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Abstract The principal component analysis (PCA)
has been extensively studied and proved to be a sophis-
ticated technique for the dimension reduction and the
index construction of multidimensional stationary time
series. However, the PCA method is often suscepti-
ble to external trends of original variables in real-
world applications, when data present non-stationarity.
In this paper, we propose a non-stationary principal
component analysis (NSPCA) for multidimensional
time series in the presence of non-stationarity. The
new method is based on detrended cross-correlation
analysis. We theoretically derive the coefficients relat-
ing to the combinations of original variables in the
NSPCA method. We also apply the NSPCA method
to the autoregressive model, Gaussian distributed vari-
ables as well as stock sectors in Chinese stock markets,
and compare it with the traditional PCA method. We
find that theNSPCAmethod has the advantage to detect
intrinsic cross-correlations among variables and iden-
tify the patterns of data in the case of non-stationarity,
minimizing the effects of external trends which often
make thePCAyields fewcomponents assigning similar
loadings to all variables.
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1 Introduction

Many complex systems in the natural and social sci-
ences consistently produce information along with
time, and a large number of variables can therefore
be observed from these systems. Typically, these vari-
ables are not independent. Conversely, each variable is
likely to interact with the other variables. On the one
hand, the interactions amongmultivariate are important
for people to make conversion of these variables into
complex network structure and to reveal the intrinsic
mechanism of these systems [1–3]. On the other hand,
people are often confused with a large number of vari-
ables with overlapping information, which they expect
to reduce to a small number of composites with as little
loss of information as possible [4–6]. Principal com-
ponent analysis (PCA) is considered as an appropriate
candidate to perform such data reduction [7]. The PCA
method uses orthogonal transformation to convert a set
of observations of possibly correlated variables into a
set of values of uncorrelated variables called principal
components [8]. This transformation is defined in such
a way that the first principal component has the largest
possible variance (that is, accounts for as much of the
variability in the data as possible), and each succeed-
ing component in turn has the highest variance possible
under the constraint that it be orthogonal to the preced-
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ing components [9]. It is concerned with explaining the
variance–covariance structure of the data through a few
linear combinations of the original variables. The PCA
method has proved to be a sophisticated technique since
it was proposed at the beginning of last century, and it
has been extensively applied to diverse areas of interest
for data reduction and index construction [10–13].

The PCA method is constructed on the linear cross-
correlation analysis, and works well when linear corre-
lations exist among stationary variables. However, the
linear cross-correlation function used to describe corre-
lations suffers from several limitations [14], including
at least (i) it measures linear correlations while fails to
measure nonlinear correlations; and (ii) it is restricted
to analyze stationary series, when the mean value, vari-
ance, and higher statisticalmoments remain unchanged
along with time. Unfortunately, the real-world com-
plex systems are often contaminated by external trends
and often have complex structures, giving rise to the
data of these systems being non-stationary and non-
linear [15–17]. A nonlinear system does not satisfy
the superposition principle of additivity, or homogene-
ity, or both. Hence, the nonlinear principal component
analysis (NLPCA) has been introduced in various ways
before [18–21]. Generally, one way is to extract indices
which are nonlinear combinations of variables that dis-
criminate maximally in some sense. Another way is
to find nonlinear combinations of unobserved compo-
nents that are approximate to the observed variables.
And the third way is to acquire transformations of the
variables that optimize the linear PCA fit. A system
with non-stationarity has the property of its statistical
moments, like themean and variance if they are present,
changing with time. However, the non-stationary prin-
cipal component analysis (NSPCA) has been few stud-
ied [22–24], although it is crucial for the data reduction
of non-stationary variables. The core idea of the PCA
method is to maximize the variance representing rich
information through orthogonal transformation, while
in the presence of non-stationarity, e.g., a persistent
trend in non-stationary time series would increase the
value of variance but bring very poor information, that
violates the original intension of PCA. Lansangan and
Barrios [23] discussed the effects of non-stationarity in
PCA recurring to the autoregressive (AR) model and
concluded that the PCA method could yield only one
or very few components assigning similar loadings to
all variables if the input data has, as columns, non-
stationary time series. They also introduced a sparse

PCA by imposing constraints on the estimation of the
component loadings.

In this paper, we propose a new NSPCA method
based on detrended cross-correlation analysis (DCCA)
[25] and apply it to the non-stationary variables. The
DCCA method was recently introduced by Podob-
nik and Stanley [25] to quantify cross-correlations
between two non-stationary time series. A generaliza-
tion to detrended cross-correlation coefficient was pro-
posed by Zebende [26], to quantify the level of cross-
correlation, that has the merit of ranging between −1
and 1. It is a normalization algorithm of the DCCA
method, which is a natural derivation from the widely
accepted detrended fluctuation analysis (DFA) [27] and
DCCA.

The paper is arranged as follows. We first retrospect
the DCCAmethod and the detrended cross-correlation
coefficient, then introduce ourNSPCAmethod. In Sect.
3,we apply theNSPCAmethod to empirical data analy-
sis. Finally, we present a brief conclusion.

2 Methodology

2.1 DCCA and detrended cross-correlation coefficient

Toanalyze cross-correlations between twonon-stationary
variables, the DCCA method was proposed [25]. Con-
sider non-stationary variables {X (1), X (2)} of equal
length N :

(1) Firstwedetermine theprofilesY (1)
k = ∑k

i=1 X
(1)
i

and Y (2)
k = ∑k

i=1 X
(2)
i , respectively, for k = 1, . . . , N .

(2) Then we divide each profile into Nn ≡ �N/n�
non-overlapping segments of equal length n, where
�. . .� is the sign of lower integer and n is the scale
length. In each segment v, that starts at (v−1)n+1 and
ends at vn, we fit the integrated variables by the poly-
nomial functions Ỹ (1)

(v−1)n+i and Ỹ (2)
(v−1)n+i (1 ≤ i ≤ n)

through least square estimation, respectively. Gener-
ally, the degree of fitting polynomial can be taken 1, 2,
or larger integers in order to eliminate linear, quadratic
or higher-order trends of the profiles.

(3) The local detrended covariance in each segment
v is calculated by

f 2(n, v) = 1

n

n∑

i=1

[
Y (1)

(v−1)n+i − Ỹ (1)
(v−1)n+i

]

×
[
Y (2)

(v−1)n+i − Ỹ (2)
(v−1)n+i

]
, (1)
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for v = 1, . . . , Nn .
(4) Next average over all segments to obtain the

detrended covariance,

σ 2
X (1),X (2) (n) = 1

Nn

Nn∑

v=1

f 2(n, v). (2)

In anotherway, the detrended covariance function is the
covariance of the residuals obtained by the difference
between Y (1)

k and Ỹ (1)
k , Y (2)

k and Ỹ (2)
k , respectively [28,

29],

σ 2
X (1),X (2) (n) = 1

n · Nn

n·Nn∑

k=1

[
Y (1)
k − Ỹ (1)

k

] [
Y (2)
k − Ỹ (2)

k

]
.

(3)

Ỹ (1)
k and Ỹ (2)

k are related to n, and for a given n, N ≈
n · Nn if N → ∞ or n is a divisor of N .

Here, we define a temporary variable y(i) as y(i)
k =

Y (i)
k − Ỹ (i)

k , where i = 1, 2, and k = 1, . . . , n · Nn .
Hence, Eq. (3) becomes

σ 2
X (1),X (2) (n) = 1

n · Nn

n·Nn∑

k=1

y(1)
k y(2)

k . (4)

Based on the fact that Ỹ (i)
k is determined through the

least square estimation of Y (i)
k , the mean value of y(i)

would be 0. Therefore, on the right side of Eq. (4), we
derive the traditional covariance of y(1) and y(2). As a
consequence, the detrended covariance of the original
variables X (1) and X (2), represented by σ 2

X (1),X (2) (n), is

equal to the covariance of the temporary variables y(1)

and y(2).
If only one variable is considered, i.e., X (1) ≡

X (2), the detrended covariance σ 2
X (1),X (2) (n) retrieves

back to detrended variance σ 2
X (1),X (1) (n) of DFA [25],

where

σ 2
X (1),X (1) (n) = 1

n · Nn

n·Nn∑

k=1

[
Y (1)
k − Ỹ (1)

k

]2
. (5)

σ 2
X (1),X (1) (n) is always non-negative, whose square root

is detrended standard deviation.
The detrended covariance is capable of measuring

the cross-correlation between non-stationary variables,
while it suffers from the units of measurement that
makes people difficult to compare the strength of cross-
correlations among different variables. To quantify the

level of cross-correlation, a dimensionless measure,
detrended cross-correlation coefficient was proposed
[26], defined as the ratio between the detrended covari-
anceσ 2

X (1),X (2) (n) and theproduct of detrended standard
deviations σX (1),X (1) (n)σX (2),X (2) (n), i.e.

ρX (1),X (2) (n) =
σ 2
X (1),X (2) (n)

σX (1),X (1) (n)σX (2),X (2) (n)
. (6)

ρ ranges between [−1, 1]. ρ around 0 means there is
no cross-correlation, which splits the level of cross-
correlation into divergent directions. ρ = 1 and ρ =
−1 both represent deterministic cross-correlations, 1
for the positive cross-correlation while −1 for the
negative cross-correlation. For variables that are con-
taminated by external trends, the detrended cross-
correlation coefficient is able to measure the intrinsic
cross-correlation.

2.2 NSPCA

In this section,we introduceourNSPCAmethod.When
the underlying time series present non-stationarity, typ-
ically when the series are contaminated by external
trends, the strength of cross-correlations among vari-
ables is often overestimated or underestimated, and
therefore, the traditional PCA method fails to rely
on reliable cross-correlations to guide for the linear
transformation of original variables. It is caused by
the drawback of the linear cross-correlation analy-
sis that is only applicable to stationary variables,
which could give spurious interactions among non-
stationary variables. The existence of external trends
makes the PCA method often yields few compo-
nents assigning similar loadings to all variables. The
main aim for the proposal of NSPCA is to ana-
lyze the multidimensional non-stationary time series
for dimension reduction and index reconstruction. As
noted before, the DCCA method detects the intrin-
sic cross-correlations of variables in the presence
of non-stationarity. Here in the NSPCA method, we
use the detrended covariance or the detrended cross-
correlation coefficient as the base to derive princi-
pal components, which would have the advantage
to analyze non-stationary time series over the PCA
method.

TheNSPCAmethod presents linear combinations of
p-dimensional variables {X (1), X (2), . . . , X (p)} (gen-
erally 2 < p < N ) , i.e.
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⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Z (1) = a11X (1) + a12X (2) + · · · + a1p X (p) = AT
1 X

Z (2) = a21X (1) + a22X (2) + · · · + a2p X (p) = AT
2 X

...

Z (p) = ap1X (1) + ap2X (2) + · · · + appX (p) = AT
pX,

that is defined on two assumptions:

(i) The first principal component is the linear com-
bination of original variables with the maximum
detrended variance σ 2

Z (1),Z (1) in the case of non-
stationarity.

(ii) The kth principal component is to maximize the
detrended variance σ 2

Z (k),Z (k) under the constraints

of AT
k Ak = 1 and AT

k Ai = 0 (i < k).

In the NSPCA, wemaximize σ 2
Z (1),Z (1) = σ 2

AT
1 X,AT

1 X

under the constraint AT
1 A1 = 1 in order to obtain

unique A1. According to the Lagrange multipliers, to
maximize σ 2

AT
1 X,AT

1 X
, the Lagrange function is defined

as:

ψ1 = σ 2
AT
1 X,AT

1 X
− λ

(
AT
1 A1 − 1

)
. (7)

The optimal solution is solved by ∂ψ1/∂A1 =
∂σ 2

AT
1 X,AT

1 X
/∂A1 − 2λA1 = 0.

To solve Eq. (7), we retrospect the procedures of
DCCA. For two non-stationary variables X (i) and
X ( j) with equal length N , their profiles are Y (i)

k =
∑k

l=1 X
(i)
l and Y ( j)

k = ∑k
l=1 X

( j)
l , respectively. It is

straightforward to obtain:

Y (i)
k + Y ( j)

k =
k∑

l=1

X (i)
l +

k∑

l=1

X ( j)
l =

k∑

l=1

[
X (i)
l + X ( j)

l

]
.

(8)

Here, we define Y (i)
k + Y ( j)

k � Y (i)+( j)
k . For Y (i) and

Y ( j), we use the polynomial functions of order m (m
may be 1, 2, or higher integer) to fit them, and estimate
Ỹ (i) and Ỹ ( j) respectively. We also use the polynomial
functions of order m to fit Y (i)+( j). It can be proved
that (see the “Appendix”):

(Y (i) − Ỹ (i)) + (Y ( j) − Ỹ ( j)) = (Y (i)+( j) − Ỹ (i)+( j)).

(9)

Furthermore, if we multiply any original variable
X (i) by a real number a, the profile would be aY (i)

and its fitting value would be aỸ (i). Hence, we define
a transformation F (X (i)) from X (i) to Y (i) − Ỹ (i),
including (i) calculating the profiles and (ii) eliminat-
ing the local trends as specified in the DCCA. It can be
derived that:

X (i) + X ( j) F−→ (Y (i) − Ỹ (i)) + (Y ( j) − Ỹ ( j)),

aX (i) F−→ a(Y (i) − Ỹ (i)).
(10)

Based on Eq. (10), F is a linear transformation that
satisfies the additivity and homogeneity.

Except the polynomial functions, several candidates
to eliminate trending effects in non-stationary time
series include the moving average method [30,31], the
Fourier filtering technique [32,33] and the empirical
mode decomposition (EMD) [34,35], etc. The moving
average method has almost the same effects with the
polynomial functions, since Eq. (9) also holds, and the
moving average method has been found to share very
similar conclusions with the polynomial functions in
most cases [31]. Other methods, like the Fourier fil-
tering technique and the EMD method, although they
can be used to eliminate periodic trends and monotonic
trends [33,35], are difficult for people to get an analyti-
cal solution, as we cannot make sure thatF in Eq. (10)
is a linear transformation in these cases.

For variables with non-stationarity, the cross-
correlations are regularly estimated by calculating the
detrended covariances between each pair of variables.
All these detrended covariances constitute a detrended
cross-correlation matrix [29]:

ΣX =

⎡

⎢
⎢
⎢
⎣

σX (1),X (1) , σX (1),X (2) , . . . , σX (1),X (p)

σX (2),X (1) , σX (2),X (2) , . . . , σX (2),X (p)

...

σX (p),X (1) , σX (p),X (2) , . . . , σX (p),X (p)

⎤

⎥
⎥
⎥
⎦

, (11)

where σX (i),X ( j) denotes the detrended covariance
between Xi and X j for 1 ≤ i, j ≤ p. According to
the definition of the detrended covariance, ΣX is a real
symmetric matrix that could give rise to non-negative
eigenvalues λ1 ≥ λ2 ≥ λp ≥ 0.

Moreover, we already defined the temporary vari-
able in Sect. 2.1

y(i)
k = Y (i)

k − Ỹ (i)
k = F (X (i)

k ), (12)

and inferred that the detrended covariance of the orig-
inal variables is equal to the covariance of temporary
variables. Therefore, the detrended covariance matrix
ΣX of the original variables is equal to the covariance
matrix S of the temporary variables y, i.e.

ΣX = Sy = yT y/(n · Nn) ≈ yT y/N , (13)

where y represents the set of all temporal variables y(i)

(1 ≤ i ≤ p), that corresponds to X which is the set of
all original variables X (i) (1 ≤ i ≤ p).
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According toEqs. (10) and (12),we obtainF (ATX)

= AT y. Further considering Eq. (13), we derive:

ΣATX = SAT y = (AT y)T (AT y))/N = ATΣXA. (14)

In the NSPCA method, the detrended variance and
the detrended covariance of the linear combinations
are σ 2

Z (i),Z (i) = AT
i ΣXAi and σ 2

Z (i),Z ( j) = AT
i ΣXA j

for 1 ≤ i, j ≤ p. As we mentioned, the first principal
component is the linear combination with the maxi-
mum detrended variance, i.e. maximizes σ 2

Z (1),Z (1) =
AT
1 ΣXA1 under the constraint AT

1 A1 = 1. According
to the Lagrange multipliers, the Lagrange function is
defined as:

ψ1 = AT
1 ΣXA1 − λ

(
AT
1 A1 − 1

)
. (15)

By ∂ψ1/∂A1 = 2ΣXA1−2λA1 = 0, we can obtain
(ΣX − λI)A1 = 0 and AT

1 ΣXA1 = λ. Therefore, λ is
one of the eigenvalues of ΣX. To maximum AT

1 ΣXA1,
we set λ = λ1. The eigenvector ξ1 corresponding to λ1
through unitization (as AT

1 A = 1) is therefore A1.
The kth principal component is to maximize

AT
k ΣXAk under the constraints of AT

k Ak = 1 and
AT
k Ai = 0 (i < k). Similarly, the Lagrange function is

defined as:

ψk = ATk ΣXAk − λ
(
ATk Ak − 1

)
− 2

k−1∑

i=1

γi

(
ATi Ai

)
.

(16)

By ∂ψk/∂Ak = 2ΣXAk − 2λAk − 2
∑k−1

i=1 γi Ai =
0, we further obtain (ΣX−λI)Ak = 0 and AT

k ΣXAk =
λ. So λ is still one of the eigenvalues of ΣX. As k − 1
eigenvalues havebeenused,λ = λk . The eigenvector ξk
corresponding to λk through unitization would be Ak .
Therefore, we derive the coefficients of all components
Ak (k = 1, 2, . . . , p) for the NSPCA method, which
correspond to the eigenvalues of detrended cross-
correlation matrix. The number of principal compo-
nentswemainly take into consideration is theminimum
integer k that satisfies

∑k
i=1 λi/

∑d
i=1 λi � 85%,

where d is the dimension of the variables, and λ is the
eigenvalue of the detrended cross-correlation matrix.

Here, we note that different variables in the data
may have different units of measurement, so it is nec-
essary to normalize data when performing PCA as well
as NSPCA. The PCA method calculates a new pro-
jection of the data set, and the new axis is based on
the standard deviation of the variables. A variable with
a high standard deviation will have a higher weight

for the calculation of axis than a variable with a low
standard deviation. After being normalized, all vari-
ables have the same standard deviation; thus, have the
same weight and the PCA calculates relevant axis. For
non-stationary time series, the mean value and vari-
ance of each variable are likely to change over time,
and therefore, it makes no sense to normalize the data
simply by subtracting the mean value and dividing the
standard deviation. Hence, we use the detrended cross-
correlation coefficient instead of the detrended covari-
ance in such a case. Of course, if different variables
have identical units of measurement, the detrended
covariance is still an appropriate candidate for the
NSPCA.

3 Empirical analysis

To test the performance of the NSPCAmethod, we first
consider the autoregressive [AR(1)] model: Y (t) =
φY (t − 1) + μ + ε(t), where Y (t) is the data to be
determined at time point t , μ is a constant describing
the drift of series, and ε(t) represents the random dis-
turbance that obeys ε(t) ∼ N (0, s2) with variance s2.
When μ = 0 as well as |φ| < 1, the series are station-
ary. For μ �= 0, the mean value of Y drifts with time.
For |φ| � 1, the variance ofY driftswith time.Here,we
set φ = 1, μ = 1 and s = 8 so that Y corresponds to a
random walk with drift, where the mean value and the
variance both change along with time, and therefore,
the data present non-stationary.

We apply the AR(1) model to generate 10 variables
containing 1000 data points of each variable, respec-
tively (see Fig. 1a), and also show the random walk
without drift, i.e. μ = 0. First we use the traditional
PCA method to analyze these data. For the random
walk with drift (φ = 1, μ = 1), we obtain only
one principal component which explains 92.88% of
the variance, since the maximum eigenvalue is much
larger than other eigenvalues.Althoughwegenerate the
data separately, the drift termμ leads to spurious cross-
correlations that substantially decreases the number of
principal components. The eigenvector of the first prin-
cipal component assigns similar loadings to all vari-
ables (see Fig. 1b). It is the effects of external trends
caused by the drift term μ. Unfortunately, the infor-
mation of intrinsic fluctuations and cross-correlations
is covered in such a case. It was also observed in Ref.
[23] that the lack of sparsity made the PCA yielded few
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Fig. 1 aWe use the AR(1) model to generate 10 variables with
Y (0) ≡ 0, where φ = 1, μ = 1, ε(t) ∼ N (0, 82). Each vari-
able contains 1000 data points. b The eigenvalues λi of the linear
cross-correlation matrix for the data points generated by Y (t) =
φY (t − 1) + μ + ε(t), where φ = 1,μ = 1, ε(t) ∼ N (0, 82).
There is a dominating eigenvalue that is much larger than other
eigenvalues. In the lower panel, we show the eigenvector cor-

responding to the largest eigenvalue. c The 4 principal compo-
nents given by the PCA method for the data points generated by
Y (t) = φY (t − 1) + ε(t), where φ = 1, ε(t) ∼ N (0, 82). d The
8 principal components given by the NSPCAmethod for the data
points generated by Y (t) = φY (t − 1)+μ+ ε(t), where φ = 1,
μ = 1, ε(t) ∼ N (0, 82)

components assigning similar loadings to all variables
and resulted to difficulty in interpretation of results.

We also apply the traditional PCA to the random
walk without drift , i.e. μ = 0, in which case the obvi-
ous trends disappear. The number of principal compo-
nents increases from 1 (with drift) to 4 (without drift),
as indicated in Fig. 1c. Although the mean values of
these data stay the same with the original mean value
when μ = 0, the increase in variance along with time
t (being proportional to t for the random walk) also

brings spurious cross-correlations among these vari-
ables that decreases the number of principal compo-
nents compared with the number of original variables.

Since the changes of both mean value and vari-
ance for each variable give rise to the non-stationarity
of the data, we resort to the NSPCA method. In
the NSPCA, we consider the random walk with drift
(φ = 1, μ = 1). The drift term can be directly fil-
tered out in the procedure of eliminating the trend
of profiles in the DCCA. Furthermore, the variance
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will also be regulated along with time t in this pro-
cedure, to make the variance not be proportional to
t . As expected, the number of principal components
increases to 8, that is very close to the number of the
original variables. The eigenvalues of all components
are 1.5948, 1.3116, 1.2558, 1.1395, 0.9810, 0.8984,
0.8455, 0.7769, 0.6345, 0.5619, respectively, so we
choose the top 8 principal components into considera-
tion. The eigenvectors corresponding to the eigenvalues
of principal components are shown in columns of the
matrix below:

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0.45 0.06 0.22 0.33 0.24 −0.13 0.50 0.20
0.15 0.03 −0.64 0.12 0.28 0.15 −0.05 0.60
0.19 −0.02 0.01 −0.39 0.81 −0.12 −0.14 −0.34

−0.14 0.29 −0.53 −0.05 −0.09 −0.15 0.62 −0.44
−0.25 0.29 0.32 0.31 0.31 0.60 0.24 −0.03
0.03 −0.63 0.14 −0.20 −0.01 −0.15 0.48 0.21
0.58 0.10 −0.20 −0.06 −0.20 0.27 −0.11 −0.14

−0.08 0.59 0.19 −0.12 0.01 −0.56 −0.03 0.35
−0.19 0.15 0.02 −0.71 −0.05 0.38 0.21 0.31
0.52 0.22 0.26 −0.24 −0.25 0.11 0.08 −0.05

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Moreover, we try 100 times and always find num-
ber 8 of principal components, which indicates the
robustness of the NSPCAmethod. The intension of this
empirical analysis on the AR model is to demonstrate
that when there is no intrinsic cross-correlation among
variables, there should not be only one or very few prin-
cipal components that are representative enough for the
original variables, since the original variables are not
related.

In brief, for the random walk with drift, the mean
value as well as the variance of each variable changes
with time. These two factors both lead to the non-
stationarity of the data, which brings spurious cross-
correlations among variables. In such a case, the PCA
presentsmisleading principal components.While in the
NSPCA, the drift term corresponding to themean value
of each variable is filtered out, also the variance is regu-
lated, and therefore, we could obtain the reliable results
based on intrinsic cross-correlations.

Next, suppose we have n+ 1 independent and iden-
tically distributed (i.i.d) Gaussian variables X (i) (i =
1, 2, . . . , n + 1), which are not related to each other.
Each variable contains N = 10,000 data points. Then
we construct another n variables Y (i) using the com-
binations of these n + 1 independent realizations, thus

making the variables correlated: Y (i)
j = X (i)

j + X (n+1)
j

(i = 1, 2, . . . , n, and j = 1, 2, . . . , N ). We consider
the cases of Y (i) with diverse types of trends, including
no trend, linear trends T ( j) = aj/N , quadratic trends
T ( j) = b( j/N )2, cubic trends T ( j) = c( j/N )3,
and even periodic trends T ( j) = dsin(20π j/N )

(see the discussions in [36,37], one can remove the
non-stationary effects by eliminating local trends with
appropriate polynomial order), where j = 1, 2, ..N .
As a representative image, Y (1) and Y (2) are shown

with quadratic trends (b = 6) in Fig. 2a. Due to adding
the quadratic trends, the linear cross-correlation coef-
ficient between Y (1) and Y (2) increases from 0.5069 to
0.8090. The increment of the linear cross-correlation
coefficient is determined by the competition between
the magnitudes of Y (1), Y (2) and the magnitudes of
trends. Compared with the AR model that the trends
make the cross-correlations between independent vari-
ables change from zero to non-zero values, the trends
in this case also make the strength of cross-correlations
between correlated variables become much stronger.

We apply the traditional PCA method to the corre-
lated variables Y (i) (i = 1, 2, . . . , 10) with no trend.
The eigenvalues corresponding to all components are
listed in Table 1. The number of principal compo-
nents is 7 (see Fig. 2b), which is smaller than 10 but
larger than 1. It relies on the fact that there exist cross-
correlations among underlying variables so the num-
ber of principal components is smaller than 10, and
there exist uncertainties in each variable that cannot be
determined by other variables so the number of princi-
pal components is larger than 1. When we artificially
add the linear trends (e.g., a = 6) to Y (i) and apply
the PCA to analyze the composite data, we obtain 3
principal components in Fig. 2c. The decrement on the
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Fig. 2 a Variables Y (1) and Y (2) with quadratic trends. b–
f The principal components of the correlated variables Y (i)

(i = 1, 2, . . . , 10) with no trend, linear trends, quadratic trends,

cubic trends, and periodic trends, respectively, by PCA. g–k
The principal components of the same data respectively by the
NSPCA method
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Table 1 The eigenvalues corresponding to each component for
the correlated variables Y (i) (i = 1, 2, . . . , 10) with no trend,
linear trends, quadratic trends, cubic trends, and periodic trends,
respectively by the PCA method

Components No Linear Quadratic Cubic Periodic

1 5.5017 8.2005 8.2662 8.1558 7.7542

2 0.5195 0.2080 0.2005 0.2132 0.2596

3 0.5176 0.2075 0.1999 0.2126 0.2585

4 0.5122 0.2046 0.1970 0.2095 0.2550

5 0.5034 0.2016 0.1943 0.2067 0.2524

6 0.4991 0.1993 0.1921 0.2044 0.2494

7 0.4971 0.1986 0.1913 0.2034 0.2475

8 0.4848 0.1946 0.1876 0.1996 0.2424

9 0.4836 0.1929 0.1859 0.1976 0.2409

10 0.4810 0.1923 0.1854 0.1972 0.2400

number of principal components here are determined
by the competition between the original variables and
the trends. If we increase the value of a that enlarges the
magnitude of trends, the number of principal compo-
nentswill continue to reduce until 1. For other cases,we
get 3 principal components for quadratic trend (b = 6,
see Fig. 2d), 3 principal components for cubic trends
(c = 6, see Fig. 2e), and 4 principal components for
periodic trends (d = 6, see Fig. 2f). Also if we increase
the values of b, c and d, the number of principal com-
ponents in each case will persistently decrease until 1.
The presence of trends spuriously increase the strength
of cross-correlations among correlated variables, make
the number of principal components decrease, and give
rise to unreliable results by the PCA method.

Considering the disadvantage of PCA, we further
apply the NSPCA method to analyze the same data.
For the correlated variablesY (i) (i = 1, 2, . . . , 10)with
no trend, we still get 7 principal components (see Fig.
2g), the same compared with the PCA method. More-
over, when we add diverse types of trends, the num-
ber of principal components is always 7 as expected
(see Fig. 2h–k), which is apparently different from
the number that from PCA. The eigenvalues corre-
sponding to each component for correlated variables
Y (i) (i = 1, 2, . . . , 10) with no trend, linear trends,
quadratic trends, cubic trends, and periodic trends by
the NSPCA method are shown in Table 2. It indicates
that the NSPCA method can filter out the effects of
trends on the cross-correlations among variables and
present reliable principal components even in the pres-
ence of diverse types of trends.

Table 2 The eigenvalues corresponding to each component for
the correlated variables Y (i) (i = 1, 2, . . . , 10) with no trend,
linear trends, quadratic trends, cubic trends, and periodic trends,
respectively by the NSPCA method

Components No Linear Quadratic Cubic Periodic

1 5.5906 5.6460 5.5301 5.5747 5.4509

2 0.5577 0.5568 0.5734 0.5563 0.5345

3 0.5475 0.5263 0.5359 0.5258 0.5308

4 0.5233 0.5231 0.5337 0.5189 0.5218

5 0.5130 0.4947 0.5013 0.4975 0.5111

6 0.4921 0.4919 0.4815 0.4846 0.5014

7 0.4709 0.4579 0.4766 0.4792 0.4988

8 0.4614 0.4484 0.4671 0.4666 0.4886

9 0.4266 0.4349 0.4569 0.4556 0.4837

10 0.4167 0.4202 0.4435 0.4408 0.4785

Although the existence of trends mostly increases
the strength of cross-correlations between variables as
indicated above, there also exist very few cases that
the trends decrease the strength of cross-correlations.
Here, we introduce a simple example to demonstrate it.
Suppose that two correlated variables Y (1) and Y (2) are
added by linear trends, respectively. The trend added
to Y (1) persistently increases, while the trend added to
Y (2) increases at the first half but decreases at the sec-
ond half. Briefly, these two trends are not correlated.
If the trends dominate the new composite variables,
the strength of cross-correlation between them would
decrease instead. In such a case, the traditional PCA
spuriously raises the number of principal components
rather than the opposite, while the NSPCA method
could filter the influence of these trends, and resolves
appropriate principle components.

As our third example, we further apply the NSPCA
to real-world financial markets. The daily closing
prices of 18 Chinese sector indexes mixed by Shang-
hai and Shenzhen markets are investigated. The data
expand from January 6, 2009, to May 9, 2012, with
a total of 810 daily observations of each sector.
They cover almost all fields of industries in Chinese
stockmarkets, including the communication (H11049),
construction (H11042), extraction (H11031), finance
(H11046), food (H11032), forestry (H11030), informa-
tion (H11044),machinery (H11039),metals (H11038),
paper (H11035), petrochemistry (H11036), real estate
(H11047), service (H11048), synthesis (H11050), tex-
tile (H11033), utility (H11041), wholesale and retail
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Fig. 3 a The closing prices of 18 Chinese sector indexes rang-
ing from January 6, 2009 to May 9, 2012, with a total of 810
daily observations of each sector. b The linear cross-correlation
matrix of 18 sectors. c The detrended cross-correlation matrix
of 18 sectors. d The eigenvalues of the linear cross-correlation
matrix for the PCA and the detrended cross-correlation matrix

for the NSPCA, respectively. e The eigenvectors in columns cor-
responding to all eigenvalues by the NSPCA. f Several principal
components given by the NSPCA for the closing prices of 18
Chinese sector indexes. Here we mainly focus on the first two
principal components

(H11045), andwood (H11034) industries ( For detailed
information, please refer to [38]).

In this period, most sectors present very similar pat-
terns (see Fig. 3a) driven by many common influence
factors including the economic, political, technical, and
psychosocial factors, etc. Also each sector presents its
own behavior. It is clear that (i) the mean values of
these closing prices change with time, and (ii) the vari-
ances of the closing prices also change with time. The
strong non-stationary properties of these data make the
PCA fails to give genuine cross-correlations among
sectors. For comparison, the linear cross-correlation
matrix for the PCA and the detrended cross-correlation
matrix for the NSPCA are given, respectively, in Fig.
3b, c. Most sectors still have strong cross-correlations
with other sectors even with the removal of exter-
nal trends since the detrended cross-correlation coef-
ficients in detrended cross-correlation matrix are still

large, except the finance sector and the real estate
sector. This performance is consistent with our pre-
vious analysis in reference [38], while the linear cross-
correlation matrix shows an obscure image at this
point.

Due to the existence of non-stationarity, we apply
the NSPCA method to these closing prices and obtain
all the eigenvalues corresponding to each component
in Fig. 3d, whose eigenvectors are shown in Fig. 3e.
We obtain 2 principal components, the correspond-
ing eigenvalues of which are 14.2783 and 1.4136, and
hence the first principal component generally hasmuch
larger magnitude than the second one, as shown in
Fig. 3f. It indicates that intrinsic cross-correlations still
exist among these variables even though we remove
the trends and regulate the variances. Moreover, the
first principal component shows very similar trace com-
pared to the original variables, demonstrating that the
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first principal component is representative enough in
the NSPCA.

We change the scale n and also change the order of
polynomial functions in the procedure of eliminating
local trends. The eigenvalues and the eigenvectors of
the detrended cross-correlation matrix have no signif-
icant difference. It indicates that the NSPCA method
is robust enough for non-stationary variables analysis,
irrelevant of the scale and the order of polynomial func-
tions.

4 Conclusion

In this paper, we introduce the NSPCA method for
non-stationary time series analysis in high-dimensional
space based on the DCCA and the detrended cross-
correlation coefficient. We theoretically derive that the
detrended variances of the principal components cor-
respond to the eigenvalues of the detrended cross-
correlation matrix, and the eigenvector corresponding
to each eigenvalue becomes the coefficients of linear
combinations. We apply the NSPCAmethod to the AR
model, the correlated Gaussian distributed variables, as
well as the real-world financial markets. The traditional
PCA method fails to detect intrinsic cross-correlations
and presents misleading principal components due to
the non-stationarity caused by the changes of mean
value and variance in the presence of trends. Con-
versely, the NSPCA method is capable to filter out the
change of mean value and regulate the change of vari-
ance to detect the intrinsic cross-correlations among
variables and therefore provides reliable principal com-
ponents. The robustness of theNSPCAmethod for non-
stationary time series indicates its wide applications to
more real-world data in further studies.
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Appendix

To certify Eq. (9), it is necessary to prove Ỹ ( j)+Ỹ ( j) =
Ỹ (i)+( j). Here, we introduce a brief proof. Suppose that
we use the polynomial functions Ỹ = a1 + a2x +
a3x2 + · · · + mxm to eliminate local trends, where
a1, a2, . . . , am are the coefficients to be determined

through the least square estimation, and x represents
the independent variable generally taking 1, 2, . . . ,m.
To solve the equation Ax = Y , we resort to the equa-
tion AT Ax = AT Y , and obtain Ỹ = A(AT A)−1AT Y ,
where

A =

⎡

⎢
⎢
⎢
⎣

1 x1 x21 · · · xm1
1 x2 x22 · · · xm2
...

...
...

...
...

1 xn x2n · · · xmn

⎤

⎥
⎥
⎥
⎦

,

and x = [a1, a2, . . . , am]T . n represents the length
of scale in DCCA. Therefore, we derive Ỹ (i) =
A(AT A)−1AT Y (i) aswell as Ỹ ( j)=A(AT A)−1AT Y ( j).
Also

Ỹ (i) + Ỹ ( j) = A(AT A)−1AT Y (i) + A(AT A)−1AT Y ( j)

= A(AT A)−1AT (Y (i) + Y ( j))

= A(AT A)−1AT Y (i)+( j) = Ỹ (i)+( j).
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