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Abstract Parametric identification procedures for
linear systems are fairly well established. However,
there are only a few methods capable of identifying
parametric models for multiple degree of freedom non-
linear systems. In this paper, we propose a three-stage
parametric identification algorithm for nonlinear sys-
tems. Using the proposed algorithm, it is possible to
detect the presence and the location of nonlinear attach-
ment as well as the system parameters, to a very good
level of accuracy. Numerical simulation studies have
been carried out to test and verify the effectiveness of
the proposed algorithm.
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Abbreviations

SVD Singular value decomposition
SSI System state index
DoN Degree of nonlinearity
LLI Linear level indicator
MIMO Multiple-input–multiple-output
NLI Nonlinear location index
PSO Particle swarm optimization
QPSO Quantum particle swarm optimization
DQPSO Dynamic quantum particle swarm opti-

mization
NM Nelder Mead
HDQPSO Hybrid dynamic quantum particle swarm

optimization

1 Introduction

Engineering structures are often designed to behave
linearly under normal operating conditions. Civil struc-
tures will inevitably suffer a certain level of deteriora-
tion during its service life owing to corrosion and/or
fatigue damage, aging of construction materials, long-
term effect of loads, sudden attacks of accidental, and
natural catastrophes. Damage will make the structural
properties nonlinear and vary with time. Therefore,
structures may exhibit nonlinear behavior during ser-
vice life due to operational and environmental loads.
The reasons could be due to development of cracks
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in the structure during service life, that subsequently
open and close under operational loading, due to loose
connections, debondingbetween concrete and reinforc-
ing steel, loose bolts, and interference fits that loosen
becauseofmaterial deformation, due to delamination in
bonded, layeredmaterials such asfiber-reinforced com-
posite plates and shells, material nonlinearities associ-
ated with excessive deformation such as yielding of
steel. Hence, parametric identification of these nonlin-
ear systems is essential during structural health moni-
toring.

Nonlinear system identification is a highly challeng-
ing inverse engineering problem. It can be viewed as
a succession of three steps: detection, characterization,
and parameter estimation. Identification of nonlinear
dynamical systems is being investigated extensively in
recent years, and the list is very exhaustive. However,
to give a flavor of the range of techniques developed,
few of them, with a reasonable success, are discussed
in the relevant subsections of this paper.

In this paper, we present a new methodology for
nonlinear system identification involving all the three
stages of nonlinear identification mentioned earlier. In
the first stage, we present a data-driven null-subspace
method to robustly identify the presence and also the
degree of nonlinearity to judge whether the effects
of nonlinearity are significant enough to consider the
structural behavior as nonlinear. Once the presence
of nonlinearity is confirmed, in the second stage, we
use a technique based on the reverse path method
to identify the spatial location of nonlinearity. Later,
in the final stage, we identify the nonlinear system
parameters by formulating it as an inverse problem
and solving the resulting complex optimization prob-
lem using a newly developed hybrid dynamic quan-
tum particle swarm optimization (HDQPSO) algo-
rithm.

Numerical simulation studies have been carried out
by solving several numerically simulated examples to
demonstrate the effectiveness of the proposednonlinear
system identification algorithm. The numerical investi-
gations carried out in this paper clearly indicate that the
null-subspace method is an effective tool for detecting
the presence of nonlinearity and degree of nonlinearity
of the structure. Studies also reveal that we can pre-
cisely arrive at the spatial location of nonlinearity of
the structure using the reverse path method, and the
HDQPSO algorithm is effective in identifying the non-
linear parameters with good accuracy.

2 Detection of the presence of nonlinearity

Several time- and frequency-domain-based methods
exist in the literature for detecting the presence of non-
linearity. The comprehensive list of techniques include
Hilbert transform, time frequency analysis, spectral
density analysis, time seriesmodels, higher-order spec-
tral analysis, principal component analysis, Volterra
and Wiener approaches [1–3]. In this paper, our con-
cern is civil engineering structures, where only ambi-
ent vibration data are more convenient to measure than
force response data. Even though there are few tech-
niques, which use only ambient vibration data, they
are highly susceptible to measurement noise. In this
paper, we use a null-subspace method which uses only
time-domain ambient vibration data for detection of the
presence of nonlinearity.

The null-space method has earlier been used for
damage detection [4] and sensor fault detection [5].
In this paper, it is proposed to explore this method to
detect the presence of nonlinearity and also to assess
its severity.

In order to illustrate the null-space-based approach,
we consider a structural system for which the time his-
tory response is to be measured. Since, the response
is usually measured in the form of acceleration time
history, the structural system is instrumented with ‘m’
accelerometers. The acceleration time history response
is measured periodically resulting in several data sets.
The sampled data can be partitioned into several data
subsets, in case of continuous online monitoring of the
structure. We can construct a block Hankel matrix of
the output data-driven matrix for each data subset, and
it can be written as

�

Hl,2i =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

y1 y2 · · · y j
· · · · · · · · · · · ·
yi yi+1 · · · yi+ j−1

· · · · · · . · · · · · ·
yi+1 yi+2 · · · yi+ j

· · · · · · · · · · · ·
y2i y2i+1 .. y2i+ j−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

≡
⎡
⎣
Yp

· · ·
Y f

⎤
⎦ ≡

Past
· · ·
Future

(1)

where 2i, j indicate the user-defined number of row
blocks and columns ( j = N − 2i + 1) and N indi-
cates the length of the time history response. The Han-
kel matrix

�

H1,2i ∈ �2mixj is split into a “past” and a
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“future” part of ‘i’ block rows. Performing the singu-
lar value decomposition (SVD) on theweightedHankel
matrix, we obtain:

H p,q = W1
�

Hp,qW2 ≈ [
UL1 UL0

] [ SL1 0
0 0

] [
VL1 VL0

]T

= UL SLV
T
L (2)

where W1 and W2 are weighting matrices chosen as
identitymatrices for simplicity. Due to the orthonormal
property of matrices, we can always exactly verify the
following relationshipmathematically, for any data set,

UT
L0

�

Hp,q = 0 (3)

UT
L0(UL1SL1VL1) = 0 (4)

UT
L0UL1 = 0 (5)

where UL0 and UL1 refer to column null subspace and
active subspace of the weighted Hankel matrix H p,q .
In order to find the size of various matrices, we have
to scan through the singular values in S, till the val-
ues are equal to zero or very insignificant and take
the left-hand side vectors; UL corresponding to those
null-singular values isUL0 and active singular values is
UL1. It can be easily realized that UL1, containing the
first ‘l ′ active principal components, represents a hyper-
plane, around which the response data locate. We can
assess the state of the structural system (i.e., detection
and quantification of nonlinearity), by observing the
changes in orthonormality between different data sets
(i.e., rotation of the subspace) using the above ortho-
normal relationship. The subspace of theHankelmatrix
remains unchanged, i.e., no rotation of subspace takes
place unless there is either environmental variation, or
change in the dynamic characteristics indicated by the
presence of nonlinearity.

Theoretically, if the response is linear, the orthonor-
mal relationship between the two different data sets
(i.e., column active subspace UL1 of the first data set
and the column null subspace UL0 of the second data
set) is true, then the value must be zero. However,
practically, it will not be zero due to environmental
variances, variation of the ambient excitation, and also
the noises present in the measurement process. There-
fore, the residue matrix Rs can be defined as the matrix
obtained by multiplying the null-space matrix (UT

L0,r )

of the baseline data and the active subspace matrix
(UL1,c) of the current data set.

Rs = UT
L0,rUL1,c (6)

The residue matrix Rs contains the information about
how the new data obtained has been altered. In this
paper, we use two indices, i.e., system state index (SSI)
and degree of nonlinearity (DoN) built from the residue
matrix to detect and quantify the nonlinearity present
in the system [6]. The system state index is defined as
follows

SSI = trace(Q)/nap with Q = RT
s Rs (7)

where Q, nap indicate the covariance of residue matrix
and the number of active principal components of the
current data set, respectively. The value of SSI obvi-
ously lies in the range [0–1]. A large value of SSI indi-
cates a change in the state of system from linear to
nonlinear. The DoN is given by

DoN = ‖βC‖
‖βR‖ (8)

where βC and βR are vectors derived from the residue
matrices Rs of the current and reference data (i.e., data
when the structure is in linear state), respectively, and
can be defined for a residue matrix Rs of size m1 × n1
as

βi =
n1∑
j=1

∣∣∣R(i, j)
s

∣∣∣ where i = 1, 2, . . . ,m1 (9)

The degree of nonlinearity index value is close to unity
for the linear system, and if it exceeds unity, then the
system is said to be exhibiting nonlinear behavior. The
DoN value indicates the quantification of severity of
the nonlinearity present in the system.

As pointed out earlier, the residue matrix of the lin-
ear response cannot be zero due to measurement noise,
environmental variability, and other sources of errors,
and consequently, the system state index (SSI) also can-
not be equal to zero. In view of this, a number of refer-
ence data sets with linear response at varied excitation
levels are collected by taking measurements at differ-
ent time instants and partitioned into several sets. The
values of SSI are calculated for all those data sets to
obtain a limit point of linearity (linear level indicator).
When dealing with the current data set, the presence of
nonlinearity in the structure can be identified when the
monitored SSI value exceeds the linear level indicator
(LLI) defined as the mean value plus three times its
standard deviation.
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3 Identification of the spatial location

Since the nonlinearity is generally present locally in
structures, once the presence of nonlinearity using
the null-subspace-based approach is identified and the
degree of nonlinearity is found to be significant enough,
it is desirable to identify the spatial location of the
nonlinearity present in the structure before identifi-
cation of the nonlinear parameters. The information
related to the spatial location of nonlinearity can help
us to separate the underlying linear system from the
nonlinear parts and create mathematical models for
efficient parametric estimation. Hence, this step cer-
tainly helps in reducing the complexity of nonlinear
parametric identification considerably. The procedures
based on the restoring force surface method, test analy-
sis correlation, error localization in a linear model
updating framework, pattern recognition, and methods
using scanning laser vibrometry are some of the widely
reported approaches for nonlinear spatial location iden-
tification [1,2].

In this paper, we present a new refined approach for
identification of spatial location of nonlinearity using
the concept of the reverse path method [7]. Accord-
ingly a systematic search with MIMO (multiple-
input/multiple-output) models is conducted to iden-
tify the exact spatial locations which alter the sys-
tem response to nonlinear. However, we need to have
knowledge of the possible form and the type of non-
linearities present in the system in order to arrive at
the exact spatial location in order to use the proposed
approach. Hence, in this paper, we limit our problems
of interest to systems having a polynomial form of non-
linearity. It is appropriate to mention here that various
types of nonlinearities can be conveniently idealized
using a polynomial.

Any typical structural system can be described as a
general MIMO system having a number of input sig-
nals Fq , q = 1, 2, . . . , Q, and a number of output sig-
nals X p, p = 1, 2, . . . , P , where the time notation is
dropped for simplicity and the schematic view of the
system is shown in Fig. 1.

In the reverse path algorithm, the measured resp-
onses of the nonlinear system are used as external
forces (artificial input) acting on an underlying lin-
ear system, and the actual external force applied will
be treated as (artificial) output [8]. The time- and
frequency-domain model of a generalized system with
local nonlinearities as applied forces can be written as

F1 F2 FQF3

X1 X2 X3 XP

H

……………

………….

Fig. 1 Multiple-input-multiple-output (MIMO) system

[M]{ẍ(t)} + [C]{ẋ(t)} + [K ]{x(t)}
= { f (t)} − {g({x}, {ẋ}, {ẍ})} (10)

{X (ω) = [H(ω)]({F(ω)} − {G(ω)}) + {N (ω)} (11)

gm(t)={q}T · {y(t)}m =[q1 q2 · · · qQ−1
]
⎡
⎢⎢⎢⎣

x2m(t)
x3m(t)

...

xQm (t)

⎤
⎥⎥⎥⎦

(12)

Gm(ω) = {q}T · {Y (ω)}m (13)

where M,C, K represent the mass, damping, and stiff-
ness matrices and the vectors f (t), x(t), g({x}, {ẋ},
{ẍ}) represent the external force, displacement, and the
nonlinear restoring force vector, while F(ω), X (ω),

G(ω) indicate the corresponding Fourier transforms.
The nonlinear restoring force vector g(t) is composed
of nonlinear functions of the response vectors and the
polynomial coefficients vector {q}. The term N (ω)

added indicates the contaminated noise in the response.
The reverse path model equation can be simplified

by taking the corresponding force (DOF ‘k’) and local
nonlinearities column (nonlinear DOF ‘m’) in the fre-
quency response function as

�Hk	 {Fk} − �Hm	 {Gm} = {X} (14)

Each row n can then be written as

Hnk(ω) · Fk(ω) − Hnm(ω) · Gm(ω) = Xn(ω) (15)

After substituting Eq. (13) in Eq. (15), the reverse path
model equation can be rewritten as
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Xn Ym

Nk

Uk

BT

Fk

Fig. 2 MIMO system depicting the reverse path model

[
H−1
nk · Hnm(ω)H−1

nk {q}T
]

·
[
Xn(ω)

{Y (ω)}m
]

+Nk(ω) = Fk(ω) (16)

The input of the MIMO system consists of displace-
ment and all nonlinear restoring force as input and
external force as output. The output predicted by the
model without noise is given by Uk and with noise Nk

as Fk . The underlying linear FRFs [8] of the MIMO
system is given by

[B]T =
[
H−1
nk · HnmH

−1
nk {q}T

]

= [GFX]m,n · [GXX]−1
m,n (17)

[GFX]m,n = E

[
Fp ·

{
Xn

{Y }m
}H
]

; [GXX ]m,n

= E

[{
Xn

{Y }m
}

·
{
Xn

{Y }m
}H
]

(18)

where [GFX]m,n is a cross-spectral row-vector between
output and all inputs and [GXX ]m,n is the auto spec-
tral matrix of the inputs and E[·] denotes the expected
value. Subscript m denotes the nonlinear DOF while
subscript n is the linear response DOF used in the
MIMO model shown in Fig. 2.

The output force spectrum,U (ω) by the reverse path
analogy can be written as

U = �Bk	{X} (19)

By multiplying the above Eq. (19) with its Hermitian
transpose and taking the expected value of each term,
the expression for the output power spectrumG(m,n)

UU for
all the possibilities considering only single grounded
nonlinearity at DOF ‘m’ can be written as[
G(m,n)

UU

]
= [B]

[
G(m,n)

XX

]
[B]

�
H (20)

[
G(m,n)

UU

]
k

= [
GFk ,X

] ([
G(m,n)

XX

]−1
) [

GFk ,X
]�H (21)

where ‘n’ indicates the linear response and ‘m’ is
the location of the assumed nonlinear response. The
residue matrix obtained for all the possible combina-
tions of the nonlinear locations is given by

Rm,n =
√√√√�ω

2π

ω=ωr∑
ω=ω1

GFF −
√√√√�ω

2π

ω=ωr∑
ω=ω1

G(m,n)
UU (22)

where �ω denotes the frequency increment (in rad/s)
between ω1 andωr and GFF represents the actual force
spectrum. It is preferable to choose the frequency range
carefully so that the nonlinear response is predominant
in this interval. We propose an index based on residue
matrix called ‘nonlinear location index’ (NLI), and it
is defined as follows.

NLI = 1/μm

where μm =
ns∑
j=1

∣∣Rm,j
∣∣/ns and m = 1, 2, 3, . . . ns

(23)

where ns indicates the number of sensors, m refers to
the assumed nonlinear location (degrees of freedom).
TheNLI index is calculated for all the output forcemea-
surements as per the reverse path analogy. The peak val-
ues in all the plots of NLI index indicate the exact loca-
tion of the nonlinear attachment element. This is due to
the fact that the spatial location is the one which min-
imizes the error between the computed and the actual
force spectra.

4 Identification of nonlinear parameters

The task of identification of nonlinear parameters
becomes little bit easier once the spatial location of
nonlinear attachment is identified. The comprehensive
list of techniques for nonlinear parameter estimation
includes the Wiener and Volterra series approaches
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802 J. Prawin et al.

[9,10], harmonic balance nonlinearity identification
[11], reverse path spectral method [12], and other time-
and frequency-domain parametric identification tech-
niques [13–16]. Apart from this, in recent years, non-
linear parameter estimation techniques using stochas-
tic search techniques [17–19] have been successfully
developed. In the present paper, we propose a new
variant of quantum particle swarm optimization with
dynamic subpopulations for much faster and reliable
convergence for problems involving complex nonlin-
ear objective functions.

Once the spatial locations are identified using the
approach outlined earlier and with the availability of
the nonlinear form (polynomial), we can identify the
nonlinear parameters by formulating the inverse prob-
lem associated with the identification as an optimiza-
tion problem and solve by using the newly proposed
hybrid dynamic quantum PSO algorithm. The equation
of motion can be written as

[K ]{x(t)} + [C]{ẋ(t)} = { f (t)} − [M]{ẍ(t)}
−[L]{g ({x}, {ẋ}, {ẍ})} (24)

[H̃ ]{θ} = F(t), where [H̃ ] = [K C], {θ} = {x ẋ}T
(25)

K = Nel
A
i=1

γi ki ; C = αM + βK

g(x) =
p∑

i=1

ψ
j
i e

d j
i x i+1

j ; g(ẋ) =
p∑

i=1

ψ
j
i e

d j
i ẋ i+1

j

j = location of nonlinear attachments (26)

where A is the assembly operator. The damping
matrix is computed using Rayleigh damping, which
can be related to damping ratios for any two selected
modes. α and β are the Rayleigh damping constants
and γ and ψ are the element stiffness coefficients
and nonlinear parameter coefficients, respectively, that
are needed to be identified in the proposed parame-
ter identification using the proposed inverse formula-
tions. Hence, γ = {γ1, γ2, γ3, . . . , γNel} ∈ �neld ={
d j
1 , d j

2 , d j
3 , . . . , d j

p

}
∈ �P&ψ =

{
ψ

j
1 , ψ

j
2 , ψ

j
3 , . . . ,

ψ
j
p

}
∈ �P are taken as design variables in the opti-

mization algorithm andwith a constraint onψ such that
ψ1ed1 ≺ ψ2ed2 ≺ ψ3ed3 · · · ≺ ψpedp .We also assume
that the nonlinearities present in the system are either
displacement based or alternatively as velocity based
and both together will not coexist in the system. This
assumption has been made to reduce the number of
design variables. Extending it to systems with nonlin-

earities both in the form of displacement and velocity
is rather straight forward.

4.1 Objective function

The system parameters need to be identified include
stiffness and damping properties of the structure and
also nonlinear parameters in the form of polyno-
mial coefficients at the spatial locations where non-
linearity is present. In the present formulation, it is
assumed that mass properties, load history, and the
initial conditions of Eq. (24) are known a priori and
that the mass is invariant in time. The objective of
any identification procedure is to find the best esti-
mates of the structural parameters defined using γ =
{γ1, γ2, γ3, . . . , γNel} ∈ �nel, and the nonlinear poly-

nomial coefficients d =
{
d j
1 , d j

2 , d j
3 , . . . , d j

p

}
∈ �P

and ψ =
{
ψ

j
1 , ψ

j
2 , ψ

j
3 , . . . , γ

j
p

}
∈ �P so as to

minimize the error between the measured accelera-
tion response and the predicted (or computed) response
using a set of parameters γ,ψ and d over the entire
time history. In identification problems that rely on
the dynamic measurements of the response, the objec-
tive function to be minimized through the optimization
process can be formulated as a sum of the normalized
mean square error between calculated and measured
accelerations at observation points from the beginning
up to the number of measured samples in each record.

χ(γ, Ψ, d) = 1

NR∗NT

NR∑
i=1

NT∑
j=1

NL∑
k=1

×
⎛
⎝

k ẍmi, j − k ẍei, j

max
{∣∣∣k ẍei, j

∣∣∣ j = 1, 2, . . .NT
}
⎞
⎠

(27)

where NR refers to the number of records of measured
time history data, NT is the total number of samples
in each record and NL refers to the spatial locations
(degrees of freedom) at which the measurements are
available. The superscript ‘m’ and ‘e’ represent mea-
sured and estimated values.

The overall identification problem can then be sum-
marized as follows: Find (γ, Ψ, d) = {γ1, γ2, γ3, . . . ,
γNel, ψ

j
1 , ψ

j
2 , ψ

j
3 , . . . , γ

j
p , d j

1 , d j
2 , d j

3 , . . . , d j
p} ∈ Γ

such that χ(γ, Ψ, d) is minimum where Γ is the feasi-
ble n-dimensional parameter search space:
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Γ =
{

γ ∈ �n
∣∣∣γmin

j ≤ γ j ≤ γmax
j ∀ j = 1, 2, 3, . . . ,Nel

∣∣∣ ;ψ ∈ �P
∣∣ψmin

i ≤ ψi ≤ ψmax
i ∀ i = 1, 2, 3, ..p

∣∣ ;
d ∈ �P

∣∣dmin
i ≤ di ≤ dmax

i ∀ i = 1, 2, 3, ..p
∣∣ ;

}

(28)

where (γ, Ψ, d) are the number of parameters to
be identified, γmin

j andγmax
j , ψmin

i andψmax
i , dmin

i and
dmax
i are the lower and upper bounds respectively of
the j-th parameter of γ and i-th parameter of ψ and
d, respectively. The problem of identification can be
treated as a linearly constrained nonlinear optimiza-
tion problem. In this paper, we propose to solve the
constrained nonlinear optimization problem associated
with an inverse problem of nonlinear parametric identi-
fication using a variant of recently developed quantum
particle swarm optimization (QPSO) algorithm.

PSO is an evolutionary-like algorithm developed by
Eberhart and Kennedy [20]. It is a population based
search algorithm and is inspired by the observation
of natural habits of bird flocking and fish schooling.
In PSO, a swarm of particles moves through a D-
dimensional search space. The particles in the search
process are the potential solutions, which move around
a defined search space with some velocity until the
error is minimized or the solution is reached, which is
decided by the fitness function. The particles reach the
desired solution by updating their position and veloc-
ity according to the PSO equations. In PSO, each indi-
vidual is treated as a volume-less particle in the D-
dimensional space, with the position and velocity of
the i th particle represented as

vk+1
i j = ωvki j +c1r1(pbesti j −xki j )+c2r2(gbest j − xki j )

(29)

xk+1
i j = xki j + vk+1

i j (30)

where vi j is the particle velocity, xi j is the current parti-
cle (solution), andw, c1 and c2 are weight coefficients.
The existence of position data in PSO on the swarm-
shared best solution gbest assures interaction among
agents. PSO is not a global convergence-guaranteed
optimization algorithm; therefore, Sun et al. [21] pro-
posed a global convergence search technique QPSO
whose performance is superior to the PSO. In the quan-
tummodel of a PSO, the state of the particle is depicted
by wave functionψ(r, t) instead of position and veloc-
ity. The dynamic behavior of the particle is widely dif-
ferent from that of the particle in the traditional PSO
systems in that the exact values of position and veloc-
ity cannot be determined simultaneously. We can only

learn the probability of the particle’s appearing in posi-
tion x from probability density function |ψ(r, t)|2, the
form of which depends on the potential field the par-
ticle lies in. The complete theoretical details of QPSO
can be found in Sun et al. [21,22]. QPSO algorithm can
be implemented as

xk+1
i j = pki j + β

∣∣∣mbestki j − xki j

∣∣∣ ∗ ln(1/ui j ); if Rd > 0.50

(31)

xk+1
i j = pki j − β

∣∣∣mbestki j − xki j

∣∣∣ ∗ ln(1/ui j ); if Rd ≤ 0.50

(32)

where Rd is a random number in the range [0, 1],
mbesti j is the mean best of all the particles in j th
dimension, ui j is a random number uniformly distrib-
uted in the range [0,1]. The subscripts i and j refers
to the particle and design variable, respectively. In the
present work, the parameter β varied linearly from 1.0
to 0.30 with the iteration as

β t = βmax − (βmax − βmin)

t
× max-iterations (33)

pti j is the local attractor and defined as:

pti j = ϕt
i jPbest

t
i j + (1 − ϕt

i j ).gbest
t
j (34)

where ϕt
i j is a random number uniformly distributed

in [0, 1]. The ‘mbest’ is the mean best position and is
defined as the center of pbest positions of the swarm,
and it can be written as:

mbestti j = (mbestt1,mbestt2,mbestt3......mbesttD)

=
(

1

M

M∑
i=1

Pt
i1,

1

M

M∑
i=1

Pt
i2,

1

M

M∑
i=1

Pt
i3, . . . ,

1

M

M∑
i=1

Pt
iD

)

(35)

where M is population size and Pi is the personal
best position of particle i. The details of the QPSO
algorithm are given in Fig. 3. The characteristics of
QPSO algorithm are reflected mainly in two ways.
First of all, the introduced exponential distribution of
positions makes QPSO search in a wide space. Fur-
thermore, the introduction of mean best position into
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Fig. 3 Quantum PSO
algorithm
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QPSO is another improvement. In the standard PSO,
each particle converges to the global best position inde-
pendently. In the QPSO with mean best position GP,
each particle cannot converge to the global best posi-
tion without considering its colleagues because the dis-
tance between the current position and GP determines
the position distribution of the particle for the next
iteration.

4.2 Dynamic quantum PSO (DQPSO) algorithm

Although QPSO possesses better global search behav-
ior than PSO, it may encounter premature convergence,
a major problem also encountered by GA, PSO, and
other evolutionary algorithms in multimodal optimiza-
tion, which results in great performance loss and sub-
optimal solutions. In QPSO, although the search space
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of an individual particle is the whole feasible solution
space of the problem throughout the iterations, diver-
sity loss of the whole population is also inevitable due
to the collectiveness [23].

The dynamic quantum particle swarm optimizer
is constructed based on the QPSO algorithm with a
new neighborhood topology in order to improve the
diversification mechanism. In the proposed DQPSO
algorithm, the swarms are dynamic, and the size of
swarms is small. The whole population is divided
into many small swarms called subswarms, and each
subswarm uses its own members to search for bet-
ter area in the search space. These subswarms are
regrouped frequently and rather dynamically by using
several regrouping schedules. Thus the information is
exchanged among the swarms. Since the small-sized
swarms are searching using their own best historical
information, they are likely to converge to a local opti-
mum because of typical PSO’s convergence character-
istics. In order to prevent the convergence to suboptimal
solution, the information needs to be exchanged among
the swarms.While exchanging information among sub-
swarms, it is necessary to exercise sufficient care to
maintain larger diversity in subswarms. In order to
accomplish this, we have proposed a shuffling schedule
to have a dynamically changing neighborhood structure
for the particles. After every user-defined ‘S’ genera-
tions, the population is shuffled, and the search will be
continued using a new configuration of small swarms.
In the proposed DQPSO algorithm, the search is based
on quantum principles (QPSO) in each subswarm and
dynamic mixing of the results obtained through this
parallel searches contributes to move toward a global
solution. Figure 4 clearly depicts the proposed dynamic
QPSO implementation.

4.3 Hybrid dynamic quantum PSO algorithm

A larger diversity and faster convergence is always a
trade-off problem. Since large diversity is achieved in
the proposed dynamic quantum PSO algorithm, the
convergence characteristics inherent in the algorithm
may be lost. In order to alleviate this problem and also
to build much stronger intensification mechanism into
the algorithm, we propose to construct a hybrid version
of DQPSO algorithm by integrating a strong neigh-
borhood search algorithm. It is a well-known fact that
the meta-heuristic algorithms cannot compete with an
effective neighborhood algorithm in terms of intensi-

fied search and finding out the optimal value. How-
ever, the neighborhood search algorithms require a
good starting point to perform their search; otherwise,
they falter and often result in finding out local optima.
Here, the meta-heuristic algorithms help in supply-
ing the initial seed solutions for neighborhood algo-
rithm to explore and locate the global optima. Keeping
these things in view, we propose to improve the inten-
sification mechanism of the proposed DQPSO algo-
rithm by integrating it with a gradient free neighbor-
hood search algorithm called Nelder–Mead algorithm
[24]. Since the Nelder–Mead algorithm works with
multiple solutions simultaneously to improve the fit-
ness, it suits very well to integrate with the population-
based meta-heuristic algorithms. The Nelder–Mead
algorithm implemented in the proposed hybridDQPSO
algorithm is given in Fig. 5.

In the present work, we propose to perform neigh-
borhood search with NM algorithm, after each sub-
swarm inDQPSOalgorithmperforms theuser-specified
number (say ‘S’) of evolutions and after regrouping
stage. The NL best particles (solutions) obtained dur-
ing the regrouping stage are given as the input to NM
algorithm and was allowed to carry out the local search
as per theNMalgorithmgiven inFig. 5 till convergence.
Once the converged solutions from NM algorithm are
obtained, the particles with the improved solutions are
regrouped to perform the QPSO evolutions. The pro-
posed algorithm with the hybridization of NM with
DQPSO is termed as Hybrid Dynamic Quantum Parti-
cle Swarm Optimization (HDQPSO) algorithm.

4.4 Shrinking the search space

Shrinking the search space which basically aims to
increase the efficiency and possibly the accuracy of
identification algorithms by reducing (shrinking), the
large search space is not a new concept in meta-
heuristic algorithms and has been successfully imple-
mented in several earlier instances [25] showing a sub-
stantial improvement in the final results when dealing
with an initial large parameter search space. Hence, it
appears natural to adopt such a strategy within the pro-
posedHDQPSO algorithm. Here, we propose to imple-
ment the strategy related to shrinking the search space
as follows:

Initially, the HDQPSO algorithm is executed with
the initial search space and allowed to perform evolu-
tions in each subswarm following which the neighbor-
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Fig. 4 Dynamic quantum
PSO algorithm

t=1:MT

N - Size of Population
M - No. of groups

K- Group Size
D - Dimension

MT- Maximum Iteration
S - Maximum Inner

Iterations
NL- Number of Best

Solutions

Min.error or
Max.iterations ?

START

Define : Seach space, population & function
Initialize : Position , Velocity
Evaluate : Fitness, pbest & gbest of particles

ENDYes

evaluate
mbest,pbest

evaluate

l=1:K

j=1:D

evaluate

evaluate

j=j+1

evaluate

l=l+1

NN=NN+1

Yes

YesNo

No

No

Form M groups of K each from population, N

Groups, m=1:M

NN=1:S

m=m+1

COMBINE & SHUFFLE THE GROUPS

SORT & CHOSE 'NL' SOLUTIONS

NELDER-MEAD NEIGHBOURHOOD SEARCH

t=t+1

END
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hood search is performed using NM algorithm. Once
the improved solutions are obtained using theNMalgo-
rithm, we evaluate the weighted mean and weighted
standard deviation values of the identified parameters

to arrive at the bounds of the new search space for
each design variable. The weighted average and the
weighted standard deviation of the design variables can
be computed as
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Fig. 5 Nelder–Mead
algorithm
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γ j =
∑NS

q=1 W
γ
q γq j∑NS

q=1 W
γ
q

where j = 1 to nel;

d j =
∑NS

q=1 W
d
q dq j∑p

q=1 W
d
q

where j = 1 to p;

ψ j =
∑NS

q=1 W
ψ
q ψq j∑p

q=1 W
ψ
q

where j = 1 to p (36)

σγ j =
[∑NS

q=1 W
γ
q
(
γq j − γ j

)2
∑NS

q=1 W
γ
q

]1/2
where j = 1 to nel;

σd j =
⎡
⎣
∑NS

q=1 W
d
q

(
dq j − d j

)2
∑NS

q=1 W
d
q

⎤
⎦
1/2

where j = 1 to p

σψ j
=
⎡
⎣
∑NS

q=1 W
ψ
q
(
ψq j − ψ j

)2
∑NS

q=1 W
ψ
q

⎤
⎦
1/2

where j = 1 to p

(37)

where NS is the number of solutions andW γ
q ,Wd

q ,Wψ
q

are the weighted mean value of the j th design variable
of the three respective classes of design variables con-
sidered in the proposed inverse optimization process
and given as :

W γ
q = fitness(γq )

Best fitness
;Wd

q = fitness(dq )

Best fitness
;Wψ

q = fitness(ψq )

Best fitness
(38)

Once the weighted average and standard deviation of
each design variable are computed, we can update the
search space by arriving at lower and upper limits of
the reduced search space as follows:

γUL
j = γ j + λ1σγ j ; γ LL

j = γ j − λ1σγ j

dULj = d j + λ2σd j ; dLLj = d j − λ2σd j

ψUL
j = ψ j + λ3σψ j ;ψLL

j = ψ j − λ3σψ j (39)
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Fig. 6 Complete nonlinear system identification strategy of the proposed approach

where λ1, λ2 and λ3 are the carefully chosen positive
integer values and these values should be chosen in
such a way that they are not very small to force the
evolutionary process to stagnate. Sometimes it may be
possible that the shrunk search spacemay exceed either
on the limits originally given at the start of the algo-
rithm by the user. In that case we set these limits not
to exceed the original search space. The complete non-
linear identification process of the proposed approach
is illustrated in Fig. 6.

5 Numerical studies

Before carrying out the numerical investigations on the
three-stage nonlinear parametric identificationproblem
proposed in this paper, we first present a couple of real-
istic numerical examples to evaluate the performance
of the proposed HDQPSO algorithm in parameter esti-

mation of various kinds of nonlinear systems. For this
purpose, two classical nonlinear problems: breathing
crack problem and chaotic nonlinear duffing oscillator
are considered. The breathing crack problem is chosen
specifically as these breathing cracks generally initiated
due to persistent cyclic (fatigue) loading on structures
and will continue to propagate once developed. Sim-
ilarly, chaotic motions can be commonly observed in
several engineering systems like vibrations of a buck-
led beam, oscillations of articulated mooring towers,
and vortex resonance of cables.

The equation of motion of the beamwith a breathing
crack [26] can be written as

mẍ(t) + cẋ(t) + g[x(t)] = f (t) (40)

restoring force, g(x)

=
{

αkx x ≥ 0 when the crack is open
kx x < 0 when the crack is closed

(41)
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where m and c are the mass and damping, respectively;
x(t) is the displacement; k is the stiffness;α is known as
the stiffness ratio or loss factor (0 ≤ α ≤ 1), and f (t)
is the external force exciting the system. The loss factor
α is a function of response and equal to one when the
crack is closed (i.e. in linear state) and smaller than one,
when the crack is open (i.e. system exhibiting nonlin-
ear behavior). By modal transformation {x} = [Φ]{q},
we can easily arrive at the single-degree of freedom
equation for the fundamental mode of vibration as

q̈1(t) + 2ε1
√

αωq̇1(t) + αω2q(t) = f1(t) (42)

α =
{

Φk′Φ
ω2 when the crack is open

1 when the crack is closed
(43)

where Φ indicates the fundamental mode and ω is the
fundamental frequency and k′ represents the reduced
stiffness due to the crack. The system parameters of the
problem considered are m = 1 kg, k = 0.1N/m, c =
0.01Ns/m, stiffness ratio or loss factor α = 0.8 and the
system is subjected to harmonic excitation of about 1N
with forcing frequency of about 0.75Hz. The nonlinear
vibration response of a beam with breathing crack is
very well obtained through analyzing the response of
an equivalent bilinear oscillator. The bilinear frequency
ωB of bilinear oscillator is given by

ωB = 2ω0ω1

(ω0+ω1)
;ω0=

√
k

m
and ω1=

√
k′
m

=
√

αk

m
(44)

ωB = 2
√

α

(1 + √
α)

√
k

m
= 2

√
α

(1 + √
α)

ω0 (45)

where ω0 and ω1 are the natural frequencies of the
un-cracked and cracked beam, respectively, k and k′
are the stiffness corresponding to the un-cracked and
cracked states of the beam. Therefore, the identified lin-
ear and bilinear (nonlinear) frequencies of the system
considered are found to be 0.316 and 0.298Hz, respec-
tively. The time history responses are computed using
Newmark’s (constant average acceleration) time inte-
gration scheme combining with the Newton–Raphson
algorithm. The chosen sampling frequency is 100Hz.

For parameter estimation using HDQPSO, the num-
ber of subswarms is considered as 4 and the number
of swarms in each subswarm is considered as 5 with
total swarm size as 20. The solution is assumed to con-
verge, when the number of evolutions reaches 100 or
when there is no improvement in the solution in the last
five evolutions. The same parameters are considered
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Fig. 7 Convergence study—breathing crack

for first two numerical simulations presented in this
paper. The design variables considered for this breath-
ing crack problem aremass, stiffness, damping and loss
factor. The limits of the designvariables associatedwith
mass, stiffness, and damping are set as 0.1 to 10, and
the loss factor is in the range [0–1]. Using the pro-
posed HDQPSO, the stiffness loss factor is identified
as 0.8 which matches exactly with the original value
after 20 iterations with 25 numbers of evolutions. Sim-
ilarly the mass, stiffness, and damping are identified
with very high precision. The convergence characteris-
tic of the proposed HDQPSO algorithm is presented in
Fig. 7, comparingwith the classical QPSO andDQPSO
algorithms. Superior convergence characteristics of the
proposed HDQPSO algorithm are clearly shown in
Fig. 7.

A nonlinear chaotic duffing oscillator is considered
as the second numerical example [27]. The equation of
motion of duffing oscillator is given by

ẍ(t) + aẋ(t) − bx + cx3 = 2.1sin(1.8t) + u (46)

The system is in chaotic state when u = 0, a =
0.4, b = 1.1, and c = 1, and initial state values are
x = ẋ = 0. The limits of all the design variables (a, b
and c) are selected in the range [0–1]. As chaotic sys-
tems are highly sensitive to initial conditions, we prefer
to formulate the objective function in terms of phase
space rather than time series, and it is given as
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Fig. 8 Convergence study—chaotic oscillator

Objective function =
n∑

i=1

2∑
j=1

‖Yact(i, j) − Yest(i, j)‖

(47)

where n is the length of the time series and Y is a
matrix indicating Poincare map which depends on dis-
placement response. However, we can also use the dif-
ference in time series as objective function, but con-
trol term must be added in the cost function in case
of chaotic systems [28]. More details on the choice of
cost function for chaotic systems can be found in Jafari
et al. [28,29]. The identified parameters are found to
be exactly matching with the actual parameters. The
superiority of the proposed HDQPSO algorithm can
be clearly observed from the convergence plot shown
in Fig. 8 along with QPSO and DQPSO algorithms.

In order to demonstrate the effectiveness of the pro-
posed three-stage nonlinear parametric identification
algorithm presented in this paper, we prefer to choose
the extensively investigated nonlinear model [3], i.e.,
cantilever beam with nonlinear stiffness attachment or
alternatively with damper attachment at varied spatial
locations.

The cantilever beam model considered is shown in
Fig. 9. The span of the beam is 1.0m, and the cross-
sectional dimensions are 0.014×0.014m. Thematerial
properties are: Youngs Moduls, E = 2.1e11 Pa; mass
density, ρ = 7800 Kg/m3. Here the linear damping
matrix is constructed usingRayleigh damping. The first

Fig. 9 Cantilever beam

five Eigen frequencies of the linear beam, i.e., with-
out the nonlinear element, are 11.73, 73.54, 205.96,
403.87, and 668.67Hz, respectively. The nonlinearity
is introduced after 3500 time steps in a linear cantilever
beam for the simulation of nonlinear phenomena. The
beam is excited with ambient excitation of about 24
NRMS on free end for about 0.4 Sec in the frequency
band [1–800Hz]. The acceleration time history data
corresponding to translational degrees of freedom of
all active nodes are considered. The white Gaussian
noise in the form of SNR (SNR = 50) is added to the
acceleration time history before it is processed for all
the problems. Moreover, the noisy sequences affect-
ing different nodes are uncorrelated, in this way severe
experimental conditions are simulated. The response
corresponding to very low amplitude of excitation, i.e.,
0.4NRMS, exhibiting linear behavior is taken as the ref-
erence data. The chosen sampling frequency is 40kHz,
i.e., 50 times the maximum frequency contained in the
output signal.

In order to study the effectiveness of the proposed
algorithm, the following four types of simulations of
the above cantilever beam have been considered and
investigated.

Test case 1: Cantilever Beam (discretized with
10 elements) with a quadratic damper nonlinear
attachment at the end node (node no: 10) with
FCNL = 100ẋ210
Test case 2: Cantilever beam (discretized with 10
elements) with a cubic stiffness nonlinear attach-
ment at the end node (node no:10) with FKNL =
1e7x310
Test case 3: Cantilever beam (discretized with 10
elements) with cubic stiffness attachment at the
end node (node no: 10) with FKNL = 1e9x310
and quadratic stiffness attachment at the 8th node
(FKNL = 8e14x27 ) to demonstrate the identification
of multiple nonlinear locations
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Fig. 10 Singular value diagram of test case 1

Test case 4: Cantilever beam (discretized with 20
elements)with the odd stiffness attachment at nodes

12, 17 and 20 FKNL = 2.2e4x312 + 8e6x712FKNL =
4e5x317, FKNL = 1e7x320 respectively

The nonlinear indices (SSI & DoN) Plots are gener-
ated for all the test cases of the cantilever beam prob-
lem and the results obtained are shown in Figs. 10 and
11. The acceleration time history data of the nonlinear
system is partitioned into 10 equal data subsets with
sample length of 1600 each and the output data-driven
Hankel matrix of size 200 × 200 is constructed for
calculation of nonlinear indices. The following obser-
vations can bemade from the SSI andDoN plots shown
in Figs. 10 and 11, respectively

i. The singular value plot of test case 1 is shown in
Fig. 10. It can be observed from Fig. 10 that the
first 12 singular values are meeting the threshold
limit of 99.5% of energy and hence are consid-
ered for evaluation of residual matrix. Similar pro-
cedure of selecting singular values based on the

Fig. 11 Nonlinear
indicators. a Test case 1, b
test case 2, c test case 3, d
test case 4
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Fig. 12 Nonlinear location
index—cantilever problem.
a Test case 1, b test case 2, c
test case 3, d test case 4
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energy criteria is followed for all data subsets of
current data in all the test cases presented in this
paper.

ii. We can observe from the nonlinear indices plot
shown in Fig. 11 that the computed SSI and DoN
values for all the test cases of the cantilever prob-
lem exceeds the LLI after two data sets indicating
the exact time instant of incipience of nonlinearity.

iii. The DoN Values for the test case 2 is higher
than the test case 1 due to the hardening behavior
of the cubic stiffness attachment, while the DoN
Value of the test case 1 remains constant or get-
ting reduced due to the effect of damping in the
system.

iv The nonlinear indicator values of the test case 3 are
higher than the test cases 1 and test case 2 due to
the hardening behavior of the multiple nonlinear
stiffness attachment and similarly the values of test

case 4 are higher than all the earlier test cases due
to the hardening behavior of the multiple nonlinear
odd order stiffness attachment.

For spatial identification of nonlinearity, a trial function
with Q = 10 is used for the analysis and the nonlinear
location index is estimated using the procedure outlined
in the earlier section. The nonlinear location index (NL
I) plot is shown in Fig. 12 for all the test cases. The peak
value of the computed NLI Index is found to be at 10th
node for the test cases 1 and 2. We can also observe
from Fig. 12c and d that NLI value reaches maximum
at 8th and 10th node for test case 3, while for the test
case 4, it reaches the maximum value at 12th, 17th
and 20th node respectively. From these investigations,
we can conclude that the nonlinear location index pro-
posed based on reverse path concept, identify the pre-
cise location of various nonlinear attachments. Once

123



Nonlinear parametric identification strategy 813

Table 1 Nonlinear parameter identification using hybrid dynamic quantum PSO algorithm

S. no Problem type Actual nonlinearity Assumed polynomial Location Identified parameters Number of
iterations

ψ
j
1 ψ

j
2 ψ

j
3 d j

1 d j
2 d j

3

1 Test case 1 FCNL = 100ẋ210 ψ10
1 ed

10
1 ẋ210 10 10 – – 2 – – 16

2 Test case 2 FKNL = 1e7x310
ψ10
1 ed

10
1 x210 + ψ10

2 ed
10
2 x310

+ ψ10
3 ed

10
3 x410

10 0.5 10 16 1 6 1 51

3 Test case 3
FKNL = 1e9x310
FKNL = 8e14x28

ψ
j
1 e

d j
1 x2j + ψ

j
2 e

d j
2 x3j

+ ψ
j
3 e

d j
3 x4j

10 0.1 10 8 1 8 0.1 85

7 80 0.4 4 13 3 0.1

4 Test case 4

FkNL = 2.2e4x312+ 8e6x712
FKNL = 4e5x317
FKNL = 1e7x320

ψ
j
1 e

d j
1 x3j + ψ

j
2 e

d j
2 x5j

+ ψ
j
3 e

d j
3 x7j

12 30 2 73 3 0.1 5 92

17 39 – 19 4 – 2

20 11 – 39 6 – 1

the spatial location of the nonlinearity is detected, we
can use the proposed HDQPSO algorithm to iden-
tify the nonlinear parameters. The design variables for
parameter estimation are element stiffness coefficients
γ = {γ1, γ2, γ3, . . . , γNel} ∈ �nel and the nonlin-

ear coefficients d =
{
d j
1 , d j

2 , d j
3 , . . . , d j

p

}
∈ �P and

ψ =
{
ψ

j
1 , ψ

j
2 , ψ

j
3 , . . . , γ

j
p

}
∈ �P . The lower limits

of the design variables γ,ψ and d j
i are initially consid-

ered as 0.1, 0.1 and 2, respectively. Similarly the upper
limits are set as 1100 and 10, respectively ,for γ,ψ

and d j
i . For parameter estimation using HDQPSO, the

number of subswarms is considered as 6 and the num-
ber of swarms in each subswarm is considered as 5
with total swarm size as 30. The solution is assumed
to converge, when the number of evolutions is 500 or
when there is no improvement in the solution in the last
five evolutions. The nonlinear parameters obtained are
shown in Table 1. It can be observed from the results
presented in Table 1 that the identified parameters of all
the test cases are comparing with the actual nonlinear
parameters. It can also be observed fromFig. 13 that the
convergence is found to be monotonic and converged
rapidly in only 16 iterations for test case 1 and simi-
larly, the convergencme occurred after 51, 85, and 90
iterations for other test cases 2, 3, and 4 respectively.

6 Conclusion

In this paper, we have presented an approach for non-
linear system identification of structures. The proposed

method is organized in to three stages. In the first stage,
we use null-subspace-based approach to identify the
presence of nonlinearity and also degree of nonlinear-
ity. The nonlinear indices (SSI and DoN) are computed
using the change in the orthonormality between the
column null subspace of the reference data and the col-
umn active subspace of the current data. While SSI can
be used to determine the presence of nonlinearity in
the system, DoN will help in determining the inten-
sity measure of nonlinearity in the system. The DoN
index can be used to decide on whether linear dam-
age indicators derived from the system are valid or we
have to use the nonlinear damage indicators for health
monitoring of structures. Numerical studies presented
in this paper clearly indicate the robustness of the Null
subspace method for identifying the presence of non-
linearity even with noisy measurements.

The major advantage of the null-space-based app-
roach for detection of nonlinearity is that it can be
easily extended to systems provided with very limited
sensors. This approach directly uses acceleration time
history data and does not require any signal processing
or transformations. Further, the proposed technique is
well suited for civil engineering applications as it uti-
lizes ambient vibration data and also for online health
monitoring to identify the exact instant of time where
the structure exhibits the nonlinear behavior.

The second stage of parametric identification is to
identify the precise location of nonlinear element. Here
we use an approach devised using the concept of the
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Fig. 13 Convergency
study—cantilever
problem—HDQPSO. a Test
case 1, b test case 2, c test
case-3, d test case-4
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reverse path method. The major advantages of the pro-
posed approach are that it is based on randomexcitation
and force can be even applied at a single location in a
structure (SIMOsystems), and there is noneed toobtain
the responses with varied levels of excitation unlike
several earlier approaches. Further, the proposed algo-
rithm does not require any prior information regarding
the corresponding linear system. Numerical simulation
studies carried out and presented in this paper clearly
indicate that the proposed algorithm can identify sin-
gle as well as multiple locations of nonlinear elements
very precisely evenwith noisymeasurements. It should
be mentioned here that we require high sampling rate
of the data in order to suppress the leakage effect and
statistical errors due to the noise in the estimators. It
can be further improved if one can possibly reduce the
search space (i.e., the number of possible locations to
search) when using this approach.

Structural parameter identification is a very chal-
lenging task from the computational point of view. In
the third stage, we identify the parameters using the
appropriate data subsets reflecting the nonlinear behav-
ior, isolated from the first stage and also using the
information of precise location of nonlinear elements
present, in the current system.Thenonlinear parametric
identification problem is formulated as an inverse prob-
lem and the resulting nonlinear complex optimization
problem is solved using the newly developedHDQPSO
algorithm. Numerical simulation studies carried out
for all the test cases clearly indicate that the proposed
meta-heuristic algorithm identify the nonlinear para-
meters with minimal error. Robustness and computa-
tional efficiency of the proposed HDQPSO algorithm
is demonstrated by solving two practical engineering
problems associated breathing crack and chaos by com-
paring with classical QPSO and DQPSO.
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