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Abstract We introduce a new (3+1)-dimensional
generalized Kadomtsev–Petviashvili equation. We use
the simplifiedHirota’s directmethod to derivemultiple-
soliton solutions for the newmodelwith the coefficients
of the spatial variables which are left free. We show
that the phase shifts depend on all these coefficients.
We prove that the newmodel fails the Painlevé integra-
bility test although it gives multiple-soliton solutions.
Moreover, for x = y = z, this new model reduces to
the potential KdV equation, which we will examine as
well.

Keywords Generalized KP equation · simplified
Hirota’s method · Painlevé test

1 Introduction

It is well known that nonlinear evolution equations play
a significant role in describing nonlinear scientific phe-
nomena. The study of these equations involves many
domains, which include plasma physics, fluid mechan-
ics, solitary waves theory, hydrodynamics and theory
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of turbulence, optical fibers, water waves, chaos the-
ory, chemical physics and other applications [1–16].
The work on these nonlinear equations has increased
in recent decades to get an insight through qualitative
and quantitative features of these equations. The soliton
pulse, an important feature of nonlinearity, indicates
a perfect balance between nonlinearity and dispersion
effects [17–27].

The study of integrable properties for nonlinear evo-
lution equations has become an extremely active area
of research. A variety of powerful methods has been
used to study the nonlinear evolution equations and
the integrability of these equations if it holds, such as
the Hirota bilinear method [4], the Bäcklund trans-
formation method, Darboux transformation, Pfaffian
technique, the inverse scattering method, the Painlevé
analysis, the generalized symmetry method and other
methods. The Hirota’s bilinear method and the Here-
man’s simplified form [13,14], are rather heuristic and
the most commonly used techniques.

The Kadomtsev–Petviashvili (KP) equation [10] is
a nonlinear partial differential equation in two spa-
tial and one temporal coordinate, which describes the
evolution of nonlinear, long waves of small amplitude
with slow dependence on the transverse coordinate.
Kadomtsev and Petviashvili [10] relaxed the restric-
tion that the waves be strictly one dimensional, to
derive the completely integrable KP equation in the
form

(ut + 6uux + uxxx )x + auyy = 0, (1)
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whichdescribes the evolutionof quasi-one-dimensional
shallow-water waves when effects of the surface ten-
sion and the viscosity are negligible. A variety of mod-
ified and extended KP equations has been examined in
the literature [10–16]. For example, the modified KP
(mKP) equations [2] read

4ut + uxxx − 6u2ux + 6ux∂
−1
x uy + 3u−1

x uyy = 0, (2)

which was derived in the study of the propagation of
the ion-acoustic waves in a plasmawith non-isothermal
electrons [1,2]. It can describe the evolution of various
solitary waves in multi-temperature electron plasmas,
in which there exists a collision less multi-component
plasma conceiving cold ions and two temperature elec-
trons having different Maxwellian distributions ren-
dered in the form of two Boltzmann relations.

Recently, a generalized (3+1)-dimensionalKPequa-
tion

uxxxy + 3(uxuy)x + utx + uty − uzz = 0, (3)

was presented and examined [1–6]. This equation was
investigated in [4] where Wronskian and Grammian
formulations were established for this equation. This
equation was studied also in [1] where the simplified
Hirota’s method was used to obtain multiple-soliton
solutions, provided specific constraints on the coeffi-
cients of the spatial variables.

Under the dependent variable transformation u =
2(ln f )x , the Eq. (3) is transformed to the Hirota bilin-
ear form [3,4]

(D3
x Dy + Dt Dx + Dt Dy − D2

z ) f × f = 0, (4)

where Dt , Dx , Dy and Dz are Hirota’s bilinear opera-
tors.

A (2+1)-dimensional nonlinear B-type KP (BKP)
equation, given by

vt + vxxxxx − 5(vxxy + ∂−1
x vyy) + 15(vxvxx

+ vvxxx − vvy − vx∂
−1
x vy) + 45v2vx = 0, (5)

was investigated because it possesses many integrable
structures such as Lax formulation and the multiple-
soliton solutions. The BKP equation was given this
name because it is a B-type KP equation.

It is to be noted that other forms of extended KP
equations can be found in the literature.Many powerful
methodswere used to investigate these extended forms.

In this work, we aim to introduce a new form of a
(3+1)-dimensional generalized KP equation, given as

uxxxy + 3(uxuy)x + utx + uty + utz − uzz = 0, (6)

where one extra term, namely utz , is added to the gener-
alized form (3). This new form is introduced bymaking
use of our previous work in [1]. It is to be noted that
Eq. (6) reduces to the KP equation if y = x . However,
for x = y = z, Eq. (6) reduces to the potential KdV
equation

3ut − ux + 3u2x + uxxx = 0, (7)

which will be examined later in this work.
Under the dependent variable transformation u =

2(ln f )x , Eq. (6) is transformed to the Hirota bilinear
form

(D3
x Dy+Dt Dx +Dt Dy+Dt Dz−D2

z ) f × f = 0, (8)

where Dt , Dx , Dy and Dz are Hirota’s bilinear opera-
tors, and f (x, y, z, t) is an auxiliary function.

Theobjectives of thiswork are twofold. First,we aim
to show that this slight change of an additional termwill
cause a drastic impact on the dispersion relations and on
the phase shift. The second goal is to establishmultiple-
soliton solutions of distinct physical structures for the
new model (6), and unlike our work in [1], there are
no constraints on the coefficients of the spatial vari-
ables. On the contrary, these coefficients will be left
as free parameters. Moreover, we will also study the
reduced form of this equation if x = y = z as stated
earlier. Motivated by the work in [1], the simplified
formofHirota’smethod developed [13,14]will be used
to achieve these goals.

2 The new (3+1)-dimensional generalized KP
equation

The new (3+1)-dimensional generalized KP equation
reads

uxxxy + 3(uxuy)x + utx + uty + utz − uzz = 0, (9)

where u = u(x, y, z, t).
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We first substitute

u(x, y, z, t) = eki x+ri y+si z−ci t . (10)

into the linear terms of (9) to find the dispersion relation
as

ci = (k3i ri − s2i )

ki + ri + si
, i = 1, 2, . . . N , (11)

and hence the dispersion variable θi takes the form

θi = e
ki x+ri y+si z− (k3i ri−s2i )

ki+ri+si
t
, i = 1, 2, . . . N . (12)

Using the dependent variable transformation

u(x, y, z, t) = 2(ln f )x , (13)

where the auxiliary function f (x, y, z, t) is given as

f (x, y, z, t) = 1 + f1(x, y, z, t) = 1 + eθ1 , (14)

the single-soliton solution

u(x, y, z, t) = 2k1e
k1x+r1y+s1z− (k31r1−s21)

k1+r1+s1
t

1 + e
k1x+ak1y+r1z− (ak4i −r2i )

(1+a)ki
t

, (15)

follows immediately.
For the two-soliton solutions, we substitute

f (x, y, z, t) = 1 + eθ1 + eθ2 + a12e
θ1+θ2 , (16)

into (9), and solving for the phase shift a12, we find for
the general case

ai j = N

M
, 1 ≤ i < j ≤ N , (17)

where

N = 2 ki kj
3ri rj + kj

4ri
2 + ki

4rj
2 + kj

2si
2

+ rj
2si

2 − 3 ki kj
3ri

2 − 3 ki
2kj

3ri + 2 ki
3kj

2ri

− 3 ki
3kj

2rj + 2 ki
2kj

3rj + 3 ki
2kj

2rj
2 + ki

4kj rj

+ 3 ki
2kj

2ri
2 + ki kj

4ri + kj
4ri si + 2 ki ri sj

2

+2 kj rj si
2 − ki

3ri sj
2 − kj

3rj si
2

+ ki
4rj sj + kj

3ri
2sj + ki

3rj
2si − 3 ki

3kj rj
2

− 2 ki si kj sj − 3 ki
2kj

2ri sj − 3 ki
3kj rj sj

+ki kj
3ri sj + 3 ki

2kj
2rj sj − 3 kj

2ki ri
2sj

+3 ki
2kj ri

2sj + kj
3ri si sj + ki

3rj si sj

+ki
3ri kj sj − ki

3ri rj sj + ri
2sj

2

+ ki
2sj

2 − 3 kj
2ki ri rj si + 3 ki

2kj ri rj si

+3 kj
2ki ri rj sj − 3 kj

2ki ri si sj

−3 ki
2kj ri rj sj + 3 ki

2kj ri si sj

− 3 ki
2kj rj si sj + 3 kj

2ki rj si sj − 2 ri si rj sj

− 2 ri si kj sj − 2 ki si rj sj

+ 3 kj
2ki ri rj

2 − 3 kj
2ki ri

2rj + 3 ki
2kj ri

2rj

− 3 ki
2kj ri rj

2 − 3 ki
2kj rj

2si + 3 kj
2ki rj

2si

− 3 ki
2kj

2rj si − kj
3rj ri si

− 6 ki
2kj

2ri rj + 3 ki
2kj

2ri si + ki
3kj rj si

+ 2 ki
3kj ri rj + ki kj

3rj si − 3 ki kj
3ri si, (18)

and

M = 2 ki kj
3ri rj + kj

4ri
2 + ki

4rj
2 + kj

2si
2 + rj

2si
2

+ 3 ki kj
3ri

2+3 ki
2kj

3ri+2 ki
3kj

2ri + 3 ki
3kj

2rj

+ 2 ki
2kj

3rj + 3 ki
2kj

2rj
2

+ ki
4kj rj + 3 ki

2kj
2ri

2 + ki kj
4ri + kj

4ri si

+ 2 ki ri sj
2 + 2 kj rj si

2

− ki
3ri sj

2 − kj
3rj si

2 + ki
4rj sj + kj

3ri
2sj

+ ki
3rj

2si + 3 ki
3kj rj

2

− 2 ki si kj sj + 3 ki
2kj

2ri sj + 3 ki
3kj rj sj

+ ki kj
3ri sj + 3 ki

2kj
2rj sj + 3 kj

2ki ri
2sj

+ 3 ki
2kj ri

2sj + kj
3ri si sj + ki

3rj si sj

+ ki
3ri kj sj − ki

3ri rj sj

+ ri
2sj

2 + ki
2sj

2 + 3 kj
2ki ri rj si

+ 3 ki
2kj ri rj si + 3 kj

2ki ri rj sj

+ 3 kj
2ki ri si sj + 3 ki

2kj ri rj sj + 3 ki
2kj ri si sj

+ 3 ki
2kj rj si sj + 3 kj

2ki rj si sj − 2 ri si rj sj

− 2 ri si kj sj − 2 ki si rj sj

+ 3 kj
2ki ri rj

2 + 3 kj
2ki ri

2rj + 3 ki
2kj ri

2rj

+ 3 ki
2kj ri rj

2 + 3 ki
2kj rj

2si

+ 3 kj
2ki rj

2si + 3 ki
2kj

2rj si − kj
3rj ri si

+ 6 ki
2kj

2ri rj + 3 ki
2kj

2ri si + ki
3kj rj si

+2 ki
3kj ri rj + ki kj

3rj si + 3 ki kj
3ri si. (19)

It is obvious from this results that, unlike the conclu-
sion in [1] where constraints were imposed on ri , the
coefficients km, rm, sm of the spatial variables x, y, z
are left free parameter. Moreover, the phase shift given
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above differs completely than theHirota’s type of phase
shift only if ki �= ri �= si and depends on all three
coefficients. This in turn leads to distinct two-soliton
solutions if compared with the results presented in [1].
For example, using ki = i, ri = i + 3, si = i + 6, 1 ≤
i ≤ 3, the phase shifts are given by

a12 = 43

1083
,

a13 = 25

241
,

a23 = 61

3301
. (20)

To determine the two-soliton solutions explicitly, we
substitute the previous results into the formula (13).

It is interesting to point out that for the special case
ri = si = ki , i = 1, 2, 3, the phase shift ai j reduces to
the Hirota’s type in the form

ai j = (ki − k j )2

(ki + k j )2
, 1 ≤ i < j ≤ N . (21)

In this case, the generalized KP Eq. (9) does not show
any resonant phenomenon [2] because the phase shift
term a12 in (21) cannot be 0 or ∞ for |k1| �= |k2|.

In a like manner, we determine the three-soliton
solutions by setting

f (x, y, z, t) = 1 + eθ1 + eθ2 + eθ3 + a12e
θ1+θ2

+ a13e
θ1+θ3 + a23e

θ2+θ3 + b123e
θ1+θ2+θ3 (22)

into (9) and solve for b123, we find that

b123 = a12a13a23. (23)

To determine the three-soliton solutions explicitly,
we substitute the last result for f in the formula
u(x, y, z, t) = 2(ln f (x, y, z, t))x . The higher-level
soliton solutions for n ≥ 4 can be obtained in a parallel
manner.

2.1 Painlevé analysis

Painlevé analysis is one of the most powerful meth-
ods to find the underlying integrable models from a
given generalized nonlinear equation [15–17]. Follow-
ing the WTC–Kruskal approach [15–17], or the Mac-
syma [14], the first step of the Painlevé test is the lead-
ing order analysis to the negative integer α. We second
determine the resonances points and finally verify the

compatibility conditions, where for every positive reso-
nance there is a compatibility condition which must be
identically satisfied. Baldwin et al. presented two pack-
ages in Macsyma and Mathematica, respectively [14],
which are based on theWTCmethod and the Kruskal’s
simplification.

Using the above-mentioned software packages, and
considering first the Kruskal simplification and then
without it, to test the integrability of the new (3+1)-
dimensional generalized KP Eq. (9), four resonant
points are found at j = −1, 2, 4, 6. In both cases,
Eq. (9) does not pass the Painlevé test. The Laurent
series has arbitrary coefficients at r = 1, 4, and 6, but
the compatibility condition is not satisfied at resonance
r = 6.

It is well known that the presence ofmultiple-soliton
solutions often indicates the integrability of the exam-
ined equation. However, this is not sufficient, and the
existence of multiple-soliton solutions should be sup-
ported by carrying the Painlevé test, or determiningLax
pair of the equation, and using othermethods aswell. In
this work, we formally derived multiple-soliton solu-
tions for Eq. (9), but the equation failed the Painlevé
test, and this shows that it is a non-integrable equation.

3 The potential KdV equation

For x = y = z, the new (3+1)-dimensional generalized
KP Eq. (6) reduces, after integrating both sides, to the
potential KdV equation given as

3ut − ux + 3u2x + uxxx = 0, (24)

where u = u(x, t).
Following the analysis presented above, we set

u(x, t) = eki x−ci t . (25)

into the linear terms of (24) to find the dispersion rela-
tion as

ci = 1

3
(k3i − ki ), i = 1, 2, . . . N , (26)

and hence the dispersion relation θi takes the form

θi = eki x−
1
3 (k3i −ki ) t , i = 1, 2, . . . N . (27)
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Using the dependent variable transformation

u(x, t) = 2(ln f (x, t))x , (28)

where the auxiliary function f (x, t) is given as

f (x, t) = 1 + f1(x, t) = 1 + eθ1 , (29)

leads to the single-soliton solution

u(x, t) = 2k1ek1x−
1
3 (k31−k1) t

1 + ek1x− 1
3 (k31−k1) t

. (30)

For the two-soliton solutions, we proceed as before
to find that the phase shift ai j reduces to the Hirota’s
type in the form

ai j = (ki − k j )2

(ki + k j )2
, 1 ≤ i < j ≤ N . (31)

Using

f (x, t) = 1 + eθ1 + eθ2 + a12e
θ1+θ2 , (32)

into (28), we obtain the two-soliton solutions.
In a like manner, we determine the three-soliton

solutions by setting

f (x, t) = 1 + eθ1 + eθ2 + eθ3 + a12e
theta1+θ2

+ a13e
θ1+θ3 + a23e

θ2+θ3 + b123e
θ1+θ2+θ3

(33)

into (24), and solve for b123, we find that

b123 = a12a13a23. (34)

To determine the three-soliton solutions explicitly, we
substitute the last result for f in the formula u(x, t) =
2(ln f (x, t))x . The higher-level soliton solutions for
n ≥ 4 can be obtained in a parallel manner.

3.1 Integrability of the potential KdV equation

It is well known in the literature that the potential KdV
equation is integrable and passes the Painlevé test. The
potential KdV equation is derived from the KdV equa-
tion, and both are integrable nonlinear equations.

4 Concluding remarks

Anew (3+1)-dimensional generalizedKP equationwas
introduced in this work. The new equation was inves-
tigated for multiple-soliton solutions. The simplified
form of the Hirota’s method is used to formally derive
these solutions. The coefficients of the spatial variables
are not subjected to any constraint. The Painlevé analy-
sis was used to show that the equation is not integrable,
although it provides multiple-soliton solutions.

We also examined the potential KdV equation that
can be derived by setting x = y = z in the new (3+1)-
dimensional generalizedKP equationwhichwas estab-
lished in this work. Unlike the new (3+1)-dimensional
generalized KP equation which is non-integrable, the
potential KdV equation is integrable.
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