31 (t̃) cos 3mx sin ny

+ D(3)
13 (t̃) cos mx sin 3ny

]
+ O(ε4) (45)

Ψ̃y(x, y, t̃) = ε
[
D(1)
11 (t̃) + D̈(3)

11 (t̃)
]

sin mx cos ny + ε2D(2)
02 (t̃) sin 2ny

+ε3
[
D(3)
31 (t̃) sin 3mx cos ny

+D(3)
13 (t̃) sin mx cos 3ny

]
+ O(ε4) (46)

λq(x, y, t̃) = ε
[
g1A

(1)
11 (t̃) + g4 Ä

(1)
11 (t̃)

]

sin mx sin ny

+
(
εA(1)

11 (t̃)
)2

(g20 cos 2mx + g02 cos 2ny)

+
(
εA(1)

11 (t̃)
)3

g3 sin mx sin ny + O(ε4) (47)

It is worth noting that t has been replaced back by t̃ in
Eqs. (43)–(47), and all coefficients can be expressed in
form of A(1)

11 (t̃). In Eq. (44), B(0)
00 , b

(0)
00 , B

(2)
00 and b(2)

00
are zero-valued when ends are movable, but when ends
are immovable, they can be obtained by solving Eqs.
(41d) and (41h) and the detailed expressions are given
in [31].

In Eq. (47), (εA(1)
11 ) is taken as the second pertur-

bation parameter relating to the dimensionless vibra-
tion amplitude Wm . From Eq. (43), taking (x, y) =
(π/2m, π/2n) yields

εA(1)
11 = W̃m − Θ1W̃

3
m + · · · (48)

Substituting Eq. (48) into Eq. (47) and applying
Galerkin procedure, for the case of forced vibration,
we have

g40
d2

(
εA(1)

11

)

dt̃2
+ g41

(
εA(1)

11

)
+ g42

(
εA(1)

11

)2

+ g43
(
εA(1)

11

)3 = λ̄q (49)

in which

λ̄q(t̃) = 4

π2

π∫

0

π∫

0

λq(x, y, t̃) sinmx sin nydxdy (50)

All symbols used in Eqs. (43)–(49) are described in
detail in “Appendix”. If zero-valued initial conditions

prevail, i.e., W̃m(0) = ˙̃Wm(0) = 0, Eq. (49) may then
be solved by using the Runge–Kutta method [46]. Sub-
stituting these solved solutions back into Eqs. (43)–
(46), we obtain both displacements and stress function
of the plate.
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For the case of free vibration, we have λq=0. That
is,

λ̄q(t̃) = 4

π2

π∫

0

π∫

0

λq(x, y, t̃)

× sinmx sin nydxdy = 0 (51)

In this case, Eq. (49) becomes

g40
d2

(
εA(1)

11

)

dt̃2
+ g41

(
εA(1)

11

)
+ g42

(
εA(1)

11

)2

+ g43
(
εA(1)

11

)3 = 0 (52)

The solution of Eq. (52) can be written as

ωNL = ωL

[
1 + 9g41g43 − 10g242

12g241
A2

]1/2

(53)

where the dimensionless linear frequency is ωL = [g41
/g40]1/2, A is the maximal dimensionless deflection of
plate, and A=Wm = W̄max/[D∗

11D
∗
22A

∗
11A

∗
22]1/2.

5 Numerical results and discussion

Numerical results are presented in this section for free
and forced vibration of hybrid cross-ply laminated
plates in thermal environments. First, it is needed to
determine the effectivematerial properties of FRCs and
CNTRCs. It is assumed that FRCs and CNTRCs have
the same matrix material and the mechanical proper-
ties of matrix are assumed to be ρm = 1150 kg/m3,
νm = 0.34, αm = 45(1+0.0005�T )×10−6 K−1 and
Em = (3.52− 0.0034T ) GPa, in which T = T0 +�T
and T0 = 300 K (room temperature). The (10, 10)
SWCNTs are selected to be reinforcements in CNTRC,
and the detailed material properties for different tem-
peratures are listed in Table 1 [47]. The mass density of
SWCNTs is taken to be 1400 kg/m3. In computation,
three volume fractions of CNTs (0.12, 0.17 and 0.28)
are considered and the corresponding efficiency para-
meters areη1 = 0.137, η2 = 1.022 andη3 = 0.715 for

the case of V ∗
CN = 0.12, and η1 = 0.142, η2 = 1.626

and η3 = 1.138 for the case of V ∗
CN = 0.17, and

η1 = 0.141, η2 = 1.585 and η3 = 1.109 for the
case of V ∗

CN = 0.28. For FRC, the volume frac-
tion of graphite fibers is 0.6 and the material prop-
erties of which are [48]: E f

11 = 233.05 GPa, E f
22 =

23.1 GPa, G f
12 = 8.96 GPa, ν f = 0.2, α

f
11 =

−0.54 × 10−6K−1, α
f
22 = 10.08 × 10−6 K−1 and

ρ f = 1750 kg/m3. The foundation is made of hydro-
genated nitrile butadiene rubber (HNBR) filled with
21% carbon black (CB). The temperature-dependent
properties of HNBR/CB [49] are νs = 0.499 and
Es = (29.6−0.25�T +0.0009�T 2)MPa. The above
values are used in the following examples. In addition,
we assume that out-plane shear moduliG13 = G12 and
G23 = 1.2G12. Two layups of hybrid laminated plate
([0C/90F ]2 and [0C/90F ]s) where the 0C -plies (i.e.,
CNTRC 0-plies) have different distributions of CNTs
are considered. For the type 1, referred to as FG-1, the
0C -plies above the middle plane are FG-V types, while
the 0C -plies below the middle plane are FG-� types,
whereas for the type 2, referred to as FG-2, the 0C -plies
above the mid-plane are FG-� types, while the 0C -
plies below themid-plane are FG-V types. It is assumed
that the layers with the same layup angle contain the
same matrix density. Then, the matrix crack density
is expressed by (ρ0

crk, ρ90
crk), in which the superscripts

0 and 90 denote 0-plies and 90-plies, respectively. It
is worth noting that the stiffness reduction model pre-
sented in Sect. 2 is adopted to UD-CNTRC layer, but
not to FG-CNTRC layer.

5.1 Validation

To validate the present method, four test examples for
free and forced vibration of composite laminated plates
and CNTRC plates are resolved.

The dimensionless natural frequencies of UD and
FG-V CNTRC plates are calculated and compared in
Table 2 with the finite element method (FEM) results

Table 1 Temperature-
dependent material
properties for (10, 10)
SWCNT [47]

T (K) ECN
11 (TPa) ECN

22 (TPa) GCN
12 (TPa) αCN

11 (×10−6/K) αCN
22 (×10−6/K)

300 5.6466 7.0800 1.9445 3.4584 5.1682

400 5.5679 6.9814 1.9703 4.1496 5.0905

500 5.5308 6.9348 1.9643 4.5361 5.0189
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Table 2 Comparison of the dimensionless fundamental fre-
quency (ω̄ = ΩL(a2/h)

√
ρ0/E0) of CNTRC plates with simply

supported boundary condition (a/b = 1, T = 300 K)

V ∗
CN b/h UD FG-V

Zhu et al. [50] Present Zhu et al. [50] Present

0.11 10 13.532 13.591 12.452 12.493

20 17.355 17.339 15.110 15.093

50 19.223 19.161 16.252 16.205

0.14 10 14.306 14.396 13.256 13.320

20 18.921 18.940 16.510 16.519

50 21.354 21.325 17.995 17.975

0.17 10 16.815 16.882 15.461 15.497

20 21.456 21.430 18.638 18.611

50 23.697 23.614 19.982 19.924

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.92

0.94

0.96

0.98

1.00

Ω
1c /Ω

10

a/b

β
0=0.5, β90=  0

β
0=  0, β90=0.5

β
0=0.5, β90=0.5

β
0=0.5, β90=  0(Adali and Makins[9])

β
0=  0, β90=0.5(Adali and Makins[9])

β0=0.5, β90=0.5(Adali and Makins[9])

Fig. 2 Comparisons of cracked to intact linear frequency ratios
Ωc

1/Ω
0
1 for [0/90/0/90] laminated plates with various values of

a/b

of Zhu et al. [50] based on the first-order shear defor-
mation plate theory. The dimensionless frequency is
defined as ω̄ = ΩL(a2/h)

√
ρ0/E0, where ρ0 and E0

are the reference values of mass density and Young’s
modulus of the matrix at room temperature. In this
example, the CNT volume fractions and correspond-
ing efficiency parameters η j ( j = 1, 2, 3) are taken to
be: η1 = 0.149, η2 = 0.934 and η3 = 0.934 for the
case of V ∗

CN = 0.11, and η1 = 0.150, η2 = 0.941
and η3 = 0.941 for the case of V ∗

CN = 0.14, and
η1 = 0.149, η2 = 1.381 and η3 = 1.381 for the case
of V ∗

CN=0.17. Note that, in this example,G12 = G13 =
G23.

Secondly, the curves of linear fundamental fre-
quency ratios (ω̄ = ΩL(a2/h)

√
ρ0/E0) for matrix

0.0 0.1 0.2 0.3 0.4 0.5
0.80

0.85

0.90

0.95

1.00

Ω
1c /Ω

10

hi /h

β
0
=0.5, β

90
=  0

β0=  0, β90=0.5
β0=0.5, β90=0.5
β0=0.5, β90=  0(Adali and Makins[9])
β

0
=  0, β

90
=0.5(Adali and Makins[9])

β
0
=0.5, β

90
=0.5(Adali and Makins[9])

Fig. 3 Comparisons of cracked to intact linear frequency ratios
Ωc

1/Ω
0
1 for [0/90/0/90] laminated plates with various values of

hi/h
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Fig. 4 Comparisons of dynamic response for isotropic square
plate subjected to a suddenly applied uniform load
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Fig. 5 Comparisons of dynamic response for laminated plates
subjected to a suddenly applied uniform load
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Table 3 Fundamental frequencies �̃ = �L(b2/h)
√
E0/ρ0 for [0C/90F ]2 hybrid laminated plates with different values of b/h (a/b =

1, T = 300 K)

V ∗
cn

(
ρ0
crk , ρ

90
crk

)
b/h

5 10 20 50 100

0.12 (0, 0) UD 11.1041 14.8861 16.7109 17.3677 17.4686

FG-1 11.4152 15.5087 17.5246 18.2564 18.3691

FG-2 10.6995 14.1757 15.8367 16.4329 16.5244

(0, 0.5) UD 10.5103 14.2720 16.1210 16.7913 16.8945

FG-1 10.7711 14.8574 16.9366 17.7039 17.8228

FG-2 10.1502 13.5824 15.2331 15.8260 15.9171

(0.5, 0) UD 10.8623 14.5960 16.4184 17.0794 17.1812

(0.5, 0.5) UD 10.2626 13.9807 15.8280 16.5019 16.6059

0.17 (0, 0) UD 12.1313 16.2484 18.2019 18.8970 19.0034

FG-1 12.4677 17.0112 19.2677 20.0902 20.2170

FG-2 11.6999 15.3719 17.0489 17.6352 17.7244

(0, 0.5) UD 11.5450 15.6376 17.6368 18.3593 18.4704

FG-1 11.8274 16.3506 18.6984 19.5779 19.7149

FG-2 11.1675 14.7955 16.4735 17.0630 17.1528

(0.5, 0) UD 11.7798 15.8288 17.7676 18.4609 18.5672

(0.5, 0.5) UD 11.1853 15.2161 17.9214 17.9214 18.0322

0.28 (0, 0) UD 12.7889 17.6812 20.2276 21.1827 21.3314

FG-1 13.1435 18.6083 21.6829 22.8952 23.0875

FG-2 12.4436 16.6588 18.6566 19.3672 19.4759

(0, 0.5) UD 12.1398 16.9902 19.6548 20.6928 20.8567

FG-1 12.4346 17.8311 21.0777 22.4268 22.6452

FG-2 11.8780 16.0578 18.1028 18.8438 18.9579

(0.5, 0) UD 12.4358 17.2756 19.8092 20.7610 20.9093

(0.5, 0.5) UD 11.7759 16.5817 19.2358 20.2700 20.4334

cracking to intact matrix with different values of a/b
and hi/h are compared in Figs. 2 and 3 with the the-
oretical results of Adali and Makins [9] based on the
classical laminated thin plate theory. In Figs. 2 and 3,
hi is defined as the thickness of inner layers (the sec-
ond and third layers) of [0/90/0/90] plate. The plate is
madeof graphite/epoxy, and thematerial properties are:
E11 = 132.4 GPa, E22 = E33 = 10.8 GPa, G12 =
G13 = 5.65 GPa, v12 = v13 = 0.24while v23 = 0.49.

As a comparison for dynamic response, the curves
of central deflection as function of time for isotropic
square plates subjected to a suddenly applied uniform
load 1.0×106 Pa are compared in Fig. 4 with the FEM
results of Praveen and Reddy [51]. The side length and
thickness of the plate are 0.2mand0.01m, respectively.
Two kinds of isotropic materials are considered. The

material properties are E = 70 GPa, ν = 0.3 and ρ =
2707kg/m3 for aluminum, and E = 151 Gpa, ν = 0.3
and ρ = 3000kg/m3 for zirconia. The dimensionless
deflection is defined as W̄ Emh/q0a2, while dimension-

less time is defined as t
√
Em/

(
a2ρ

)
. Note that the effect

of temperature field is not considered in this example.
Finally, the curves of central deflection as function

of time for a laminated plate subjected to a suddenly
applied uniform load are plotted and compared in Fig.
5 with the analytical results of Reddy [52] and the gen-
eralized differential quadrature (GDQ) method results
of Maleki et al. [53]. Both the length and width of the
plate are 25 cm, and the thickness is 1 cm. Each ply is
idealized as a homogeneous orthotropic material and
is also assumed to have the same thickness. The mass
density of the plate is 8×10−6 Ns2/cm4, and mechan-
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Table 4 Fundamental frequencies �̃ = �L(b2/h)
√
E0/ρ0 for [0C/90F ]s hybrid laminated plates with different values of b/h (a/b =

1, T = 300 K)

V ∗
cn

(
ρ0
crk , ρ

90
crk

)
b/h

5 10 20 50 100

0.12 (0, 0) UD 11.2865 14.9450 16.7103 17.3459 17.4435

FG-1 11.6898 15.7915 17.8821 18.6573 18.7775

FG-2 10.7781 13.9721 15.4227 15.9291 16.0061

(0, 0.5) UD 9.82282 13.7304 16.1301 17.1343 17.2970

FG-1 10.0672 14.3700 17.1938 18.4297 18.6334

FG-2 9.49547 12.9685 14.9425 15.7291 15.8542

(0.5, 0) UD 11.0229 14.5882 16.3048 16.9220 17.0167

(0.5, 0.5) UD 9.55101 13.3767 15.7266 16.7084 16.8673

0.17 (0, 0) UD 12.2062 16.8290 19.3603 20.3381 20.4919

FG-1 12.6005 17.7583 20.7628 21.9678 22.1599

FG-2 11.7073 15.7524 17.8146 18.5796 18.6983

(0, 0.5) UD 10.6226 15.3419 18.6148 20.1044 20.3536

FG-1 10.8574 16.0213 19.8611 21.7043 22.0196

FG-2 10.3133 14.5311 17.2184 18.3707 18.5591

(0.5, 0) UD 11.8190 16.3224 18.7865 19.7369 19.8863

(0.5, 0.5) UD 10.2148 14.8347 18.0441 19.5017 19.7452

0.28 (0, 0) UD 12.8374 18.8312 22.8727 24.6600 24.9555

FG-1 13.2166 19.8256 24.5929 26.8102 27.1844

FG-2 12.4179 17.7170 20.9915 22.3558 22.5763

(0, 0.5) UD 11.0266 16.7548 21.6658 24.3248 24.8044

FG-1 11.2483 17.4318 23.1151 26.4063 27.0196

FG-2 10.8227 16.0318 20.0773 22.0878 22.4367

(0.5, 0) UD 12.4601 18.3729 22.3639 24.1261 24.4172

(0.5, 0.5) UD 10.6150 16.2848 21.1587 23.7907 24.2647

ical properties are: E22 = 2.1×10−6 N/cm2, E11 =
25E22, G12 = G13 = 0.5E2, G23 = 0.2E22 and
v12 = 0.25. These four comparison studies show that
the results from the present method are in good agree-
ment with the existing results.

5.2 Free vibration

Several numerical examples are provided to investi-
gate the free vibration of hybrid laminated plates with
matrix cracking. Tables 3, 4, 5 and 6 show the effects
of crack density on the fundamental frequencies of
the [0C/90F ]2 and [0C/90F ]s hybrid laminated plates
under both movable and immovable end conditions at
T =300K, 400Kand 500K.Two types (FG-1 andFG-2)

of FG-CNTRC layers are considered, and UD-CNTRC
layers are also considered as a comparator. In the case
of movable end conditions, the initial in-plane force
is not considered here. Hence, the natural frequency
of the plate with movable ends is the same as that of
the same plate with immovable ends at T=300 K, as
shown in Tables 5 and 6. It can be seen that the natural
frequencies are decreased with increase in crack den-
sity and temperature, but are increased with increase
in CNT volume fraction. The different values of b/h
are also considered in Tables 3 and 4. It can be seen
that the natural frequencies rise with increase in b/h.
From Table 5, it can be seen that the natural frequen-
cies of the unsymmetric cross-ply laminated plate with
movable ends are different from those of the same
plate with immovable ends when the temperature rise
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Table 5 Comparisons of fundamental frequencies �̃ = �L(b2/h)
√
E0/ρ0 for [0C/90F ]2 hybrid laminated plates with different values

of b/h (a/b = 1, b/h = 20, T = 400 and 500 K)

V ∗
cn

(
ρ0
crk , ρ

90
crk

)
Immovable end conditions Movable end conditions

T = 400 K T = 500 K T = 400 K T = 500 K

0.12 (0, 0) UD 16.4132 16.1280 16.4375 16.1508

FG-1 17.2174 16.9229 17.2402 16.9442

FG-2 15.5451 15.2644 15.5710 15.2890

(0, 0.5) UD 15.8920 15.6626 15.9017 15.6707

FG-1 16.6919 16.4455 16.7003 16.4524

FG-2 15.0166 14.7996 15.0276 14.8089

(0.5, 0) UD 16.1563 15.8995 16.1767 15.9211

(0.5, 0.5) UD 15.6207 15.4241 15.6406 15.4409

0.17 (0, 0) UD 17.8757 17.5615 17.8944 17.5784

FG-1 18.9242 18.5910 18.9410 18.6061

FG-2 16.7349 16.4321 16.7550 16.4506

(0, 0.5) UD 17.3828 17.1140 17.3769 17.1089

FG-1 18.4188 18.1217 18.4120 18.1159

FG-2 16.2411 15.9934 16.2349 15.9882

(0.5, 0) UD 17.4874 17.2207 17.5091 17.2420

(0.5, 0.5) UD 16.9809 16.7635 16.9908 16.7721

0.28 (0, 0) UD 19.8656 19.5109 19.8804 19.5239

FG-1 21.2836 20.8839 21.2951 20.8939

FG-2 18.3258 18.0049 18.3412 18.0187

(0, 0.5) UD 19.3525 19.0253 19.3416 19.0161

FG-1 20.7270 20.3426 20.7141 20.3317

FG-2 17.8463 17.5673 17.8329 17.5560

(0.5, 0) UD 19.4864 19.1795 19.5096 19.2007

(0.5, 0.5) UD 18.9647 18.6879 18.9703 18.6926

is under consideration. In contrast, from Table 6, for
the symmetric cross-ply laminated plate, the thermal
bending moments vanish and the results for the sym-
metric cross-ply laminated plate with either movable or
immovable end conditions are identical. It can be seen
that the unsymmetric cross-ply laminated plate with
movable ends has a higher natural frequency than the
same plate with immovable ends does at T = 400 and
500 K. It can also be seen that the natural frequency
of the hybrid laminated plate with FG-1 0C-plies is
higher than that of the hybrid laminated plate with UD
0C-plies, whereas the hybrid laminated plate with FG-2
0C-plies is lower than that of the hybrid laminated plate
with UD 0C-plies.

Table 7 presents the nonlinear-to-linear frequency
ratios ωNL/ωL for [0C/90F ]2 and [0C/90F ]s hybrid

laminated square plates at T = 300 K, 400 and
500K. The dimensionless frequency is defined as �̃ =
�L(b2/h)

√
E0/ρ0. The CNT volume fraction is taken

to be 0.12, and b/h is taken to be 20. It can be seen
that the fundamental frequencies are reduced, but the
nonlinear-to-linear frequency ratios are increased with
increase in temperature. The results show that the fun-
damental frequencies of FG-1CNTRCplate are higher,
but the nonlinear-to-linear frequency ratios of the same
plate are lower than those of plates with uniform or
unsymmetrical distribution of CNTs. Hence, in the fol-
lowing examples, except for Fig. 9, only FG-1-type
hybrid laminated plate is considered. The plate end
conditions are assumed to be immovable.

Figures 6, 7 and 8 show, respectively, the effects
of crack density, CNT volume fraction and founda-
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Table 6 Comparisons of fundamental frequencies �̃ = �L(b2/h)
√
E0/ρ0 for [0C/90F ]s hybrid laminated plates with different values

of b/h (a/b = 1, b/h = 20, T = 400 and 500 K)

V ∗
cn

(
ρ0
crk , ρ

90
crk

)
Immovable end conditions Movable end conditions

T = 400 K T = 500 K T = 400 K T = 500 K

0.12 (0, 0) UD 16.4327 16.1669 16.4327 16.1669

FG-1 17.5842 17.2966 17.5842 17.2966

FG-2 15.1623 14.9137 15.1623 14.9137

(0, 0.5) UD 15.8280 15.5215 15.8280 15.5215

FG-1 16.8620 16.5210 16.8620 16.5210

FG-2 14.6671 14.3911 14.6671 14.3911

(0.5, 0) UD 16.0802 15.8691 16.0802 15.8691

(0.5, 0.5) UD 15.4778 15.2263 15.4778 15.2263

0.17 (0, 0) UD 18.9980 18.6408 18.9980 18.6408

FG-1 20.3684 19.9748 20.3684 19.9748

FG-2 17.4789 17.1511 17.4789 17.1511

(0, 0.5) UD 18.2119 17.7931 18.2119 17.7931

FG-1 19.4148 18.9445 19.4148 18.9445

FG-2 16.8542 16.4813 16.8542 16.4813

(0.5, 0) UD 18.4991 18.2194 18.4991 18.2194

(0.5, 0.5) UD 17.7162 17.3749 17.7162 17.3749

0.28 (0, 0) UD 22.4042 21.9208 22.4042 21.9208

FG-1 24.0638 23.5095 24.0638 23.5095

FG-2 20.5752 20.1535 20.5752 20.1535

(0, 0.5) UD 21.1278 20.5460 21.1278 20.5460

FG-1 22.5037 21.8349 22.5037 21.8349

FG-2 19.6077 19.1088 19.6077 19.1088

(0.5, 0) UD 21.9620 21.5476 21.9620 21.5476

(0.5, 0.5) UD 20.6870 20.1737 20.6870 20.1737

tion stiffness on the nonlinear-to-linear frequency ratios
ωNL/ωL of [0C/90F ]s hybrid laminated plates. The
plate geometric parameter a/b = 1 and b/h = 20.
In Fig. 6, the CNT volume fraction is taken to be 0.12,
and the temperature isT = 300K.Three crackdensities
are considered. The crack densities are (ρ0

crk, ρ
90
crk) =

(0.5, 0.0) for the case of the cracks occurring only
in CNTRC 0-plies, (ρ0

crk, ρ
90
crk) = (0.0, 0.5) for the

case of the cracks occurring only in FRC 90-plies,
(ρ0

crk, ρ
90
crk) = (0.5, 0.5) for the case of the cracks

occurring in both CNTRC 0-plies and FRC 90-plies
and (ρ0

crk, ρ
90
crk) = (0.0, 0.0) for the plate without any

matrix cracks. It can be found that the nonlinear-to-
linear frequency ratio curves become lower when the
cracks occur. For UD-type [0C/90F ]s laminated plate,
the nonlinear-to-linear frequency ratio curves for the

two cases of cracks occurring in 0-plies only and in 90-
plies only are close. In Fig. 7, the CNT volume fraction
is taken to be 0.12, 0.17 and 0.28, and in Fig. 8, the
CNT volume fraction is taken to be 0.28. In Figs. 7
and 8, the temperature is taken T = 400 K, and the
crack densities are taken to be (0.5, 0.5) for the UD-
type CNTRC and (0.0, 0.5) for the FG-1-type CNTRC.
Note that in Fig. 8 TD represents thematerial properties
of foundation that are temperature dependent and TID
represents the material properties of foundation that
are independent of temperature, i.e., Es = 29.6 MPa.
The depth of the foundation is taken Hs = 20 mm,
whereas Hs = 0 means the plate without any elas-
tic foundation. Like in the case of intact laminated
plate, the nonlinear-to-linear frequency ratio curves are
decreased with increase in CNT volume fraction or
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Table 7 Comparisons of nonlinear-to-linear ratios ωNL/ωL for [0C/90F]S hybrid laminated plates in thermal environments (a/b =
1, b/h = 20, V ∗

cn = 0.12)
(
ρ0
crk , ρ

90
crk

)
T (K) �̃ W̄max/h

0.2 0.4 0.6 0.8 1.0

(0, 0) 300 UD 16.7103 1.0407 1.1543 1.3222 1.5264 1.7545

FG-1 17.8821 1.0357 1.1360 1.2859 1.4703 1.6778

FG-2 15.4227 1.0477 1.1792 1.3705 1.6005 1.8547

400 UD 16.4327 1.0416 1.1573 1.3279 1.5353 1.7665

FG-1 17.5842 1.0364 1.1386 1.2911 1.4783 1.6889

FG-2 15.1623 1.0486 1.1826 1.3773 1.6107 1.8685

500 UD 16.1669 1.0425 1.1605 1.3343 1.5451 1.7797

FG-1 17.2966 1.0372 1.1415 1.2968 1.4873 1.7011

FG-2 14.9137 1.0497 1.1864 1.3846 1.6218 1.8834

(0, 0.5) 300 UD 16.1301 1.0424 1.1604 1.3341 1.5447 1.7793

FG-1 17.1938 1.0374 1.1424 1.2986 1.4901 1.7049

FG-2 14.9425 1.0493 1.1849 1.3816 1.6172 1.8773

400 UD 15.8280 1.0436 1.1646 1.3423 1.5573 1.7963

FG-1 16.8620 1.0385 1.1463 1.3063 1.5020 1.7212

FG-2 14.6671 1.0506 1.1895 1.3905 1.6309 1.8956

500 UD 15.5215 1.0450 1.1695 1.3518 1.5720 1.8170

FG-1 16.5210 1.0398 1.1509 1.3155 1.5161 1.7405

FG-2 14.3911 1.0521 1.1949 1.4009 1.6466 1.9167

(0.5, 0) 300 UD 16.3048 1.0421 1.1592 1.3317 1.5411 1.7744

400 UD 16.0802 1.0428 1.1617 1.3365 1.5485 1.7844

500 UD 15.8691 1.0435 1.1644 1.3418 1.5566 1.7953

(0.5, 0.5) 300 UD 15.7266 1.0439 1.1656 1.3442 1.5603 1.8005

400 UD 15.4778 1.0449 1.1693 1.3515 1.5714 1.8154

500 UD 15.2263 1.0461 1.1737 1.3600 1.5844 1.8330

foundation stiffness. Moreover, when the foundations
are TID, the nonlinear-to-linear frequency ratio curves
fall further compared with the TD ones.

5.3 Forced vibration

For all cases below, the aspect ratio a/b of laminated
plate is 1 and the width to thickness ratio b/h is 10.
The deflected mode is taken to be (m, n) = (1, 1). The
time step for Runge–Kutta method is�τ = 0.5μs. The
dynamic load is assumed to be a suddenly applied uni-
form load with q0 = 1 MPa. The boundary condition is
assumed to be immovable ends. The layup of laminate
is [0C/90F ]2.

Figure 9 presents the dynamic response of hybrid
laminated plates with two types of FG-CNTRC layers.

0.0 0.2 0.4 0.6 0.8 1.0

1.0

1.2

1.4

1.6

1.8

ω
N

L/ω
L

Wm/h

 I&1
 I&2
 I&3
 I&4
 II&1
 II&2

[0C/90F]s

a/b = 1, b/h = 20
Vcn

* = 0.12, T = 300K

I: UD
II: FG-1
1: (ρcrk

0,ρcrk
90) = (0.0,0.0)

2: (ρcrk
0,ρcrk

90) = (0.0,0.5)

3: (ρcrk
0,ρcrk

90) = (0.5,0.0)

4: (ρcrk
0,ρcrk

90) = (0.5,0.5)

Fig. 6 Effect of crack densities on the frequency–amplitude
curves of hybrid laminated plates with doubly matrix cracking
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Fig. 7 Effect of CNT volume fraction on the frequency–
amplitude curves of hybrid laminated plates with doubly matrix
cracking
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Fig. 8 Effect of foundation stiffness on the frequency–amplitude
curves of hybrid laminated plates with doubly matrix cracking
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Fig. 9 Effects of FG-CNTRC types on the dynamic response of
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Fig. 10 Effects of crack density on the dynamic response of
matrix-cracked hybrid laminated plate
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Fig. 11 Effects of CNT volume fraction on the dynamic
response of matrix-cracked hybrid laminated plate

The results are also compared with those of the plate
containing UD-CNTRC layers at T = 400K. The CNT
volume fraction is taken to be 0.28, and the crack den-
sity for 0C -plies and 90F -plies is taken to be (0.0, 0.5).
It can be found that the plate with FG-1-type CNTRC
layer has the lowest central deflection, while the plate
with FG-2-type CNTRC layer has the highest central
deflection.

Figure 10 shows the effect of the crack density on the
dynamic response of hybrid laminated plates with UD-
CNTRC layers at room temperature (T = 300 K). The
CNT volume fraction is taken to be 0.12. As expected,
the central deflection is higher when the density of
matrix cracks is increased. It is worth noting that the
crack occurring in 90-plies may have greater influence
on the central deflection of the plate than the same crack
occurring in 0-plies.
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Fig. 12 Effects of temperature on the dynamic response of
matrix-cracked hybrid laminated plate
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Fig. 13 Effects of foundation stiffness on the dynamic response
of matrix-cracked hybrid laminated plate

Figures 11, 12 and 13 show, respectively, the effects
of the CNT volume fraction, temperature change
and foundation stiffness on the central deflection of
[0C/90F ]2 hybrid laminated plates with FG-1-type
CNTRC layers. The crack densities are taken to be
(0.0, 0.5). From Fig. 11, it can be seen that under the
room temperature (T = 300 K), the central deflec-
tion becomes lower when the CNT volume fraction is
increased. In Fig. 12, the CNT volume fraction is taken
to be 0.17. The results show that the central deflection
becomes higher when temperature rises. In Fig. 13, we
study the effect of foundation stiffness on the central
deflection of the plate with V ∗

CN = 0.17 at T = 400K.
The material properties are the same as used in Fig.
8. It can be found that the curve of central deflection
versus time becomes lower when foundation stiffness
is increased.

6 Conclusions

Nonlinear dynamic responses ofmatrix-cracked hybrid
laminated plates resting on a Pasternak elastic founda-
tion in thermal environments have been presented on
the basis of a refined self-consistentmodel and a higher-
order shear deformation plate theory. Two cases of in-
plane boundary conditions are considered. The para-
metric studies have been carried out after four compari-
son studieswhich demonstrated the accuracy and effec-
tiveness of the present method. The numerical results
illustrate that thematrix crack has a significant effect on
the linear frequencies and dynamic responses of hybrid
laminated plates, but this effect is less pronounced on
the nonlinear-to-linear frequency ratios of the same
plate. The crack density also plays an important role
on the dynamic deflections of the plate.
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Appendix

In Eqs. (47) and (48),

Θ1 = α311 − α313 − α331,

g42 = − 4

3π2mn
γ14γ24m

2n2β2
(

γ8

γ6
+ γ9

γ7
+ 4

g05
g06

)

×(1 − cos mπ)(1 − cos nπ),

g43 = −g41Θ1,

g4 = −g∗
08 − γ14γ24

g∗
05g07
g06

−
[
γ170 − γ171(m

2 + n2β2)
]

− γ80

(
m2g04 + n2β2g03

g00

− γ14γ24
m2g02 + n2β2g01

g00

g05
g06

)
,

for the case of immovable edge conditions

g41 = Q11 + 2g42�(T ),

α311 = −γ14γ24

16Q11

[
m4

γ7
+ n4β4

γ6

+ 2
m4 + γ 2

24n
4β4 + 2γ5m2n2β2

γ 2
24 − γ 2

5

]
,

β2B(0)
00 = γT1�T, b(0)

00 = γT 2�T,
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β2B(2)
00 = −1

8
γ24

m2 + γ5n2β2

γ 2
24 − γ 2

5

(
A(1)
11

)2
, b(2)

00

= − 1

8
γ24

γ5m2 + γ 2
24n

2β2

γ 2
24 − γ 2

5

(
A(1)
11

)2
,

and for the case of movable edge conditions

g41 = Q11, α311

= −γ14γ24

16Q11

[
m4

γ7
+ n4β4

γ6

]
, β2B(0)

00 = b(0)
00 = 0,

β2B(2)
00 = b(2)

00 = 0,

In the above equations (with others are defined as in
[54]),

Q11 = g08 + γ14γ24
g05g07
g06

+
[
K1 + K2

(
m2 + n2β2

)]
,

Q13 = g138 + γ14γ24
g135g137
g136

+
[
K1 + K2

(
m2 + 9n2β2

)]

Q31 = g318 + γ14γ24
g315g317
g316

+
[
K1 + K2

(
9m2 + n2β2

)]
,

α313 = γ14γ24n4β4

16Q13γ6
, α331 = γ14γ24n4β4

16Q31γ7
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