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Abstract In this article, we investigate the compensa-
tion problemof the effect of the interior time-dependent
delay on the stabilization of a rotating disk-beam sys-
tem. The physical system consists of a flexible beam
free at one end, and attached to the center of the rotating
disk whose angular velocity is time-varying. Assum-
ing that a time-dependent interior delay is present in
the system, we introduce a dynamic boundary force
control at the free end of the beam and a torque con-
trol on the disk. Then, we show the destabilizing effect
of the delay is compensated. Specifically, it is shown
that the presence of such proposed controls assures the
exponential stability of the system, provided that some
reasonable conditions on the angular velocity of the
disk and delay are fulfilled. Numerical examples in the
case of constant delay are also provided to highlight
the stability result.

Keywords Rotating disk-beam · Interior control ·
Time-dependent delay · Dissipative boundary force
control · Torque control · Stability

List of symbols

� Length of the beam
ρ Mass per unit length of the beam
EI Flexural rigidity of the beam
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Id Disk’s moment of inertia
y(x, t) Beam’s displacement at time t with respect to

the spatial variable x
ω(t) Angular velocity of the disk at time t
U I(t) Interior control
UF(t) Boundary force control
UT(t) Torque control
α ≥ 0 Feedback gain of the interior control
β > 0 Force control feedback gain
γ > 0 Torque control feedback gain

1 Introduction

The system depicted in Fig. 1 consists of a flexible
robot beam/arm (B), clamped at one end to the center
of a disk (D) and free at the other end. We assume that
the center of mass of the disk (D) is fixed in an inertial
frame and the disk (D) rotates in that frame with a
time-varying angular velocity. Hence, themotion of the
whole structure is governed by the following equations
(see [1] for more details)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρytt + EIyxxxx = ρω2(t)y + αUI(t), x ∈ (0, �), t > 0,
y(0, t) = yx (0, t) = yxx (�, t) = 0, t > 0,
EIyxxx (�, t) = βUF(t), t > 0,

ω̇(t) =
−γUT(t) − 2 ρ ω(t)

∫ �

0
yytdx

Id + ρ

∫ �

0
y2dx

, t > 0,

y(x, 0) = y0(x), yt (x, 0) = y1(x), x ∈ (0, �),
ω(0) = ω0 ∈ R,

(1)
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Fig. 1 The disk-beam system

inwhich ω̇(t) stands for the time derivative of the angu-
lar velocity ω. For sake of clarity, let us recall that ytt
is the acceleration, yt is the velocity, yx is the rotation,
yxx is the bending moment and yxxx is the shear force.

After the pioneerworkofBaillieul&Levi [1], a burst
of research activity occurred andmany papers appeared
in the context of stabilization of the system (1) (see,
e.g., [2,5,6,11,24–26,33] and the references therein).
The most recent works are those related to delay sys-
tems, in which the author showed that the effect of the
delay occurring in the boundary force control can be
compensated through the action of a boundary force
control [7]. In fact, motivated by the presence of time
delays in applications for several reasons and from dif-
ferent sources, the author recently considered the sys-
tem (1) without damping (α = 0) and established an
exponential stabilization result despite the presence of
a boundary delay term in the force control Uf(t) [7].
More precisely, the following delay feedback law has
been proposed in [7]
{UT(t) = ω(t) − �, � ∈ R

Uf(t) = yt (�, t) + σ
β
yt (�, t − τ), σ ∈ R,

and the closed-loop system, under the presence of the
delay τ > 0 but without damping (α = 0), is shown to
be exponentially stable, provided that |σ | < β and �

is small enough. It turned out that this outcome can be
extended even in the more complicated case of time-
dependent delay τ(t) [8].

In the present paper, we suppose that a positive time-
dependent delay τ(t) > 0 occurs in the interior control
UI(t) and the natural question arises: Is it possible to
eliminate the effect of such a delay via the action of a

boundary control Uf(t) so that the system (1) remains
exponentially stable? As the reader may know, time-
dependent time delays arise in a natural way in most
controlled systems since the controller needs a certain
time to monitor the state of the system, and based on
its observations, it makes any necessary adjustments to
the system.Obviously, such an adjustment can never be
conducted neither instantaneously nor uniformly, and a
fortiori a positive time-dependent delay occurs between
any observation and the controller action.

The main contribution of this work is to provide an
affirmative answer to the above question and show that
the feedback law

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

UI(t) = yt (x, t − τ(t)),

UF(t) = yt (�, t) + 1

β
e�
1 w(t),

ẇ(t) = Mw(t) + e2yt (�, t),
UT(t) = ω(t) − �, � ∈ R,

(2)

can exponentially stabilize the system (1), provided that
α is small enough. Here, w ∈ R

n is the actuator vector
state of the dynamic boundary force control UF(t), M
is an n × n constant matrix and e1, e2 ∈ R

n are con-
stant vectors. This outcome extends the result obtained
in [9], where the delay has been assumed to be con-
stant. The proof of our result is based on the utilization
of an appropriate Lyapunov function (see [14–18,31]
for variants of the Euler-Bernoulli equation). It is also
worth mentioning that the incorporation of dynamical
property in the control UF(t) (see (2)) provides a wide
class of exponentially stabilizing controllers as there
are extra degrees of freedom in designing controllers
[27].

The rest of the paper is organized as follows: In
Sect. 2, we set up the problem as a differential equation
in an appropriate Hilbert space. Section 3 is devoted
to the proof of stability of solutions of an uncoupled
linear system. In Sect. 4, the main result of this work,
namely the exponential stability of the system, is stated
and proved. This finding is illustrated through numeri-
cal examples in Sect. 5. Finally, Sect. 6 concludes the
paper with a discussion.

2 Assumptions and problem setup

First of all, one may assume, for sake of simplicity,
that EI = ρ = � = 1. Indeed, it suffices to change
y(x, t) to y(x�,

√
(�4/EI)ρt). Next, we shall assume
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throughout the remainder of this paper that the follow-
ing conditions are fulfilled (see [28,29] for heat and
wave equations):

There exist constants d < 1, τ0 > 0, and τ̄ > 0
such that

τ ∈ W 2,∞[0, T ],∀T > 0; (3)

0 < τ0 ≤ τ(t) ≤ τ̄ , ∀t > 0; (4)

τ̇ (t) ≤ d < 1. (5)

Furthermore, we suppose, as in [27], that the actuator
w satisfies the followings:

H.I: The eigenvalues of the matrix M have neg-
ative real parts, and the triplet (M, e2, e1) is both
observable and controllable.
H.II: The actuator transfer function

Y (s) = β + e�
1 (s I − M)−1e2

is strictly positive in the sense that there exists a
constant β̂ > 0 such that β > β̂ and �{Y (ir)} >

β̂, for any r ∈ R.

Remark 1 As mentioned in [27], It follows from the
hypotheses H.I-H.II and Kalman-Yakubovich-Popov
Lemma [4] that given any n × n symmetric positive-
definite matrix N , there exists an n × n symmetric
positive-definite matrix Q, a constant vector p ∈ R

n

and ζ > 0 sufficiently small such that:

M�Q + QM = −pp� − ζN , (6)

Qe2 − e1
2

=
√

β − β̂ p. (7)

Now, we invoke the standard change in variables [12]

u(x, η, t) = yt (x, t − ητ(t)), x, η ∈ Ω = (0, 1),

so that the closed-loop system can be brought to the
following form

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ytt + yxxxx = ω2(t)y + αu(x, 1, t),
y(0, t) = yx (0, t) = yxx (1, t) = 0,
yxxx (1, t) = βyt (1, t) + e�

1 w(t),
ẇ(t) = Mw(t) + e2yt (1, t),
τ (t)ut (x, η, t) + (1 − τ̇ (t)η)uη(x, η, t) = 0,

ω̇(t) =
−γ (ω(t) − �) − 2ω(t)

∫ 1

0
yytdx

Id +
∫ 1

0
y2dx

,

y(x, 0) = y0(x), yt (x, 0) = y1(x),
u(x, η, 0) = f (x,−ητ(0)),
w(0) = w0 ∈ R

n, ω(0) = ω0 ∈ R.

(8)

Let us recall (see [28,29]) that if t < τ(t), then yt (x, t−
τ(t)) is in the past, and hence, an initial value in the
past has to be provided. To do so, we use (5) as well as
the mean-value theorem to get t − τ(t) > −τ(0). This
justifies the initial data yt (x, t−τ(0)) = f (x, t−τ(0))
with (x, t) ∈ (0, 1) × (0, τ (0)) and so u(x, η, 0) =
f (x,−ητ(0)).
Subsequently, given a real-valued function

f : Ω = (0, 1) → R,

let us recall that

L2(Ω) =
{

f is measurable and
∫ 1

0
| f (x)|2 dx < ∞

}

is a Hilbert space endowed with its usual norm

‖ f ‖L2(Ω) =
(∫ 1

0
| f (x)|2 dx

)1/2

,

whereas the Sobolev space

Hn(Ω) =
{
f : Ω → R; f (n) ∈ L2(Ω), for n ∈ N

}

is equipped with the standard norm

‖ f ‖Hn(Ω) =
i=n∑

i=0

‖ f (i)‖L2(Ω).

With regard to our system (8), we adopt the follow-
ing notations: Let

Ω̂ = (0, 1) × (0, 1),

and

Hm
c =

{
g ∈ Hm(Ω); g(0) = gx (0) = 0

}
, m = 2, 3, . . .

Moreover, we assume that

|� | < 3. (9)

Furthermore, consider the state space X defined by

X = H2
c × L2(Ω) × L2(Ω̂) × R

n × R = Y × R

equipped with the following real inner product

〈(y, z, u, w, ω), (ỹ, z̃, ũ, w̃, ω̃)〉X
= 〈(y, z, u, w), (ỹ, z̃, ũ, w̃)〉Y + ωω̃

=
∫ 1

0

(
yxx ỹxx − � 2y ỹ + zz̃

)
dx+

∫∫

Ω̂

uũ dxdη

+ 2w̃�Qw + ωω̃.

(10)
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It is worth mentioning that the condition (9) is imposed
in order to assure that the state space X with the inner
product (10) is aHilbert space (see [7] formore details).

Thereafter, the system (8) can be written in X as
follows

⎧
⎨

⎩

�t (t) =
[(A(t) 0

0 0

)

+ F
]

�(t),

�(0) = �0 = (y0, y1, f (·,−ητ(0)), w0, ω0),

(11)

where z = yt , �(t) = (y, z, u, w, ω) and A(t) is a
time-dependent linear operator in Y defined by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

D(A(t)) =
{
(y, z, u, w) ∈ H4

c × H2
c × L2(Ω̂) × R

n;
ux ∈ L2(Ω̂), z = u(·, 0), yxx (1) = 0,

yxxx (1) = βz(1) + e�
1 w

}

A(t)(y, z, u, w) =
(
z,−yxxxx + � 2y + αu(·, 1),

ητ̇ (t) − 1

τ(t)
uη, Mw + e2u(1, 0)

)
,

(12)

while F is a nonlinear operator given by

F(y, z, u, w, ω) =
(
0, (ω2 − � 2)y, 0, 0,

−γ (ω − �) − 2ω < y, z >L2(Ω)

Id + ‖y‖2
L2(Ω)

)
,

(13)

for any (y, z, u, w, ω) ∈ X .
We end this section by stating the following remark.

Remark 2 We point out that the feedback gain α of the
delayed term is assumed to be nonnegative for sake of
simplicity. Notwithstanding, one could pick α ∈ R and
replace α by |α| from the very beginning of the article
(see [7] for a similar situation).

3 Uncoupled linear system

This section is intended to deal with an uncoupled lin-
ear system associated with the global nonlinear system
(11), namely, let us consider

{
ϕt (t) = A(t)ϕ(t),
ϕ(0) = ϕ0,

(14)

where ϕ = (y, z, u, w), ϕ0 = (y0, y1, f (·,−ητ(0)),
w0) and A(t) is the time-dependent linear operator
defined in (12).

As pointed out in [28,29], a general theory of exis-
tence and uniqueness of solutions for equations of
type (14) is already available in the literature (see, for
instance, [10,19–22,30]). One simple way, among oth-
ers, to prove existence and uniqueness results is to use
the following result:

Theorem 1 Let A(t) be a time-dependent operator on
a Hilbert space H such that:

(i) For all t ∈ [0, T ], the operator A(t) generates
a strongly continuous semigroup on H and the
family {A(t) : t ∈ [0, T ]} is stable with stability
constants C and m independent of the time t.

(ii) D((A)(t)) = D(A(0)), for t ≥ 0.

(iii) The operator
d

dt
A(t) belongs to

L∞([0, T ], B(D(A(0)), H)),

which is the space of equivalent classes of
essentially bounded, strongly measurable func-
tions from [0, T ] into the set B(D(A(0)), H) of
bounded operators from D(A(0)) into H.

Then, the Cauchy problem
{

vt (t) = A(t)v(t),
v(0) = v0,

has a unique mild solution v ∈ C([0, T ], H), for each
initial data v0 in H. Moreover, for all t ∈ [0, T ], there
exists a positive constant c(t) such that

‖v(t)‖H ≤ c(t)‖U‖H .

In turn, if the initial data v0 belong to D(A(t)) =
D(A(0)), then the above Cauchy problem has a
unique strong solution v ∈ C([0, T ],D(A(0)) ∩
C1([0, T ], H).

Whereupon, our immediate task is to check that the
assumptions of Theorem 1 are verified by our opera-
tor A(t). This will be the objective of the following
subsection.

3.1 Well-posedness of the problem (14)

Let us begin by claiming that it is obvious that

D(A(t)) = D(A(0)), t ≥ 0. (15)
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Next, one can readily check that the operator A(t) is
closed and densely defined in Y (one has merely to
argue as in [13,28,29]). Furthermore, we define on

Y = H2
c × L2(Ω) × L2(Ω̂) × R

n

the time-dependent Kato’s inner product

〈(y, z, u, w), (ỹ, z̃, ũ, w̃)〉t
=

∫ 1

0

(
yxx ỹxx − � 2y ỹ + zz̃

)
dx

+K τ(t)
∫∫

Ω̂

uũ dx dη + 2w̃�Qw, (16)

where K is a positive constant. Clearly, thanks to the
assumptions (4) and (9), this new inner product is equiv-
alent to that of (10). Thereafter, using exactly the same
arguments as in [28,29], it follows from (3)–(4) that for
any ϕ = (y, z, u, w) ∈ Y , we have

‖ϕ‖t
‖ϕ‖s ≤ exp

(
C

2τ0
|t − s|

)

, (17)

for any s, t ∈ [0, T ] and for some positive constant C .
In fact, it is easy to check that (16) yields

‖ϕ‖t − exp

(
C

τ0
|t − s|

)

‖ϕ‖s =
(

1 − exp

(
C

τ0
|t − s|

)) ∫ 1

0

(
y2t + y2xx − � 2y2

)
dx

+2

(

1 − exp

(
C

τ0
|t − s|

))

w�Qw

+K

(

τ(t) − τ(s) exp

(
C

τ0
|t − s|

))

×
∫∫

Ω̂

y2t (x, t − ητ(t)) dx dη,

for any s, t ∈ [0, T ]. Furthermore, we clearly have

1 − exp

(
C

τ0
|t − s|

)

< 0

whenever c is positive and s, t ∈ [0, T ]. On the other
hand, it follows from themean-value theorem that there
exists r ∈ (s, t) such that τ(t) − τ(s) = τ ′(r)(t − s).
This, togetherwith (3)–(4), implies the desired inequal-
ity (17).

Our aim now is to show that for each fixed t > 0,
the operator A(t) defined by (12) is dissipative mod-
ulo a translation. To this end, let ϕ = (y, z, u, w) ∈
D(A(t)). Then, in the light of (10) and (12), a simple
integration yields

〈A(t)ϕ, ϕ〉t =
∫ 1

0
(yxx zxx − yxxxx z) dx

+ α

∫ 1

0
u(x, 1)z dx + K (τ̇ (t) − 1)

∫∫

Ω̂

uηu dx dη

+ 〈(QM + M�Q)w + 2Qe2u(1, 0), w〉Rn

= α

∫ 1

0
u(x, 1)z dx + K

2

∫ 1

0
u2(x, 0)dx

− yxxx (1)z(1) + K

2
(τ̇ (t) − 1)

∫ 1

0
u2(x, 1) dx

− K

2
τ̇ (t)

∫∫

Ω̂

u2 dx dη

+ 〈(QM + M�Q)w + 2Qe2u(1, 0), w〉Rn

= −βz2(1) − βe�
1 wz(1) + α

∫ 1

0
u(x, 1)z dx

+ K

2

∫ 1

0
z2dx + K

2
(τ̇ (t) − 1)

∫ 1

0
u2(x, 1) dx

− K

2
τ̇ (t)

∫∫

Ω̂

u2 dx dη

+ 〈(QM + M�Q)w + 2Qe2u(1, 0), w〉Rn ,

(18)

which, together with (6)–(7), implies that

〈A(t)ϕ, ϕ〉t = −β̂z2(1) − ζw�Nw + α

∫ 1

0
u(x, 1)z dx

+K

2

∫ 1

0
z2dx + K

2
(τ̇ (t) − 1)

∫ 1

0
u2(x, 1) dx

−K

2
τ̇ (t)

∫∫

Ω̂

u2 dx dη −
[√

β − β̂z(1) − w� p

]2

.

(19)

Next, invoking Young’s inequality and (5), the iden-
tity (19) leads to

〈A(t)(y, z, u), (y, z, u)〉t ≤ −β̂z2(1) − ζw�Nw

−
[√

β − β̂z(1) − w� p

]2

+
(
K

2
+ α

2
√
1 − d

) ∫ 1

0
z2dx

+
√
1 − d

2

(
α − K

√
1 − d

) ∫ 1

0
u2(x, 1) dx

+ K

2
F(t)

∫∫

Ω̂

u2 dx dη, (20)

where

F(t) =
√
1 + τ̇ (t)2

2τ(t)
> 0.

It follows from (20) that
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982 B. Chentouf

〈A(t)ϕ, ϕ〉t ≤ −β̂z2(1) − ζw�Nw

−
[√

β − β̂z(1) − w� p

]2

+
√
1 − d

2

(
α − K

√
1 − d

) ∫ 1

0
u2(x, 1) dx

+
(
K

2
(1 + F(t)) + α

2
√
1 − d

)

‖ϕ‖2t ,
and choosing

K ≥ α√
1 − d

, (21)

we can claim that the operator

B(t) = A(t) − ϒ(t)I

is dissipative, where

ϒ(t) = K

2
(1 + F(t)) + α

2
√
1 − d

> 0. (22)

The task ahead is to show that the operator λI−A(t)
is onto Y , for some λ > 0. To do so, we shall use the
well-known Lax-Milgram result:

Theorem 2 (Lax-Milgram) [3] Assume that a(u, v) is
a continuous coercive bilinear form on a Hilbert space
H. Then, given any φ ∈ H, there exists a unique ele-
ment u ∈ H such that a(u, v) =< φ, v >, ∀v ∈ H.

First, let ( f, g, h, r) ∈ Y , and let us seek (y, z, u, w)

∈ D(A(t)) such that (λI − A(t))(y, z, u, w) =
( f, g, h, r), that is,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

yxxxx + (λ2 − � 2)y − αu(x, 1) = λ f + g,
z = λy − f,
(1 − τ̇ (t)η)uη + λτ(t)u = τ(t)h,

y(0) = yx (0) = yxx (1) = 0,
yxxx (1) = βz(1) + e�

1 w,

(λI − M)w = [e2(λy(1) − f (1)) + r ] ,
z = u(·, 0).

(23)

Solving the equation of u in the above system, we get

u(x, η) = (λy(x) − f (x))e−τ̂ λη

+ τ̂

∫ η

0
e−τ̂ λ(η−v)h(x, v) dv, if τ(t) = τ̂ (constant),

(24)
or

u(x, η) = (λy(x) − f (x))eλq(η,t)

+ eλq(η,t)
∫ η

0

h(x, v)

1 − τ̇ (t)v
e−λq(v,t) dv, if τ(t) �= 0,

(25)

where q(η, t) = τ(t)

τ̇ (t)
ln(1 − τ̇ (t)x). Using (23), we

have

w = (λI − M)−1 [e2(λy(1) − f (1)) + r ]

and in the light of (24), one has only to seek y ∈ H4
c

satisfying

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

yxxxx +
(
λ2 − � 2 − αλe−τ̂ λ

)
y = αY (x)

+λ f + g, if τ(t) = τ̂ (constant),
y(0) = yx (0) = yxx (1) = 0,
yxxx (1) = λ

[
β + e�

1 (λI − M)−1e2
]
y(1)

− [
β + e�

1 (λI − M)−1e2
]
f (1)

+ e�
1 (λI − M)−1r,

(26)

in which

Y (x) = − f (x)e−τ̂ λ

+ τ̂

∫ 1

0
e−τ̂ λ(1−v)h(x, v) dv, if τ(t)= τ̂ (constant).

In turn, using (25)), one should find y ∈ H4
c satisfying

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

yxxxx + (
λ2 − � 2 − αλeλq(1,t)

)
y = αZ(x)

+ λ f + g, if τ(t) �= 0,
y(0) = yx (0) = yxx (1) = 0,
yxxx (1) = λ

[
β + e�

1 (λI − M)−1e2
]
y(1)

− [
β + e�

1 (λI − M)−1e2
]
f (1)

+ e�
1 (λI − M)−1r,

(27)

where

Z(x) = − f (x)eλeq(1,t)

+ eλq(1,t)
∫ 1

0

h(x, v)

1 − τ̇ (t)v
e−λq(v,t) dv, if τ(t) �= 0.

Multiplying the first equation in (26) by φ ∈ H2
c , we

get: If τ(t) = τ̂ is constant, then
∫ 1

0

(
yxxφxx + [λ2 − � 2 − αλe−τ̂ λ]yφ

)
dx

=λ
[
β + e�

1 (λI − M)−1e2
]
y(1)φ(1)

+
∫ 1

0
(αY (x)+λ f + g) φdx + e�

1 (λI − M)−1rφ(1)

+
[
β + e�

1 (λI − M)−1e2
]
f (1)φ(1), (28)

which can be written in the variational form

L1(y, φ) = �1(φ),

where

L1 : H2
c × H2

c −→ R
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is a bilinear form given by

L1(y, φ) =
∫ 1

0

(
yxxφxx + [λ2 − � 2 − αλe−τ̂ λ]yφ

)
dx

+λ
[
β + e�

1 (λI − M)−1e2
]
y(1)φ(1),

and

Λ1 : H2
c −→ R

φ �−→ Λ1(φ) =
∫ 1

0
(αY (x) + λ f + g) φdx + e�

1 (λI − M)−1rφ(1)

+
[
β + e�

1 (λI − M)−1e2
]
f (1)φ(1).

Using similar arguments for (27), we obtain: If τ(t) �=
0, then
∫ 1

0

(
yxxφxx +

(
λ2 − � 2 − αλeλq(1,t)λ

)
yφ

)
dx

= λ
[
β + e�

1 (λI − M)−1e2
]
y(1)φ(1)

+
∫ 1

0
(αZ(x)+λ f + g) φdx + e�

1 (λI − M)−1rφ(1)

+
[
β + e�

1 (λI − M)−1e2
]
f (1)φ(1), (29)

which leads to

L2(y, φ) = Λ2(φ),

where the bilinear form

L2 : H2
c × H2

c −→ R

is defined by

L2(y, φ) =
∫ 1

0

(
yxxφxx+[λ2 − � 2−αλe−τ̂ λ]yφ

)
dx

+λ
[
β + e�

1 (λI − M)−1e2
]
y(1)φ(1),

and

Λ2 : H2
c −→ R

φ �−→ Λ2(φ) =
∫ 1

0
(αZ(x) + λ f + g) φdx

+
[
β + e�

1 (λI − M)−1e2
]
f (1)φ(1)

+ e�
1 (λI − M)−1rφ(1).

Invoking the conditions (3)–(7) and (9), one can check
that for λ > 0 large enough, L1 and L2 are continuous
coercive bilinear forms on H2

c × H2
c , whereas Λ1 and

Λ2 are continuous linear forms on H2
c . Applying The-

orem 2, we deduce that the operator λI −A(t) is onto
Y for λ > 0 large enough and so is the operator

λI − B(t) = (λ + ϒ(t))I − A(t)

since ϒ(t) > 0 (see (22)).

Moreover, using (3)–(4), we obtain as in [28,29]

d

dt
B(t) ∈ L∞∗ ([0, T ], B(D(A(0));Y)), (30)

the space of equivalence classes of essentially bounded
and strongly measurable functions from [0, T ] into the
set B(A(0));Y) of bounded operators.
Summarizing the above properties and thanks to Theo-
rem 1 (see also [10,30]), we deduce that for any initial
data ϕ̄0 ∈ Y , the Cauchy problem

{
ϕ̄t = B(t)ϕ̄,

ϕ̄(0) = ϕ̄0,
(31)

has a unique solution ϕ̄ ∈ C([0,∞);Y). In turn, if
ϕ̄0 ∈ D(B(t)), then necessarily the solution ϕ̄ belongs
to C([0,∞);D(A(t))) ∩ C1([0,∞);Y). This exis-
tence and uniqueness result goes for the Cauchy prob-
lem involving the operatorA(t) instead ofB(t), thanks
to the change in variables ϕ(t) = eϒ(t)ϕ̄(t). We have
thus proved the following result

Proposition 1 For any initial data ϕ0 ∈ Y , the
Cauchy problem (14) has a unique solution ϕ(t) ∈
C([0,∞);Y). In turn, if ϕ0 ∈ D(A(t)), then necessar-
ily the solution ϕ(t) belongs to C([0,∞);D(A(t))) ∩
C1([0,∞);Y).

3.2 Exponential stability of the system (14)

In this section, we shall state and prove the exponential
stability result of the system (14):

Theorem 3 Under the assumption (9), namely |� | <

3, there exists a positive constant α0 such that for any
α < α0, the semigroup generated by the operatorA(t),
defined by (12), is exponentially stable in Y . Where-
upon, there exist uniform positive constants M0 and κ0
such that the solution of the Cauchy problem (14) obeys
to the following estimate

‖ϕ(t)‖H ≤ M0e
−κ0t‖ϕ0‖H, ∀t ≥ 0. (32)

For sake of clarity, we are going to establish some
preliminary results which are needed for the proof of
Theorem 3. To proceed, we pick up ϕ0 inD(A(t)) and
hence the solution ϕ = (y, yt , yt (·, t − ητ(t)), w) of
the system (14), namely,
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⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ytt + yxxxx = � 2y + αyt (x, t − τ(t)),
y(0, t) = yx (0, t) = yxx (1, t) = 0,
yxxx (1, t) = βyt (1, t) + e�

1 w(t),
ẇ(t) = Mw(t) + e2yt (1, t),
∂yt
∂t

(x, t − ητ(t)) = τ̇ (t)η − 1

τ(t)

∂yt
∂η

(x, t − ητ(t)),

(33)

is regular in the sense that

ϕ ∈ C1(R+;Y) ∩ C(R+;D(A(t))).

On the other hand, in order to make the computations
manageable, let us introduce the following functionals:

E1(t) = 1

2

∫ 1

0

(
y2t + y2xx − � 2y2

)
dx + w�Qw

+ C1

2
K τ(t)

∫∫

Ω̂

y2t (x, t − ητ(t)) dx dη, (34)

E2(t) = 2C2

∫ 1

0
(xyt yx ) dx, (35)

E3(t)

K
= C3τ(t)

∫∫

Ω̂

e−2δητ(t)y2t (x, t − ητ(t)) dx dη,

(36)

where K is a positive constant satisfying (21), and Ci

is a positive constant to be determined, for each i =
1, 2, 3. In turn, δ is an arbitrary positive constant.

The first result of this section is

Proposition 2 Let ϕ = (y, yt , yt (·, t − ητ(t)), w) be
the regular solution of (14). Then, for any t ≥ 0 and
for any positive constant A1, we have the following
estimates

min{1,C1}‖ϕ‖2t ≤ 2E1(t) ≤ max{1,C1}‖ϕ‖2t , (37)

Ė1(t) ≤ −β̂ y2t (1, t) −
[√

β − β̂ yt (1, t) − w� p

]2

−ζw�Nw + 1

2
(αA1 + C1K )

∫ 1

0
y2t dx

+1

2

(
α

A1
− C1K (1 − d)

) ∫ 1

0
y2t (x, t − τ(t)) dx .

(38)

Proof The proof of (37) is obvious. With regard to the
second estimate (38), one has merely to argue as for
(19). Indeed, differentiating (34) and using (33), we
obtain after integration by parts

Ė1(t) ≤ −β̂ y2t (1, t) −
[√

β − β̂ yt (1, t) − w� p

]2

−ζw�Nw + α

∫ 1

0
yt yt (x, t − τ(t)) dx

+C1K

2

∫ 1

0
y2t dx + C1K

2
(τ̇ (t) − 1)

∫ 1

0
y2t (x, t − τ) dx .

Now, it suffices to use (5) and the following Young’s
inequality
∫ 1

0
yt yt (x, t − τ(t)) dx ≤ A1

2

∫ 1

0
y2t dx

+ 1

2A1

∫ 1

0
y2t (x, t − τ(t)) dx,

to get the desired estimate.

The estimates related to E2(t) are given below.

Proposition 3 Let ϕ = (y, yt , yt (·, t − ητ(t)), w) be
the regular solution of (14). Then, for any t ≥ 0, and
for any positive constants A2 and A3, the following
estimates hold

|E2(t)| ≤ C2

∫ 1

0

(

y2t + 1

2
y2xx

)

dx, (39)

Ė2(t)

C2
≤ (1 + βA2)y

2
t (1, t) + αA3

∫ 1

0
y2t (x, t − τ) dx

+
(

β

A2
+ α

2A3
+ 1

A4
+ � 2

3
− 3

)∫ 1

0
y2xx dx

−
∫ 1

0
y2t dx + A4

(
e�
1 w

)2
. (40)

Proof Establishing (39) is a direct consequence of
applying Young’s inequality

2C2

∫ 1

0
(xyt yx ) dx ≤ C2

∫ 1

0

(
y2t + y2x

)
dx

and the Poincaré’s inequality
∫ 1

0
f 2x dx ≤ 1

2

∫ 1

0
f 2xx dx, ∀ f ∈ H2

c . (41)

With regard to the proof of (40), we use once again
the equations in (33), integrate by parts, to obtain after
invoking the boundary conditions in (33)
Ė2(t)

C2
= y2t (1, t) − 2βyx (1, t)yt (1, t) + � 2y2(1, t)

−
∫ 1

0

{
y2t + 3y2xx + � 2y2

}
dx − 2yx (1, t)e

�
1 w

+2α
∫ 1

0
xyx (x, t)yt (x, t − τ(t)) dx . (42)
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Applying Young’s inequality for the cross-product
terms yx (1, t)yt (1, t) and xyx (x, t)yt (x, t − τ) and by
virtue of (41) as well as the well-known estimates

f 2(1)≤ 1

3

∫ 1

0
f 2xx dx, f 2x (1)≤

∫ 1

0
f 2xx dx, ∀ f ∈ H2

c ,

(43)

the identity (42) yields (40).

We also have similar estimates for E3(t)

Proposition 4 Let ϕ = (y, yt , yt (·, t − ητ(t)), w) be
the regular solution of (14). Then, for any t ≥ 0, we
have

E3(t) ≤ C3‖ϕ(t)‖2t , (44)

Ė3(t)

KC3
≤ −(1 − d)e−2δτ̄

∫ 1

0
y2t (x, t − τ(t)) dx

−2δτ(t)e−2δτ̄
∫∫

Ω̂

y2t (x, t − ητ(t)) dx dη

+
∫ 1

0
y2t dx . (45)

Proof Since (44) is trivial, let us focus on (45). Differ-
entiating (36) and using (33), we obtain

Ė3(t)

KC3
= τ̇ (t)

∫∫

Ω̂

e−2δητ(t)y2t (x, t − ητ(t)) dx dη

−2δτ(t)τ̇ (t)
∫∫

Ω̂

ηe−2δητ(t)y2t (x, t − ητ(t)) dx dη

+
∫∫

Ω̂

e−2δητ(t)(τ̇ (t)η − 1)

× ∂

∂η

(
y2t (x, t − ητ(t))

)
dx dη. (46)

Thanks to a simple integration by parts with respect to
η, we have
∫∫

Ω̂

e−2δητ(t)(τ̇ (t)η − 1)
∂

∂η

(
y2t (x, t − ητ(t))

)
dx dη

= (τ̇ (t) − 1)e−2δτ(t)
∫ 1

0
y2t (x, t − τ(t)) dx +

∫ 1

0
y2t dx

−
∫∫

Ω̂

e−2δητ(t) [τ̇ (t) − 2δτ(t)(τ̇ (t)η − 1)]

×y2t (x, t − ητ(t)) dx dη.

Inserting the above identity in (46) and using (4)–(5)
leads to the desired estimate.

Now, we are ready to state and prove the following
result.

Proposition 5 Define, along the regular solution of
(14), the functional

E(t) = E1(t) + E2(t) + E3(t), (47)

where Ei , i = 1, 2, 3 are defined in (34)–(36). If the
condition (9) holds, then

(i) there exist positive constants L1 and L2, inde-
pendent of the initial data ϕ0 such that for any
t ≥ 0, we have:

L1‖ϕ(t)‖2t ≤ E(t) ≤ L2‖ϕ(t)‖2t ; (48)

(ii) the functional E(t) is uniformly exponentially
stable forα small. Specifically, there exist positive
constants M, κ, α0, independent of the initial
data ϕ0 such that for any t ≥ 0 and for any α <

α0, we have:

E(t) ≤ Me−κtE(0). (49)

Proof Combining (47)with the estimates (37), (39) and
(44), and using the assumption (9), that is, |� | < 3,
we get

E(t) ≤
(
max{1,C1}

2
+ C2 + C3

)

‖ϕ‖2t ,

E(t) ≥
(
min{1,C1}

2
− C2

)∫ 1

0
y2t dx

+1

2

∫ 1

0

(

min{1,C1}
[

1 − � 2

3

]

− C2

)

y2xx dx

+ KC3τ(t)
∫∫

Ω̂

y2t (x, t − ητ(t)) dx dη

+ min{1,C1}w�Qw.

Thereafter, the estimates (48) hold provided that

C2 < min{1,C1}min

{

1/2, 1 − � 2

3

}

. (50)

Let us turn now to the proof of (49). Differentiating
(47) and invoking the estimates (38), (40) and (45), we
obtain
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Ė(t) ≤ C2

[
� 2

3
− 3 + β

A2
+ α

2A3
+ 1

A4

] ∫ 1

0
y2xx dx

+ [−β̂ + C2(1 + βA2)]y2t (1, t)
+

[

α

(

C2A3+ 1

2A1

)

−(1 − d)K

(
C1

2
+ C3e

−2δτ̄
)]

×
∫ 1

0
y2t (x, t − τ) dx

+
[

αA1 + C1K

2
+ KC3 − C2

] ∫ 1

0
y2t dx

−2KC3δτ(t)e−2δτ̄
∫∫

Ω̂

y2t (x, t − ητ(t)) dx dη

+C2A4

(
e�
1 w

)2 − ζw�Nw. (51)

Thanks to the assumption (9) of our theorem, it follows
that � 2

3 − 3 is negative, and hence, the coefficient

� 2

3
− 3 + β

A2
+ α

2A3
+ 1

A4

of
∫ 1
0 y2xx dx can be made negative by choosing A2, A3

and A4 large enough. Subsequently, in order to make
the coefficient of

∫ 1
0 y2t (x, t − τ) dx nonpositive, we

choose C1 = 3α and C2 small enough such as

C2 ≤ 1

2A3

(

3K (1 − d) − 1

A1

)

, (52)

where A1 is chosen large enough so that

3K (1 − d) − 1

A1
> 0.

In fact, one can consider, for instance,

A1 > (3K (1 − d))−1.

Furthermore, the coefficients

−β̂ + C2(1 + βA2)

of y2t (1, t) are nonpositive, provided that

C2 ≤ β̂

1 + βA2
. (53)

Now, let us handle the two last terms in (51), namely

C2A4(e
�
1 w)2 − ζw�Nw.

We have

C2A4

(
e�
1 w

)2 ≤ C2A4‖e1‖2‖w‖2

and

−ζw�Nw ≤ −ζνmin‖w‖2,
where νmin is the smallest positive eigenvalue of N .
Whereupon, we conclude that

−ζw�Nw + C2A4

(
e�
1 w

)2

≤ (C2A4‖e1‖2 − ζνmin)‖w‖2,
which can be made negative by choosing

C2 ≤ ζνmin

A4‖e1‖2 . (54)

Finally, in order to assure the negativity of the coef-
ficient of

∫ 1
0 y2t dx , that is,

αA1 + 3αK

2
+ KC3 − C2 < 0,

it suffices to pick up C3 < C2/K and

α < α0 = 2
C2 − KC3

A1 + 3K
. (55)

Thanks to the above choices, there exists a positive
constant μ, independent on the initial conditions, such
that Ė(t) ≤ −μE1(t), which, together with (37) and
(48), implies that

Ė(t) ≤ − μ

2L1
E(t).

Thereby, the estimate (49) can be easily deduced.

Remark 3 It is worth mentioning that the stability
result obtained in (49) and (32) holds without any
restriction on the positive constant δ. Whence, one can
tune δ such that the stability occurs as fast as possible.

3.2.1 Proof of Theorem 3

It suffices to recall the equivalence of the norms defined
in (10) and (16) and use the estimates (48) and (49).

4 Stability of the global system

Now, we are ready to deal with the exponential stability
of the original system (8) or equivalently (11). For sake
of clarity, we shall provide a very brief presentation to
some basic definitions and results which are going to
be used for the proof of the main result.

123



Time-dependent delay compensation of a body-beam system... 987

Definition 1 [30] Let U (t, s) be the evolution system
corresponding to the operator A(t) defined on a Hilbert
space H . A continuous solution u of the integral equa-
tion

u(t) = U (t, s)v +
∫ t

s
U (t, r) f (r, u(r)) dr,

will be called a mild solution of the initial-value prob-
lem
{
ut (t) = A(t)u(t) + f (t, u(t)),
u(s) = v.

The following result will be used throughout this
section:

Theorem 4 [30] Let H be a Hilbert space and f :
[0,∞] × H → H be continuous in t and locally Lip-
schitz continuous in u, uniformly in t on bounded inter-
vals. If U (t, s) is the evolution system corresponding
to such that the operator A(t), then for every v ∈ H
there exists a T ≤ ∞ such that the above initial-value
problem has a unique mild solution u on [0, T [.

The next result provides a sufficient condition for
which the mild solution becomes a classical solution
of our initial-value problem:

Theorem 5 [30] Assume that U (t, s) be the evolution
system corresponding to the operator A(t). If f is con-
tinuously differentiable, then the mild solution of the
above initial-value problem with v ∈ D(A) is a classi-
cal solution.

We also state a result known as Barbalat’s lemma:

Lemma 1 [23] Let f : R → R be a uniformly contin-
uous real function on [0,∞). Suppose that

∫ ∞
0 f (s) ds

exists and is finite. Then, f (t) → 0 as t → ∞.

Finally, we give another useful inequality in the next
lemma:

Lemma 2 (Gronwall’s lemma) Let a ∈ L1(0, T ) such
that a(t) ≥ 0. If for some K ≥ 0, the function g ∈
L∞(0, T ) satisfies the inequality

g(t) ≤ K +
∫ t

0
a(s)g(s) ds,

then

g(t) ≤ K exp

(∫ t

0
a(s) ds

)

.

Our main result is as follows:

Theorem 6 Assume that the desired angular velocity
� satisfies the smallness condition |� | < 3 (see (9)).
Then, for any initial data �0 ∈ D(A(t)) × R, there
exists a positive constant α0 (see (55)), independent of
�0, such that for any α < α0, the solution �(t) of
the closed-loop system (11) exponentially tends to the
equilibrium point (0Y ,�) in X , as t → ∞.

Proof First of all, we point out that most of the argu-
ments used in this proof run on much the same lines as
in [7,8] (see also [24,33]) with of course a number of
changes born out of necessity. Therefore, the exposition
will be concise.

Recall that Proposition 1 leads us to claim, thanks
to applying the evolution semigroups theory, that for
s ∈ [0, t], there exists a unique evolution system
U (t, s) associatedwith the operatorA(t) [10,30]. This,
together with the fact that F is continuously differ-
entiable [33], yields the following assertion: For any
�0 = (φ0, ω0) ∈ U , there exists a unique local mild
solution �(·) = (φ(·), ω(·)) ∈ C ([0, T0];X ) of (11),
for some T0 > 0 (see Definition 1 and Theorem 4).
Indeed, � is given by the variation in constant for-
mula. Moreover, a regularity result [30] leads us to
conclude that each local solution of (11), with initial
data in D(A(t)) × R, is a classical one (see Theo-
rem 5). Then, using the same approach as in [32], one
can show that that each strong solution exists globally
and is bounded. Thus,

∫ +∞
0 (ω(t) − �)2dt converges

and the solution (φ(t), ω(t)) is bounded in X . This
implies, thanks to Barbalat’s result (see Lemma 1), that
limt→+∞ ω(t) = � , and hence, for any ε > 0, there
exists T sufficiently large such that for any t ≥ T

|ω2(t) − � 2| < ε. (56)

On the other hand, the solution

�(t) = (y(·, t), yt (·, t), u(·, t), w(t), ω(t))

= (�1(t), ω(t))

of (11) stemmed from �s = (�1(s), ω(s)) ∈
D(A(t)) × R (s ∈ [0, t]) can be partially obtained
from the variation in constants formula [10,30]

�1(t) = U (t, s)�1(s) +
∫ t

s
U (t, r)(ω2(r) − � 2)

×P�1(r) dr (57)
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for any t ≥ s ≥ 0. Here P is the compact operator on
V defined by

P(y, z, u, w) = (0, y, 0, 0),

for any (y, z, u, w) ∈ Y . In turn, the second part of the
solution �(t), namely ω(t), is given by the differen-
tial equation in (8). Using the boundedness of P and
invoking (56) and (32), the identity (57) gives

‖�1(t)‖Y ≤ M0e
−κ0(t−T )‖�1(T )‖Y

+εM0

∫ t

T
e−κ0(t−s)‖�1(s)‖Y ds, ∀ t ≥ T . (58)

Now, it suffices to applying Gronwall’s Lemma 2 to
(58) to get

‖�1(t)‖Y ≤ M0‖�1(T )‖Ye
−(κ0−εM0)(t−T ), ∀ t ≥ T .

(59)

This gives rise to the exponential stability of �1(t) in
Y as long as ε < M0

κ0
, which is possible in view of

the arbitrariness of ε (see (56)). Finally, going back to
(8), one can establish the exponential convergence of
ω(t)−� inR by arguing as in [24,33] (see also [7,8]).

5 Numerical application

The aimof this section is to illustrate the outcome stated
and proved in the previous section via some numerical
examples. More precisely, we shall give prominence
to the importance of the smallness condition |� | < 3
related to the exponential stability result of the closed-
loop system (11). To do so, we assume that ω(t) =
� > 0, τ(t) = τ > 0 and the boundary force control
UF(t) is static. Thereafter, it is a simple task to check
that λ is an eigenvalue of the system if and only if there
exists a nonzero (y, z, u) such that
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

−yxxxx + � 2y + αu(x, 1) = λz,
uη(x, η) + λτu(x, η) = 0,
z = λy,
y(0) = yx (0) = yxx (1) = 0,
yxxx (1) = λβy(1),
u(x, 0) = z,

which implies that one just has to seek a nontrivial
solution y of the following system
⎧
⎨

⎩

yxxxx + (λ2 − � 2 − αλe−τλ)y = 0,
y(0) = yx (0) = yxx (1) = 0,
yxxx (1) = λβy(1).

Let

σ 4 = � 2 − λ2 + αλe−τλ. (60)

Hereby, one can show that λ is an eigenvalue of the
system if and only if λ is a solution of the characteristic
equation

σ 3(1+cosh σ cos σ)+βλ(cosh σ sin σ −sinh σ cos σ)

= 0. (61)

Next, let σ = σ1 + iσ2 and λ = λr + iλm , where
σi as well as λr and λm are real numbers for i = 1, 2.
Whereupon, (60) yields

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

σ 4
1 + σ 4

2 − σ 2
1 σ 2

2
= αe−τλr [λr cos(τλm) + λm sin(τλm)]
+� 2 − λ2r + λ2m,

4σ1σ2
(
σ 2
1 − σ 2

2

)

= αe−τλr [λm cos(τλm) − λr sin(τλm)]
−2λrλm .

Inserting the above equations into (61), the latter can be
reformulated into the formΓ1(λr , λm)+iΓ2(λr , λm) =
0, in which Γ1 and Γ2 are two real functions of the
unknowns λr and λm . Clearly, λ = λr + iλm is an
eigenvalue if and only if both Γ1 and Γ2 are zero func-
tions. Lastly, thanks to MAPLE 13, one can get the
approximate values of the pairs (λr , λm) for which the
graphs of Γ1(λr , λm) = 0 and Γ2(λr , λm) = 0 inter-
sect. Then, it is apparent from Fig. 2 that the spectrum
of the system with α = 1, β = 3, τ = 0.01 and � = 2

Fig. 2 Spectrum with α = 1, β = 3, τ = 0.01 and � = 2
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Fig. 3 Spectrum with α = 1, β = 3, τ = 0.01 and � = 3.2

has two branches and more importantly has negative
real part. Thus, the system is stable. This numerical
result validates Theorem 6. Notwithstanding, the case
� = 3.2 generates some eigenvalues with positive real
part as depicted in Fig. 3. This is due to the fact that the
condition |� | < 3 of Theorem 6 is violated.

6 Concluding discussion

In this article, the well-known rotating disk-beam sys-
tem has been considered under the presence of a time-
dependent interior delayed damping control. Despite
the presence of this delay which could be a source of
poor performance and instability, it has been proved
that the effect of such a delay can be compensated by
the action of a boundary force control applied at the
free end of the beam, in addition of the torque control
exerted on the disk. Indeed, the closed-loop system is
shown to have the very desirable property, namely the
exponential stability, provided that the delay satisfies
appropriate conditions and the angular velocity of the
disk does not exceed the value 3. Numerical exam-
ples are provided to demonstrate the correctness of the
results.

We would like to point out that there is a promising
research avenue by considering a time-dependent delay
in the boundary force control. Then, it would be very
interesting to reduce the impact of such a delay via the
presence of an interior damping control.
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