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Abstract Compared with traditional integer-order
PID controller, fractional order PID controller can
expand the range of its parameters and control con-
trolled objects more flexibly. It has become one of the
research focuses in control field in recent years. Direct-
ing at the problem that it is not easy for model parame-
ters of nonlinear fractional order PID controller to be
determined, this paper presents a new adaptive particle
swarm optimization algorithmwhich is namedYLPSO
and can conduct automatic setting of parameters for
fractional order PID controller. This algorithm, mainly
adopting strategies of adaptive dynamic weight and
asynchronization adjustment of learning factors, real-
izes ability in intensifying algorithm convergence to
global optimum by balancing global searching perfor-
mance and local searching performance of PSO algo-
rithm. Simulation results show that, compared with
differential evolution algorithm and standard particle
swarm optimization algorithm, YLPSO can control
parameter optimizing effect better. Algorithm put for-
ward in this paper provides a new reference for com-
bination of intelligent optimization algorithm and non-
linear fractional order controller.
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1 Introduction

In a general way, orders of differential and integral
are calculus of fraction, and they are called fractional
calculus which greatly expands descriptive power of
integer-order calculus. Researches have indicated that
in many aspects, using mathematic model of frac-
tional order calculus can describe dynamic response
capability of actual system more accurately. Based on
mathematic model of fractional order calculus, design,
expression and controlling ability of dynamic systems
can be greatly elevated. Fractional order calculus not
only provides a new mathematic tool for engineering
system but also provides a more perfect mathematic
model for complicated nonlinear systems [1].

Since fractional order calculus was applied to con-
trol field, many researchers have launched in-depth
researches on fractional order control [2,3], e.g.,
Oustaloup et.al put forward CRONE control princi-
ple [4]; Matignon researched on stability and control-
lability of fractional order system [5]. LVZ F gave
a fractional order controller through the minimum
integral square error [6]. Capontto gave some exam-
ples about fractional order controllers [7]. Traditional
proportional-integral-derivative (PID) control, a con-
trolling method with broadest range of application and
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the most mature technique, has been widely applied to
industrial process for its features like simple structure
and strong robustness. Combination of fractional order
control theory and PID controller setting theory has
been a research focus in fractional order control field
in recent years.

General format of fractional order PID controller
proposed by Professor I.Podlubny is simply denoted
as P I λDμ [8]. Introduction of differential order λ and
fractional order μ adds two adjustable parameters for
the whole controller; consequently, setting range of
controller parameters has been enlarged and the con-
troller can control controlled objects more flexibly. By
reasonably selecting parameters, fractional order PID
controller can improve controlling effect of the system.
Appearance of fractional order controller is amilestone
in the history of fractional order control theories and
lays a foundation for development of fractional order
control theories. The meaning of fractional order con-
trol lies in generalization of traditional integer-order
control, and it can provide and establish more models
and obtain more robust controlling effect.

Orders of differentials and integrals in fractional
order controller P I λDμ with two additional variable
parameters usually are not integers, and it makes the
structure more complicated while improving accuracy
of parameters. Hence, parameter setting method for
fractional order control systems has been a current
research focus. For some complicated objects featured
by high orders, time lag and nonlinear characteristics, it
is hard to acquire the optimal or approximately optimal
parameters by adopting some traditional setting meth-
ods like Ziegler-Nichol method when setting P I λDμ

controller parameters. At the moment, some intelli-
gent optimizationmethods like genetic algorithm (GA)
and differential evolution (DE) have drawn interest of
many scholars and have already been applied to para-
meter optimization of PID controller [9]. However, the
two methods have their own deficiencies when opti-
mizing some complicated problems, especially their
optimizing efficiency obviously decreases when solv-
ing optimization problem about correlation between
optimized parameters. PSO is an algorithm deriving
from simulation of predatory behaviors of birds, and
it guides optimizing search by generating swarm intel-
ligence through cooperation and competition between
swarm particles [10]. Compared with GA andDE algo-
rithms, PSO has advantages of simple algorithm, easy
realization, small calculated quantity and high calcu-

lation efficiency. However, similar to conventional dif-
ferential evolution algorithm, standard PSO algorithm
will easily be caught in local optimum phenomenon in
the late phase. Although some improved methods such
as enlarging particle swarm scale can improve perfor-
mance of the algorithm to a certain degree, they cannot
radically overcome premature convergence phenom-
enon. This paper suggests PSO based on strategies of
adaptive dynamic weight and asynchronization adjust-
ment YLPSO and applies this method to parameter
optimization of nonlinear fractional order P I λDμ con-
troller. It takes parameters in P I λDμ as optimization
variables and system performance indexes of expected
nonlinear controller as optimized target function, thus
obtaining optimal parameter combination of nonlinear
fractional order P I λDμ controller.

The structure of this paper is as follows: Sect. 2 intro-
duces contents of fractional order calculus and frac-
tional order controller; Sect. 2 introduces PSO based
on strategies of adaptive dynamic weight and asyn-
chronization adjustment and detailsmethod of adaptive
dynamic weight adjustment of learning factors; Sect. 4
applies the new algorithm in this paper to parameter
setting of fractional order P I λDμ controller through a
simulated calculation example; and Sect. 5 draws the
conclusion of the whole paper.

2 Fractional order P IλDμ controller

2.1 Fractional order calculus [11]

For some complicated actual systems, using fractional
order calculus equation to establish a model is more
concise and accurate than integer-order model. Frac-
tional order calculus also provides a good tool for
describing dynamic process. In a general way, frac-
tional order calculus refers that orders of differentials
and integrals can be arbitrary or fractional. Definition
of fractional order calculus usually refers to that of
Riemann–Liouville:

aDa
t f (t) = 1

Γ (m − a)

(
d

dt

)m

(∫ t

a

f (τ )

(t − τ)1−(m−a)
dτ

)
(1)

whereby m − 1 < a < m and Γ (. . .) refers to Euler
gamma function.Another definition based on fractional
differentiation method is Grunwald-Letnikov:
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aDa
t f (t)= lim

h→0

1

Γ (m − a)

(t−a)/h∑
k=0

Γ (a +k)

Γ (k +1)
f (t − kh)

(2)

whereby aDa
t f (t) is fractional order operating factor.

It can be seen that integrals and differentials can be uni-
fied together by introducing fractional order operating
factor aDa

t f (t).
Algebraic tool that is usually used to describe frac-

tional order systems isLaplace conversion,when t = 0,
Laplace conversion of n-order differential of added sig-
nal x(t) is:

L{Dnx(t)} =
∫ ∞

0
e−st
0 Dn

t x(t)

= sn X (s) −
m−1∑
k=0

sk0D
n−k−1
t x(t)t=0 (3)

whereby m − 1 < n < m, X (s) = L[x(t)] is a com-
mon Laplace conversion. For fractional order calculus
equation, if there are input signal u(t) and output signal
y(t) when t = 0, then transfer function is:

G(s) = a1sα1 + a2sα2 + · · · + amasαma

b1sβ1 + b2sβ2 + · · · + bmasβma
(4)

whereby (amabma), (αm, βm) ∈ R2.

2.2 Fractional order controller

Fractional order controller is a generalization of tra-
ditional integer-order controller, and most researchers
have considered applying fractional order controller to
integer-order systems in order to improve controlling
effects of systems. For various actual systems in real sit-
uation, fractional order model can describe more accu-
rately than integer-order model does, providing a good
tool for describing nonlinear dynamic process. Direct-
ing at these fractional order systems, fractional order
controller can better present its advantages.

Fractional order controller suggested by Podlubny
is of great importance in development of fractional
order theories. General form of fractional order PID
controller is P I λDμ controller including an integral
order λ and differential order μ. λ and μ can be arbi-
trary real numbers, and their mathematic models can
be expressed as:

Gc(s) = Kp + Ki

sλ
+ Kds

μ (5)

Fig. 1 Schematic diagram of fractional order PID controller

Traditional integer-order PID controller is a special
situation of fractional order PID controller when λ = 1
and μ = 1. When λ = 1 and μ = 1, it is PI controller;
when = 0 and = 1, it is PD controller. It can be seen that
all PID controllers of these types are a special situation
of fractional order PID controller. Fractional PID con-
troller has three advantages: (1) For dynamic systems
described by fractional order mathematic model, it can
achieve good controlling effect; (2) even if controlling
parameters of P I λDμ controller are altered, parameter
variation of the controller itself will not by prominent;
and (3) there are two additional adjustable parameters
λ and μ in fractional order PID controller which can
better adjust dynamic performance of control system.

Figure 1 shows a schematic diagram of fractional
order PID controller in which horizontal axis is inte-
gral order and vertical axis is differential order. When
λ = 0 and μ = 1, it is PD controller, when λ = 1 and
μ = 0, it is PI controller, and when λ = μ = 1, it is
traditional PID controller. Hence, PI, PD and PID con-
trollers are points on this plane. If λ and μ can be arbi-
trarily selected, then it can cover the whole plane in this
figure, so fractional order controller has more flexible
controlling structure than integer-order controller does.

3 An adaptive dynamic particle swarm
optimization algorithm

3.1 Standard particle swarm optimization algorithm

Standard PSO firstly can initialize a swarm of particles
in feasible solution space, and each particle represents a
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potential optimal solution of optimization problem and
location, velocity and fitness can be used to represent
features of this particle. Value of fitness is calculated
by fitness function, and the value presents the quality of
this particle. The particle moves in the solution space
and conducts optimizing operation by tracking extreme
value Pt of individual location and optimal location Gt

of the swarm. Every once the particle update location
and velocity, fitness will be calculated, and extreme
value Pt of individual location and optimal location
Gt will be updated by comparing fitness value of new
particles and fitness values corresponding to individual
extreme value Pt and swarm extreme value Gt .

Suppose that in a swarm consisting of n particles,
locations of them are X = (X1, X2, X3, . . . , Xn) and
velocities are V = (V1, V2, V3, . . . , Vn)with each par-
ticle Xi corresponding to its velocity Vi . Based on tar-
get function, fitness value of each particle at location Xi

can be calculated, extreme value corresponding to the
optimal fitness value of each particle is Pt , and extreme
value of the optimal individual location corresponding
to optimal swarm fitness value is Gt . In each iterative
process of the algorithm, each particle updates its own
velocity and location through individual extreme value
and swarm extreme value, namely:

Vt+1 = ωVt + C1r1(Pt − Xt )

+C2r2(Gt − Xt ) (6)

Xt+1 = Xt + Vt+1 (7)

whereby t is the current number of iterations, Xt rep-
resents location of particle of t generation, ω is inertia
weight, C1 and C2 are called learning factors and they
are nonnegative constants, and r1 and r2 are random
numbers within [0, 1].

3.2 Adaptive weight

In order to balance global and local searching abilities
of PSO algorithm, the following equation can be used
to adjust inertia weight in standard PSO:

ω =
{

ωmin − (ωmax−ωmin)∗( f − favg)

favg− fmin
, f ≤ favg

ωmax, f ≥ favg
(8)

wherebyωmax andωmin, respectively, represent max-
imum and minimum values of inertia weight and they

represent the current target functional values of the par-
ticle, and favg and fmin, respectively, represent aver-
age fitness value and the minimum fitness value of all
current particles. In the above equation, inertia weight
will automatically change with fitness functional value
of particles, so it is also called adaptive weight.

When fitness values of particles tend to be identical
or approximate the local optimum, inertia weight will
increase. While target values of particles are disperse,
inertia weight will decrease. In the meantime, for par-
ticles whose fitness functional values are superior to
average target values, the corresponding inertia weight
factors will be small, thus protecting the particles; on
the contrary, for particles whose fitness functional val-
ues are lower than average fitness values, the corre-
sponding inertia weight factors will be large, making
these particles move to better searching region.

3.3 Asynchronization adjustment of learning factors

The second mechanism adopted by the new algorithm
is to conduct dynamic change in two learning factors
C1 and C2 in optimization process with the time in
order to make particles have strong self-learning abil-
ity and weak social learning ability in initial phase of
optimization thus intensifying global searching perfor-
mance of the algorithm, while in the late phase of opti-
mization, particles have strong social learning ability
and weak self-learning ability, which is beneficial for
the algorithm to converge to globally optimal solution.
Dynamic changes in learning factorsC1 andC2 will be
implemented according to Eqs. (9) and (10):

C1(t) = C ini
1 + Cend

1 − C ini
1

T
(9)

C2(t) = C ini
2 + Cend

2 − C ini
2

T
(10)

whereby C ini
1 and C ini

2 , respectively, represent initial

values of C1 and C2 , Cend
1 and Cend

2 , respectively,
represent iterative final values of C1 and C2, and T
represents total degree of arithmetic iterations.

3.4 Algorithm flow

Step 1 Initialize particle swarm, randomly generate
locations and velocities of all particles and
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Fig. 2 A schematic
diagram of YLPSO
optimizing parameters of
fractional order PID control
system

determine extreme value Pt of individual loca-
tion and optimal location Pt of swarm;

Step 2 Calculate fitness value of each particle and
compare fitness value of each particle with that
corresponding to optimal location Pt that this
particle has gone through; if the fitness value is
good, then take it as a new Pt ;

Step 3 Compare fitness value of each particle with that
corresponding to optimal location Gt that the
whole swarm has gone through; if it is good,
then take it as a new Gt ;

Step 4 Use Eqs. (11) and (12) to update velocity and
location of particles;

Vt+1 = ωt Vt + C1(t)r1(Pt − Xt )

+C2(t)r2(Gt − Xt ) (11)

Xt+1 = Xt + Vt+1 (12)

wherebyωt represents inertiaweight of t gener-
ation particles, andC1(t) andC2(t) are learning
factors of t generation;

Step 5 Use Eq. (8) to update weight ;
Step 6 Use Eqs. (9) and (10) to, respectively, update

learning factors C1 and C2;
Step 7 If meeting conditions (generally are preset

operational precision or number of iterations)

are met, the search stops, and result is output;
otherwise, return back to Step 2 for continuing
to optimize.

4 Simulation research

4.1 Automatic setting method of fractional order
P I λDμ controller parameters based on YLPSO
algorithm

The idea of using YLPSO algorithm to conduct auto-
matic setting of fractional order P I λDμ controller is as
shown in Fig. 2, that is: establish a connection between
the algorithm and nonlinear controller simulation sys-
tem through five parameters (Kp, Ki , Kd , λ, μ) of
P I λDμ controller and their corresponding fitness val-
ues (namely: performance indexes of nonlinear con-
troller system). Firstly, use YLPSO algorithm to gen-
erate particle swarm and successively assign values of
particles of the particle swarm to five parameters of
P I λDμ controller: Kp, Ki , Kd , λ, μ and then oper-
ate simulation model of nonlinear fractional order con-
trol system to acquire performance indexes correspond-
ing to this group of parameters, and these performance
indexes will be transferred to YLPSO as fitness values
of this particle; finally, update individual extreme value
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swarm extreme value as well as particle velocity and
location; in the end, output the optimal parameter set
through automatic setting of YLPSO based on circular
condition elimination algorithm.

Algorithmflow ofYLPSOoptimizing parameters of
fractional order PID control system is as follows:

Step 1 Determine initial parameters such as upper and
lower bounds of value ranges of five variables
Kp, Ki , Kd , λ, μ of controller parameters,
number N of particles in the swarmand number
of iterations Tmax. Randomly initialize parti-
cle swarm including location vector, velocity
vector, pbest and gbest of each particle;

Step 2 Define fitness function. Here ITAE index is
adopted, and its expression is: JI T AE =∫ t
0 t |e(t)|dt . Adopting ITAE index to optimize
has advantages of speediness and stability. Cal-
culate fitness value of each particle based on
ITAE index;

Step 3 Compare fitness value of each particle with that
corresponding to optimal location Gt that the
whole swarm has gone through; if it is good,
then take it as a new Gt ;

Step 4 Use Eqs. (11) and (12) to update velocity and
location of particles;
Vt is an N*5 matrix, and rows of this matrix,
respectively, represent velocities of fractional

order controller parameters Kp, Ki , Kd , λ, μ

of t generation in the swarm;
Xt is an N*5 matrix, and rows of this matrix,
respectively, represent locations of fractional
order controller parameters Kp, Ki , Kd , λ, μ

of t generation in the swarm;
Step 5 Use Eq. (8) to update weight ωt ;
Step 6 Use Eqs. (9) and (10) to, respectively, update

learning factors C1 and C2;
Step 7 If number of iterations t = t + 1, return to

Step 2 until reaching the maximum number of
iterations Tmax, at the moment, output gbest
as the optimal parameter sequence of fractional
order PID controller P I λDμ.

4.2 Simulation experiment

4.2.1 Model design of fractional order controller

Controlled object selected by this paper is a typical
nonlinear system:

G(s) = 2s + 3

s4 + 5s3 + 3s2 + s + 0.8

Here, this paper designs a fractional order control sys-
tem. Figure 3 is diagram of nonlinear fractional order
P I λDμ control system, and Fig. 4 is subsystem model
design in control system model as shown in Fig. 3.

Fig. 3 Nonlinear fractional
order P I λDμ control
system model

Fig. 4 Subsystem model of
nonlinear fractional order
P I λDμ control system
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Fig. 5 Performance index
ITAE variation curve
acquired by optimizing
nonlinear fractional order
P I λDμ control system

Table 1 Parameter setting of three algorithms

Number of population 20

Number of iterations 100

DE Zoon coefficient of difference vector 0.8

Crossover probability 0.9

PSO Inertia coefficient 0.6

Learning factor C1 2

Learning factor C2 2

YLPSO Minimum value of inertia coefficient 0.6

Maximum value of inertia coefficient 0.9

Initial value of learning factor C1 2.2

Terminal value of learning factor C1 0.8

Initial value of learning factor C2 0.8

Terminal value of learning factor C2 2.2

Table 2 Optimal controller parameters and ITAE index T
acquired by three algorithms

DE PSO YLPSO

Kp 122.7677 499.0717 427.4107

Ki 100.0403 0.424966 0.371453

Kd 115.1606 317.1471 297.1006

λ 0.00209 0 0.025038

μ 0.114676 0.247102 0.212206

ITAE 2.269123 1.68688 1.502404

4.2.2 Simulation results and discussion

In order to verify performance of the new algorithm,
this paper, respectively, uses new algorithm, DE and
standard PSO algorithm to optimize parameters of non-

linear fractional order P I λDμ control system, and
parameter setting of the three algorithms is given in
Table 1.

The three algorithms have operated for many times
separately, and this paper selects the optimal ITAE
indexes acquired by multiple operations of the three
algorithms as well as corresponding optimal parame-
ters. Whereby, optimal ITAE values and optimal para-
meters of the three algorithm are as shown in Table 2,
and change situation of the optimal ITAE curve is as
shown in Fig. 5.

It can be found from Fig. 5 that during optimization
process of the three algorithms, values of performance
index ITAE continuously reduce, and all of them are
continuously seeking for superior parameter combina-
tion.Whereby, among them, YLPSO can acquire supe-
rior ITAE index value; thus, it can determine more rea-
sonable parameter combination of nonlinear fractional
order controller. For TLPSO algorithm, it substitutes
acquired optimal parameter combination into model as
shown in Figs. 3, 4 and obtains unit step response curve
as shown in Fig. 6 from which it can be seen that for
unstable controlled objects, the optimal nonlinear frac-
tional order P I λDμ controller designed byYLPSOcan
control controlled objectswell by reasonably determin-
ing parameters Kp, Ki , Kd , λ, μ.

5 Conclusion

For some complicated actual systems, using fractional
order calculus equation to establish a model is more
concise and accurate than integer-order model. In par-
ticular, in recent years, actual control systems have
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Fig. 6 Step response
diagram

higher and higher requirements for precision, fraction
order systemshavebeen attachedwith great importance
in control field, and great progress has been achieved in
fractional order controller design. Optimization design
and setting of parameters of fractional order P I λDμ

controller is quite significant for control system per-
formance. This paper suggests an automatic parameter
setting method of fractional order PID controller based
on improved PSO. This method can adapt to change in
inertia weight of particle swarm movement according
to swarm fitness in searching process in order to avoid
making searching process get caught in local optimiza-
tion In the meantime, it improves searching precision
of the algorithm and accelerate its convergence perfor-
mance through the strategy of asnychronization adjust-
ment of learning factors. It is indicated through simu-
lation experiment of fractional order controlled objects
that under optimal index of ITAE, compared with DE
and standard PSO algorithm, the algorithm put forward
in this paper can acquire better parameter optimization
results for fractional order controller.
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