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Abstract In this paper, we study an issue of stability
analysis for Clifford-valued recurrent neural networks
(RNNs) with time delays. As an extension of real-
valued neural network, the Clifford-valued neural net-
work, which includes familiar complex-valued neural
network and quaternion-valued neural network as spe-
cial cases, has been an active research field recently.
To the best of our knowledge, the stability problem
for Clifford-valued systems with time delays has still
not been solved. We first explore the existence and
uniqueness for the equilibrium of delayed Clifford-
valued RNNs, based on which some sufficient condi-
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tions ensuring the global asymptotic and exponential
stability of such systems are obtained in terms of a lin-
ear matrix inequality (LMI). The simulation result of a
numerical example is also provided to substantiate the
effectiveness of the proposed results.

Keywords Clifford-valued recurrent neural net-
works · Time delay · Global asymptotic stability ·
Global exponential stability

1 Introduction

In the past years, many efforts have been spent in appli-
cations of neural networks to different fields along
with the rising research interests of artificial neural
networks. The various papers studying the real-valued
neural networks are available on the Internet. Through
the study of the past few decades, the research of
the real-valued neural networks is mature, see [1–14].
Meanwhile, the research of complex-valued neural net-
works has achieved gratifying success under the per-
severant efforts. Complex-valued RNNs have been an
indispensable part in practical applications such as
physical systems dealing with electromagnetic, ultra-
sonic, quantumwaves, and light and show a remarkable
advantage in various fields of engineering.

Several models of complex-valued neural networks
have been established [15–21]. In [15], a delayed
complex-valued recurrent neural network with two
types of complex-valued activation functions was stud-
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ied. Some sufficient conditions to ensure the existence
and uniqueness equilibrium and the global asymp-
totic and exponential stability were obtained. In [17],
a complex-valued recurrent neural network was stud-
ied by separating complex-valued neural networks into
real and imaginary parts, and forming an equivalent
real-valued system. Then sufficient conditions were
provided to guarantee the existence, uniqueness and
global asymptotic stability of the complex-valued equi-
librium point. Moreover, quaternion-valued neural net-
works are proposed and actively studied [22,23].

Clifford algebra (geometric algebra) was introduced
by William K. Clifford (1845–1879). It has been
applied to various fields such as neural computing,
computer and robot vision, image and signal process-
ing, control problems and other areas due to its prac-
tical and powerful framework for the representation
and solution of geometrical problem, see [24–30] and
references therein. Recently, as an extension of real
value models, Clifford neural networks has become
an active research field. Neural networks for function
approximation require feature enhancement, rotation
and dilatation operations. These operations are limited
by the Euclidean metric in real-valued neural networks
and can be carried out more efficiently in Clifford-
valued neural networks due to the Clifford algebra
coordinate-free framework which allows to process
patterns between layers and make the metric possible
only due to the promising projective split. A multi-
layered Clifford neural network model was fist pro-
posed by Pearson in [31,32]. Then, Buchholz derived
that the Clifford multilayer neural networks perform
superior to the usual real-valued neural networks in
[33,34]. In part II of[35], Sommer learned the Moe-
bius transformations in Clifford algebra and pointed
that Moebius transformations cannot be available to
the usual real-valued neural networks. Clifford RNNs
were first proposed by Y. Kuroe in [28] and [36]. In
[28], three models of fully connected Clifford-valued
Hopfield-type RNNs were proposed. Sufficient condi-
tions for the existence of an energy function for two
classes of Clifford-valued Hopfield-type RNNs were
discussed. In [29], a novel self-organizing-type radial
basis function (RBF) neural network was presented,
and the neural computing fieldwas extended to the geo-
metric algebra. In [30], neural computation in Clifford-
valued domain was studied.

Time delay is a main source of causing oscilla-
tion controllability and instability and has been recog-

nized that is an inherent feature of signal transmission
between neurons [5,37,38]. In this paper, we study
the Clifford-valued recurrent neural networks with
propagation delay rather than process delay (intrinsic
delay such as autapse type) investigated in [39,40].
In the past few decades, the stability of neural net-
works with time delays has been an attractive sub-
ject of research, see [1,3,6,12,15–18,41] and so on.
The stability criteria for delayed neural networks can
be divided into two categories: delay-independent sta-
bility and delay-dependent stability. The later one is
less conservative, especially when the delay is small
[37].

Motivated the above discussions, we investigate
the stability of Clifford-valued recurrent neural net-
works with time delays in this paper. To the best
of our knowledge, there is no result on such topic.
Comparedwith complex-valued andquaternion-valued
neural networks, the main challenge is that the prod-
uct of Clifford-valued elements with the involution is
not a constant real number in general. Therefore, in
this paper, we use the properties eAēA = ēAeA = 1
to transform the complicated Clifford-valued RNNs
into higher dimensional real-valued RNNs. Then, an
asymptotic delay-independent stability condition and
a delay-dependent exponential stability criterion of the
considered Clifford-valued RNNs are derived. More-
over, we estimate the exponential convergence rates
with the constant delay. The results can reduces to real-
valued, complex-valued and quaternion-valued neural
networkswhenm = 0,m = 1 andm = 2, respectively.
Compared with the delay-independent results of [15–
17] for complex-valued RNNs, our delay-dependent
condition is less conservative when m = 1.

The paper is organized as follows. In Sect. 2, we
introduce some notations used in the Clifford analysis,
the model description and some definitions and lam-
mas needed. Section 3 presents sufficient conditions to
ensure the existence of the unique equilibrium, as well
as the global asymptotic and exponential stability of the
considered Clifford-valued RNNs. In Sect. 4, a numer-
ical example is given to demonstrate the effectiveness
of the proposed results.

2 Preliminaries

Throughout this paper, Rn , A n , Rm×n and A m×n

represent, respectively, the n-dimensional real vector
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space, the n-dimensional real Clifford vector space, the
set of allm×n real matrices and the set of allm×n real
Clifford matrices. The superscript ‘T’ and ‘*’ denote,
respectively, the matrix transposition and the matrix
involution transposition. For a square real matrix B,
[B]s is defined by [B]s = (B + BT )/2. For simplicity,
we denote xτ = x(t − τ) and xτ

k = xk(t − τ).

2.1 The Clifford algebra A

A equippedwithm generators is defined as theClifford
algebra over the real number R with m multiplicative
generators e1, e2, · · · , em called Clifford generators
which satisfy the following relations

{
ei e j + e j ei = 0 i �= j,
e2i = −1 i = 1, 2, 3, . . . ,m.

For simplicity, when one element is the prod-
uct of multiple Clifford generators, we will write its
subscripts together. For example e1e2 = e12 and
e6e2e4e5 = e6245. Then A has its basis as follows:

{eA = eh1h2···hr , 1 ≤ h1 < h2 < · · · < hr ≤ m}. (1)

Therefore the real Clifford algebra consists of ele-
ments such as a = ∑

A
x AeA, where x A ∈ R is a

real number. In particular, when A = ∅, then e∅ can
be denoted as e0 and x0 is the coefficient of the e0-
component, see [42]. From these properties, it is con-
cluded that

dimA =
m∑

k=0

(
m

k

)
=

m∑
k=o

m!
k!(m − k)! = 2m .

Similar to the complex domain, the inversion for an
arbitrary basic vector can be defined as follows:

(eh1h2···hr )� = (−1)r eh1h2···hr ,

or

e�
A = (−1)n(A)eA.

where n(A) is r as eA = eh1h2···hr .
Next, the main anti-automorphism in the Clifford

algebra is called reversion or hermitian conjugation and
given by

e†A = (−1)
(n(A)−1)n(A)

2 eA.

Now, we present the involution which is a combi-
nation of the reversion and the inversion introduced
above. It is given as follows for a basic vector

ēA = e�†
A = (−1)

n(A)(n(A)+1)
2 eA.

From the definition, it is directly deduced that eAēA
= ēAeA = 1. Moreover, for any Clifford num-
ber x = ∑

A
x AeA, its involution can be denoted by

x̄ = ∑
A
x AēA. In addition to this, the involution also

satisfies xy = ȳ x̄, ∀x, y ∈ A .

The inner product in Clifford domain is defined as
follows

(γ, β)0 := 2m[γ β̄]0 = 2m
∑
A

γ Aβ A ∀ γ, β ∈ A ,

where [γ β̄]0 denotes the coefficient of its e0-com-
ponent. The norm on A is correspondingly defined as
| γ |0= √

(γ, γ )0. Thus A is a real Hilbert space and
satisfies the Banach algebra with

| γβ |0≤| γ |0| β |0, ∀ γ, β ∈ A .

Next we introduce a real functional on A , that is,
τeA : A → R

〈τeA , γ 〉 = 2m(−1)
(n(A)+1)n(A)

2 γ A.

As a special case of A = ∅, we have

〈τe0 , γ 〉 = 2m[γ ]0.

Therefore, it is concluded that | γ |20= 2m[γ γ̄ ]0 =<

τe0 , γ γ̄ >.
Finally, the definition of the derivative for z(t) =∑

A
zA(t)eA is given as:

ż(t) =
∑
A

ż A(t)eA.

where zA(t) is a function with real value.

Due to eBēA = (−1)
n(A)(n(A)+1)

2 eBeA, we can sim-
plify and express eBēA = eC or eBēA = −eC with eC
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being some basis of Clifford algebra in (1). For exam-
ple, e12ē23 = −e12e23 = −e1e2e2e3 = e1e3 = e13.
Hence it is possible to find a unique corresponding basis
eC for the given eBēA. Defining n(B · Ā) satisfying that
n(B · Ā) = 0 when eBēA = eC and n(B · Ā) = 1 when
eBēA = −eC , based on which eBēA = (−1)n(B· Ā)eC .
Moreover, for K = ∑

C
KCeC ∈ A , we define K B· Ā =

(−1)n(B· Ā)KC for eBēA = (−1)n(B· Ā)eC . Therefore,

K B· ĀeB ēA = K B· Ā(−1)n(B· Ā)eC

= (−1)n(B· Ā)KC (−1)n(B· Ā)eC = KCeC .

2.2 Model formulation and basic lemmas

Consider the following Clifford-valued RNNs with
time delay

{
ż(t) = −Dz(t) + K f (z(t)) + Lg(z(t − τ)) + u,

z(t) = ϕ(t), t ∈ [−τ, 0],
(2)

where z = (z1(t), z2(t), · · · , zn(t))T ∈ A n denotes
the state vector, the self-feedback connection weight
matrix D satisfies D = diag(d1, d2, · · · , dn) ∈ R

n×n

with di > 0 (i = 1, 2, · · · , n), K = (ki j )n×n ∈
A n×n , L = (li j )n×n ∈ A n×n are the connection
weightmatriceswithout andwith timedelay. f (z(t)) =
( f1(z1(t)), f2(z2(t)), · · · , fn(zn(t)))T : A n → A n

is the vector-valued activation function. g(z(t − τ)) =
(g1(z1(t−τ1)), g2(z2(t−τ2)), · · · , gn(zn(t−τn)))

T :
A n → A n is the vector-valued activation function
with time delay, where elements of f (z(t)) and g(z(t))
are composed of Clifford-valued nonlinear functions.
τi (i = 1, 2, · · · , n) and u = (u1, u2, · · · , un)T ∈ A n

are constant time delays and the external input vector,
respectively.

Now some basic definition and lemmas are pre-
sented which will be utilized in the following stability
analysis.

Definition 1 Vector z is called an equilibrium point of
the Clifford-valued RNNs (2) if it satisfies

−Dz(t) + K f (z(t)) + Lg(z(t)) + u = 0. (3)

Lemma 1 ([15]) If H(x) : R2mn → R
2mn is a contin-

uous function and satisfies the following conditions:

(1) H(x) is injective on R
2mn;

(2) lim‖x‖→∞ ‖H(x)‖ → ∞ as ‖x‖ → ∞, where || · ||
denotes the norm of R2mn;

then H(x) is a homeomorphism of R2mn.

Lemma 2 ([37]) For positive definite matrix P ∈
R
n×n, positive real constant ε and a, b ∈ R

n, it holds
that aT b + bT a ≤ εaT Pa + ε−1bT P−1b.

Lemma 3 (Schur Complement) Given constant matri-
ces P, Q and R, where PT = P, QT = Q, then(

P R
RT Q

)
> 0

is equivalent to the following inequalities

Q > 0, P − RQ−1RT > 0.

Assumption 1 Functions fi (z), gi (z) (i = 1, 2,
· · · , n) satisfy the Lipschitz continuity condition re-
garding to the n-dimensional Clifford vector. That is,
for each i = 1, 2, · · · , n, there exist positive constants
ξi , ηi such that for any z, z′ ∈ A ,

| fi (z) − fi (z
′) |0≤ ξi | z − z′ |0

| gi (z) − gi (z
′) |0≤ ηi | z − z′ |0 (4)

where ξi , ηi (i = 1, 2, · · · , n) are called Lipschitz
constants.

3 Main Results

Firstly, we rewrite the Clifford-valued RNNs with the
help of eAēA = ēAeA = 1 and eBēAeA = eB .
From the definition of KC , it is easy to find a unique
KC satisfying KCeC f AeA = (−1)n(B· Ā)KC f AeB =
K B· Ā f AeB , which implies the following system trans-
formation. Decomposing (2) into ż = ∑

A
ż AeA, it fol-

lows that

ż A = −DzA +
∑
B

K A·B̄ f B(z)

+
∑
B

L A·B̄ gB(zτ ) + uA, (5)

where K A = (kAi j )n×n, L A = (l Ai j )n×n, uA = (uA
1 ,

uA
2 , · · · , uA

n )T , and f A(z) = ( f A1 (z1), f A2 (z2), · · · ,

f An (zn))T , gA(zτ ) = (gA
1 (zτ1), g

A
2 (zτ2), · · · , gA

n (zτn))
T .
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According to the basis of Clifford algebra, we are
here to rewrite the Clifford-valued RNNs by novel real-
valued ones.

Let

w=
(
(z0)T , (z1)T , (z2)T , · · · , (zA)T ,

· · · , (z12···m)T
)T ∈ R

2mn,

f (w)=
(
( f 0(z))T , ( f 1(z))T , ( f 2(z))T , · · · , ( f A(z))T ,

· · · , ( f 12···m(z))T
)T

,

g(wτ )=
(
(g0(zτ ))T , (g1(zτ ))T , (g2(zτ ))T ,

· · · , (gA(zτ ))T , · · · , (g12···m(zτ ))T
)T

,

u=(
(u0)T , (u1)T , (u2)T , · · · , (uA)T , · · · , (u12···m)T

)T
,

D̄ =

⎛
⎜⎜⎜⎜⎝

D 0 · · · 0

0 D · · · 0
...

...
. . .

...

0 0 · · · D

⎞
⎟⎟⎟⎟⎠

2mn×2mn

,

K̄ =

⎛
⎜⎜⎜⎜⎜⎝

K 0 · · · K Ā · · · K 12···m

K 1 · · · K 1· Ā · · · K 1·12···m
... · · · ... · · · ...

K 12···m · · · K 12···m· Ā · · · K 1···m·1···m

⎞
⎟⎟⎟⎟⎟⎠

2mn×2mn

,

L̄ =

⎛
⎜⎜⎜⎜⎜⎝

L0 · · · L Ā · · · L12···m

L1 · · · L1· Ā · · · L1·12···m
... · · · ... · · · ...

L12···m · · · L12···m· Ā · · · L12···m·12···m

⎞
⎟⎟⎟⎟⎟⎠

2mn×2mn

,

M̄ =

⎛
⎜⎜⎜⎜⎝

MT M 0 · · · 0

0 MT M · · · 0
...

...
. . .

...

0 0 · · · MT M

⎞
⎟⎟⎟⎟⎠

2mn×2mn

,

N̄ =

⎛
⎜⎜⎜⎜⎝

NT N 0 · · · 0

0 NT N · · · 0
...

...
. . .

...

0 0 · · · NT N

⎞
⎟⎟⎟⎟⎠

2mn×2mn

,

then it is deduced from (5) that

{
ẇ = −D̄w + K̄ f̄ (w) + L̄ ḡ(wτ ) + ū,

w(t) = φ(t), t ∈ [−τ, 0]. (6)

Meanwhile,we canobtain the following inequalities:
‖ f̄ (w) − f̄ (w′)‖2 ≤ (w − w′)T M̄(w − w′), (7)

‖ḡ(w) − ḡ(w′)‖2 ≤ (w − w′)T N̄ (w − w′), (8)

according to

〈τe0 , ( f (z) − f (z′))∗( f (z) − f (z′))〉
≤ 〈τe0 , (z − z′)∗MT M(z − z′)〉,

〈τe0 , (g(z) − g(z′))∗(g(z) − g(z′))〉
≤ 〈τe0 , (z − z′)∗NT N (z − z′)〉

from Assumption 1, where

M = diag{ξ1, ξ2, · · · , ξn},
N = diag{η1, η2, · · · , ηn}.

Theorem 1 Under Assumption 1, a Clifford-valued
RNNs (2) has an unique equilibrium point and it is
globally asymptotically stable if there exist a positive
P ∈ R

(2mn)×(2mn) and positive real constants ε1, ε2
such that the following LMI holds:⎛
⎝ P D̄ + D̄P − ε1M̄ − ε2 N̄ P K̄ P L̄

K̄ T P ε1 I 0
L̄T P 0 ε2 I

⎞
⎠ > 0. (9)

Proof It is obvious that the existence and uniqueness
of the equilibrium point of the real-valued system (6)
as well as its global asymptotic stability are equivalent
to those of the Clifford-valued RNNs (2).

Define H(w) = −D̄w + K̄ f̄ (w) + L̄ ḡ(w) + ū
for convenience. First, we prove the injectiveness of
the map H(w) under the given condition. Suppose that
there exists w and w′ (w′ �= w) satisfying H(w′) =
H(w), then we get

− D̄(w − w′) + K̄ ( f̄ (w) − f̄ (w′))
+ L̄(ḡ(w) − ḡ(w′)) = 0. (10)

Left-multiplying both sides of the above equation
by 2(w − w′)T P gives that

2(w − w′)T P
( − D̄(w − w′) + K̄ ( f̄ (w)

− f̄ (w′)) + L̄(ḡ(w) − ḡ(w′))
) = 0,
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that is to say

(w − w′)T (−D̄P − P D̄)(w − w′)
+ 2(w − w′)T P K̄ ( f̄ (w) − f̄ (w′))
+ 2(w − w′)T P L̄(ḡ(w) − ḡ(w′)) = 0. (11)

Using Lemma 2 and (7)–(8), the left side of equality
(11) can be transformed into the following form

(w − w′)T (−D̄P − P D̄)(w − w′)
+ 2(w − w′)T P K̄ ( f̄ (w) − f̄ (w′))
+ 2(w − w′)T P L̄(ḡ(w) − ḡ(w′))

≤ (w − w′)T (−D̄P − P D̄)(w − w′)
+ ε−1

1 (w − w′)T P K̄ K̄ T P(w − w′)
+ ε−1

2 (−w′)T P L̄ L̄T P(w − w′) + ε1( f̄ (w)

− f̄ (w′))T ( f̄ (w) − f̄ (w′)) + ε2(ḡ(w)

− ḡ(w′))T (ḡ(w) − ḡ(w′))
≤ (w − w′)T (−D̄P − P D̄)(w − w′)

+ ε−1
1 (w − w′)T P K̄ K̄ T P(w − w′)

+ ε−1
2 (w − w′)T P L̄ L̄T P(w − w′)

+ ε1(w − w′)T M̄(w − w′)
+ ε2(w − w′)T N̄ (w − w′)

= −(w − w′)T (D̄P + P D̄ − ε−1
1 P K̄ K̄ T P

− ε−1
2 P L̄ L̄T P − ε1M̄ − ε2 N̄ )(w − w′). (12)

Due to Schur Complement and LMI condition (9),
one derives

D̄P + P D̄ − ε−1
1 P K̄ K̄ T P − ε−1

2 P L̄ L̄T P

− ε1M̄ − ε2 N̄ > 0.
(13)

Therefore, H(w) − H(w′) < 0, which is a contra-
diction to (11), and hence the map H(w) is injective.

Secondly, we will show that lim‖w‖→∞ ‖H(w)‖ → ∞
as ‖w‖ → ∞. It comes from (13) that

− D̄P − P D̄ + ε−1
1 P K̄ K̄ T P + ε−1

2 P L̄ L̄T P

+ ε1M̄ + ε2 N̄ < −ε I

holds for some sufficiently small ε > 0. Assume that
w′ = 0, we have

2wT P(H(w) − H(0))

≤ wT (−D̄P − P D̄ + ε−1
1 P K̄ K̄ T P + ε−1

2 P L̄ L̄T P

+ ε1M̄ + ε2 N̄ )w

≤ −ε‖w‖2.

From the above inequality and Schwartz inequality,
it is obtained that

ε‖w‖2 ≤ 2‖w‖‖P‖(‖H(w)‖ + ‖H(0)‖),

which means

ε‖w‖
2‖P‖ ≤ ‖H(w)‖ + ‖H(0)‖.

Therefore, lim‖w‖→∞ ‖H(w)‖ → ∞ as ‖w‖ → ∞.

According to Lemma 1, the map H(w) is homeomor-
phismonR2mn . Thus there exists an unique equilibrium
point ŵ for (6).

In the following,wewill prove the global asymptotic
stablity of (6). First of all, we shift the equilibriumpoint
of (6) into the origin by the transformation w̃ = w−ŵ,
and rewrite (6) as

˙̃w = −D̄w̃ + K̄ f̃ (w̃) + L̄ g̃(w̃τ ), (14)

where f̃ (w̃) = f̄ (w̃ + ŵ) − f̄ (ŵ) and g̃(w̃τ ) =
ḡ(w̃τ +ŵ)− ḡ(ŵ). It is clear that the system (6) is glob-
ally asymptotically stable if the system (14) is globally
asymptotically stable for the origin. Construct the fol-
lowing Lyapunov-Krasovskii functional:

V (w̃(t)) = w̃T (t)Pw̃(t) +
∫ t

t−τ

g̃(w̃(s))T g̃(w̃(s))ds.

The time derivative of V (w̃(t)) along the trajectories
of system (14) is given by

V̇ (w̃(t)) = −w̃T (P D̄ + D̄P)w̃ + 2w̃T P K̄ f̃ (w̃)

+ 2w̃T P K̄ g̃(w̃τ ) + g̃(w̃)T g̃(w̃)

− g̃(w̃τ )T g̃(w̃τ )

≤ −w̃T (P D̄ + D̄P)w̃

+ ε−1
1 w̃T P K̄ K̄ T Pw̃ + ε−1

2 w̃T P L̄ L̄T Pw̃

+ ε1 f̃ (w̃)T f̃ (w̃) + ε2 g̃(w̃)T g̃(w̃)

≤ −w̃T (D̄P + P D̄ − ε−1
1 P K̄ K̄ T P

− ε−1
2 P L̄ L̄T P − ε1M̄ − ε2 N̄ )w̃.
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Considering the inequality condition (9) and the
SchurComplement,we canget D̄P+P D̄−ε−1

1 P K̄ K̄ T

P − ε−1
2 P L̄ L̄T P − ε1M̄ − ε2 N̄ > 0, which means

V̇ (w̃(t)) < 0 when w̃(t) �= 0. Therefore, the Clifford-
valued RNNs (2) are globally asymptotically stable.

��
Remark 1 The obtained result can be easily applied to
real-valued and complex-valued RNNs. When m = 0,
the considered system reduces to the real-valuedRNNs.
For m = 1, it can be regarded a complex-valued
RNNs. In [15], the nonsingular M-matrix was used
on the stability analysis for complex-valued RNNs.
Comparing Assumption 1 in this paper with Assump-
tion 1 of [15], it is noticed that [15] needs some
additional restrictions on the existence, continuity and
boundedness conditions for the partial derivatives of
the activation functions. While m = 2, we can
derive the global asymptotic stability of quaternion-
valued neural networkswhich has not been investigated
either.

Corollary 1 Under Assumption 1, a Clifford-valued
RNN (2) has an unique equilibrium point and it is glob-
ally exponentially stable if there exist a positive definite
matrix P and a scalar k > 0 such that the following
LMI holds:

⎛
⎝ P D̄ + D̄P − M̄ − N̄ − 2kP P K̄ ekτ P L̄

K̄ T P I 0
ekτ L̄T P 0 I

⎞
⎠ > 0.

Moreover

‖w − ŵ‖ ≤
√

λM (P)

λm(P)
+ λM (N̄ )

λm(P)

1 − e−2kτ

2k
‖φ‖e−kt .

Proof The proof is similar to that of Theorem 1 and
hence is omitted here. The main idea is sketched as
follows.

As to the inequality (12), we could magnify it into
the following form:

0 ≤ −(w − w′)T (D̄P + P D̄ − P K̄ K̄ T P

− P L̄ L̄T P − M̄ − N̄ )(w − w′)
≤ −(w − w′)T (D̄P + P D̄ − 2kP − P K̄ K̄ T P

− e2kτ P L̄ L̄T P − M̄ − N̄ )(w − w′).

On the other hand, the corresponding Lyapunov-
Krasovskii functional is taken the following form:

V (w̃(t)) = e2kt w̃T (t)Pw̃(t)

+
∫ t

t−τ

e2ks g̃(w̃(s))T g̃(w̃(s))ds,

based on which the global exponential stability could
be obtained. ��
Remark 2 In [15–17], a delay-independent global
asymptotic stability of complex-valued RNNs is stud-
ied, while Corollary 1 gives a delay-dependent global
exponential stability criterion which is less conserv-
ative. Moreover, the exponential convergence rates is
estimated in the obtained results as well.

4 An Example

In this section, wewill demonstrate Theorem 1 through
the following example.

Consider a two-neuron Clifford-valued RNN des-
cribed by

{
ż(t) = −Dz(t) + K f (z(t)) + Lg(z(t − τ)) + u,

z(t) = ϕ(t), t ∈ [−τ, 0],

where

D =
(
60 0

0 70

)
, L =

(
−2 1 + e12 − 3e123

1 − e12 + 3e123 2 − 2e13 − 2e23

)
,

K =
(

−3 − e2 − e3 + 0.5e13 − e12 + 0.5e23 −1 − e1 + e123

1 + e1 + 3e13 − e123 + 3e23 3 − 2e2 − 2e3 − 2e12

)
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and the activation functions are

f j (z j ) = 1

1 + e−x0j
− 1

2(1 + e−x2j )
e2

+ 2

3(1 + e−x12j )
e12 − 2

1 + e−x123j

e123 ( j = 1, 2),

g j (z j ) = 1

2(1 + e−x3j )
e3 − 1

1 + e−x13j
e13

− 3

4(1 + e−x23j )
e23 +

√
2

1 + e−x123j

e123 ( j = 1, 2)

with z j = ∑
A
x A
j eA ∈ A for j = 1, 2. We choose

the constant delay parameters τ = {τ1, τ2} = {0.5, 1}
and the initial state ϕ1(t) = 2(2.5e0 − 4.5e1 + 4e2 −

3e3 + 1.5e12 − 2e13 + 6e23 − e123) for t ∈ [−τ1, 0],
and ϕ2(t) = 2(−2.5e0 + 1.5e1 − 9e2 + 3e3 − 6e12 +
5e13 − 4e23 + 8.5e123) for t ∈ [−τ2, 0]. According to
their definitions, we have

K 0 =
(−3 −1

1 3

)
, K 1 =

(
0 −1
1 0

)
,

K 123 =
(

0 1
−1 0

)
, K 2 = K 3 = K 12 =

(−1 0
0 2

)
,

K 13 = K 23 =
(
0.5 0
3 0

)
, L123 =

(
0 −3
3 0

)
,

L0 =
(−2 1

1 2

)
, L12 =

(
0 1

−1 0

)
,

L1 = L2 = L3 =
(
0 0
0 0

)
, L13 = L23 =

(
0 0
0 2

)
,

M =
(
4 0
0 4

)
, N =

(
2 0
0 2

)
.

Based on the definition of K̄ and L̄ , we can obtain

K̄ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

K 0 −K 1 −K 2 −K 3 −K 12 −K 13 −K 23 K 123

K 1 K 0 −K 12 −K 13 K 2 K 3 −K 123 −K 23

K 2 K 12 K 0 −K 23 −K 1 K 123 K 3 K 13

K 3 K 13 K 23 K 0 −K 123 −K 1 −K 2 −K 12

K 12 −K 2 K 1 −K 123 K 0 −K 23 −K 13 −K 3

K 13 −K 3 K 123 K 1 K 23 K 0 −K 12 K 2

K 23 −K 123 −K 3 K 2 −K 13 K 12 K 0 −K 1

K 123 K 23 −K 13 K 12 K 3 −K 2 K 1 K 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

L̄ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

L0 −L1 −L2 −L3 −L12 −L13 −L23 L123

L1 L0 −L12 −L13 L2 L3 −L123 −L23

L2 L12 L0 −L23 −L1 L123 L3 L13

L3 L13 L23 L0 −L123 −L1 −L2 −L12

L12 −L2 L1 −L123 L0 −L23 −L13 −L3

L13 −L3 L123 L1 L23 L0 −L12 L2

L23 −L123 −L3 L2 −L13 L12 L0 −L1

L123 L23 −L13 L12 L3 −L2 L1 L0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

It can be checked that when ε1 = ε2 = 1, there
exists a positive matrix P = (P1 P2 P3) satisfying (9)
with
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P1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2.6449 0.2637 0.0324 −0.2347 0.0081
0.2637 1.7957 0.2008 −0.0737 −0.3096
0.0324 0.2008 2.5660 0.2831 −0.0648

−0.2347 −0.0737 0.2831 1.6878 −0.1734
0.0081 −0.3096 −0.0648 −0.1734 2.6993
0.4114 −0.0044 0.1340 0.0028 0.2670
0.0336 0.1808 −0.1059 −0.3960 −0.0042

−0.0790 0.0857 0.2766 −0.0318 0.3636
−0.0464 −0.2901 0.1109 0.4922 −0.0531
0.0236 −0.4118 0.1046 0.1967 −0.3622
0.0195 −0.3044 −0.0935 −0.1195 0.9302
0.3721 −0.0088 0.1086 0.0058 0.3870

−0.0281 −0.2722 −0.8552 −0.4421 0.0806
0.3521 −0.0449 −0.3785 −0.3272 0.0603
0.9137 0.4011 0.0215 −0.3509 0.0129
0.3935 0.3147 0.3533 0.0175 −0.4025

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

P2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.4114 0.0336 −0.0790 −0.0464 0.0236
−0.0044 0.1808 0.0857 −0.2901 −0.4118
0.1340 −0.1059 0.2766 0.1109 0.1046
0.0028 −0.3960 −0.0318 0.4922 0.1967
0.2670 −0.0042 0.3636 −0.0531 −0.3622
1.6532 −0.3396 0.0031 0.2306 −0.0129

−0.3396 2.5373 0.2003 −0.8288 −0.1916
0.0031 0.2003 1.6179 −0.3554 −0.2537
0.2306 −0.8288 −0.3554 2.6583 0.2859

−0.0129 −0.1916 −0.2537 0.2859 1.7683
0.3964 −0.0744 0.1956 0.0709 −0.2812
0.3524 −0.2240 0.0047 0.3427 −0.0123

−0.1176 0.1492 −0.2889 −0.2581 −0.2005
0.0012 0.3688 −0.0407 −0.3178 0.1620
0.3748 0.0276 −0.1070 −0.0448 −0.0360
0.0017 0.1087 −0.0255 −0.0581 0.1350

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

P3 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.0195 0.3721 −0.0281 0.3521 0.9137 0.3935
−0.3044 −0.0088 −0.2722 −0.0449 0.4011 0.3147
−0.0935 0.1086 −0.8552 −0.3785 0.0215 0.3533
−0.1195 0.0058 −0.4421 −0.3272 −0.3509 0.0175
0.9302 0.3870 0.0806 0.0603 0.0129 −0.4025
0.3964 0.3524 −0.1176 0.0012 0.3748 0.0017

−0.0744 −0.2240 0.1492 0.3688 0.0276 0.1087
0.1956 0.0047 −0.2889 −0.0407 −0.1070 −0.0255
0.0709 0.3427 −0.2581 −0.3178 −0.0448 −0.0581

−0.2812 −0.0123 −0.2005 0.1620 −0.0360 0.1350
2.6244 0.2779 0.0947 0.0869 0.0198 −0.4360
0.2779 1.6529 −0.1558 0.0023 0.4104 0.0032
0.0947 −0.1558 2.6219 0.2634 −0.0153 −0.2451
0.0869 0.0023 0.2634 1.6662 0.2308 0.0133
0.0198 0.4104 −0.0153 0.2308 2.6484 0.2676

−0.4360 0.0032 −0.2451 0.0133 0.2676 1.6624

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,
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Fig. 1 Trajectories of z1 in Example 1
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Fig. 2 Trajectories of z2 in Example 1

Therefore, the system is globally asymptotically sta-
ble fromTheorem 1. The numerical simulations for tra-
jectories are shown in Figs. 1 and 2. In the above two
figures, each neuron has 8 lines corresponding to its
components.

5 Conclusion

In this paper, we have proposed the Clifford-valued
RNNs and explored the existence of the unique equi-
librium and the stability of such systems. Some suffi-
cient conditions ensuring the global asymptotic stabil-
ity and the global exponential stability of the delayed
Clifford-valued RNNs have been obtained in terms of
LMIs. When the system reduces to a complex-valued

(m = 1) or real-valued neural network (m = 0), the
corresponding stability criterion could be obtained. At
last, an example is given to show the effectiveness of
the results given.

Acknowledgments The authors wish to thank the editor and
reviewers for a number of constructive comments and sugges-
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