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Abstract In this paper, the dynamical behavior of
a modified predator–prey system with time delay is
investigated. By regarding the time delay as the bifur-
cation parameter, we study the impact of the time delay
on the dynamics of the system. The analysis shows that
Hopf bifurcation can occur as the time delay passes
some critical values. By employing the normal form
theory and the center manifold reduction for func-
tional differential equation, some sufficient conditions
are derived for the direction and stability of the Hopf
bifurcation. Finally, to verify our theoretical predic-
tions, some numerical simulations are also included.

Keywords Predator–prey system · Bifurcation ·
Stability · Time delay · Periodic solutions

1 Introduction

Ageneralized predator–prey system [15] takes the form{
ẋ(t) = x(t) f (x(t)) − y(t)F(x(t), y(t)),
ẏ(t) = y(t)G(x(t), y(t)),

(1.1)

where x(t) and y(t) represent the prey density and
predator density at time t , respectively. The function
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f (x) is the intrinsic growth rate or per capita growth
rate; F = F(x, y) describes the predator functional
response; and G = G(x, y) describes the predator
numerical response.

To reflect that the dynamical behavior of the mod-
els depends on the past history of the system, it is
often necessary to incorporate time delay into the mod-
els. Therefore, a more realistic predator–prey model
should be described by delayed differential equations.
In recent years, there has been a great and continuing
interest especially on predator–prey systems with time
delay [8,10,11,14,16,17]. The inclusion of time delay
in these systems has illustrated more complicated and
richer dynamics in terms of stability, bifurcation, peri-
odic solutions and so on. In Ref. [8], we find that the
gestation delay τ of prey species is incorporated into
a predator–prey system with non-selective harvesting.
Inspired by Kar and Pahari [8], we introduce the ges-
tation delay of prey species into the system (1.1), and
then we get the following predator–prey system with
time delay{
ẋ(t) = x(t) f (x(t − τ)) − y(t)F(x(t), y(t)),
ẏ(t) = y(t)G(x(t), y(t)).

(1.2)

In this paper, we choose the traditional logistic form
for f (x(t)): f (x(t)) = a

(
1 − b

a x
)
, where a > 0 is

the growth rate of the prey in the absence of preda-
tors, b > 0 represents the self-regulation constant of
the prey. The predator functional response F is cho-
sen as the Ivlev-type functional response [1,7], that is,
F = k

(
1 − e−cx

)
, where k > 0 represents the maxi-
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mum rate of predation and c > 0 denotes the decrease
in motivation to hunt. We can find that the Ivlev-
type functional response is monotonically increasing
as well as uniformly bounded. We choose the preda-
tor numerical response as the Lotka–Volterra predator–
prey model [3,12], that is, G = −d + x, where d > 0
stands for the intrinsic death rate of predator. Substitut-
ing f (x), F andG into Eq. (1.2), we have the following
predator–prey system⎧⎨
⎩
ẋ(t) = x(t)

(
a − bx(t − τ) − ky(t)

x(t)

(
1−e−cx(t)

))
,

ẏ(t) = y(t) (−d + x(t)) .

(1.3)

In Ref. [4], Gordon studied the effect of the har-
vest effort on the ecosystem from an economic per-
spective and proposed the following equation which
investigates the economic interest of the yield of the
harvesting effort

Net Economic Revenue (NER)

= Total Revenue (TR) − Total Cost (TC).

Referring to the predator–prey system (1.3), an alge-
braic equation which considers the economic profit v

of the harvest effort on prey can be established as fol-
lows

E(t)(px(t) − s) = v, (1.4)

where E(t) denotes the harvesting effort for prey, p
and s represent harvesting reward per unit harvesting
effort for unit weight of prey and harvesting cost per
unit harvesting effort, respectively.

From (1.3) and (1.4), we obtain the following modi-
fied predator–prey system with time delay, which takes
the form of differential algebraic equations⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ẋ(t) = x(t)

(
a − bx(t − τ)

− ky(t)

x(t)

(
1 − e−cx(t)

) − E(t)

)
,

ẏ(t) = y(t) (−d + x(t)) ,

0 = E(t)(px(t) − s) − v.

(1.5)

We can see that the delayed predator–prey sys-
tems in Refs. [8,10,14] are governed by differential
equations or difference equations. Compared with the
delayed systems in Refs. [8,10,14], our system (1.5)
is formulated by differential algebraic equations. By
this way, we can study the effect of the harvest effort
on the predator–prey system from an economic per-
spective. Some relevant modified predator–prey mod-
els can be found in Refs. [11,16–18]. In the research

of the dynamic behaviors of the modified predator–
prey models, the authors [11,16–18] have systemat-
ically studied the issues of local stability, flip bifur-
cation, Neimark–Sacker bifurcation, chaotic behavior,
etc. Different from the previous work [11,16–18], we
aim to obtain the formulae for determining the prop-
erties of Hopf bifurcation of the modified predator–
prey model with delay by using the local parameter-
ization method [2] and center manifold theory intro-
duced by Hassard et al. [6]. Our research enriches the
dynamic behaviors of themodified predator–preymod-
els. In this paper, by considering the time delay τ as a
bifurcation parameter, we investigate the stability and
direction of the Hopf bifurcation of system (1.5). We
mainly discuss the effect of varying the time delay τ

on the dynamics of the predator–prey system (1.5) in
the region R3+ = {(x, y, E)| x > 0, y > 0, E > 0}.
In addition, when there is no danger of confusion, t is
occasionally dropped from the related variables.

2 Local stability

In this section, we will investigate the local stability
of system (1.5) according to the local parameterization
method [2] and Hopf bifurcation theorem [5].

By computing, we can obtain that the system (1.5)
has an equilibrium point X0 = (x0, y0, E0)

T =(
d,

d(a−bd−E0)

k(1−e−cd)
, v
pd−s

)T
. In order to guarantee that the

equilibrium point X0 is positive, throughout this paper
we assume that

a > bd + E0, pd − s > 0, v > 0. (2.1)

In order to use the local parameterization method in
Ref. [2], we need to make the transformation X = QX

for system (1.5),whereQ =
⎛
⎝ 1 0 0

0 1 0
− pE0

px0−s 0 1

⎞
⎠ , X(t) =

(x(t), y(t), E(t))T . Consequently, the system (1.5)
becomes⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ(t) = x(t)

(
a − bx(t − τ) − ky(t)

x(t)

(
1 − e−cx(t)

)

+ pE0

px0 − s
x(t) − E(t)

)
,

ẏ(t) = y(t) (−d + x(t)) ,

0 =
(

− pE0

px0 − s
x(t) + E(t)

)
(px(t) − s) − v.

(2.2)
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We employ the following local parameterization in
Ref. [2] for the third equation of system (2.2)

X(t) = ψ(Y (t)) = X0 +U0Y (t) + V0h(Y (t)),

where U0 =
⎛
⎝1 0
0 1
0 0

⎞
⎠, V0 =

⎛
⎝0
0
1

⎞
⎠, Y (t) = (y1(t),

y2(t))T ∈ R2, h(Y (t)) is a smooth mapping from R2

into R3, h(Y (t)) = (h1(y1(t), y2(t)), h2(y1(t), y2(t)),
h3(y1(t), y2(t)))T . That is,

x(t) = x0 + y1(t), y(t) = y0 + y2(t),

E(t) = E0 + h3(y1(t), y2(t))),

where E0 = E0+ px0E0
px0−c . Subsequently, the parametric

system of system (2.2) takes the form⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẏ1(t) = (x0 + y1(t))

(
a − b(x0 + y1(t − τ))

− k(y0 + y2(t))

(x0 + y1(t))

(
1 − e−c(x0+y1(t))

)

+ pE0

px0 − s
(x0 + y1(t))

− (E0 + h3(y1(t), y2(t)))

)
,

ẏ2(t) = (y0 + y2(t)) (−d + x0 + y1(t)) .

(2.3)

Then we can get the following linearized system of the
parametric system (2.3) at (0, 0),⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ẏ1(t) =
(
ky0
x0

+ px0E0

px0 − s
− kcy0e−cx0

− ky0e−cx0

x0

)
y1(t) − bx0y1(t − τ)

− k
(
1 − e−cx0

)
y2(t),

ẏ2(t) = y0y1(t).

(2.4)

Hence, the characteristic equation of the linearized sys-
tem (2.4) is

λ2 +
[
bx0e

−λτ + ky0e−cx0

x0
+ kcy0e

−cx0

−
(
ky0
x0

+ px0E0

px0 − s

)]
λ + ky0

(
1 − e−cx0

) = 0.

(2.5)

If τ = 0, the characteristic Eq. (2.5) becomes

λ2 +
[
bx0 + ky0e−cx0

x0
+ kcy0e

−cx0

−
(
ky0
x0

+ px0E0

px0 − s

)]
λ + ky0

(
1 − e−cx0

) = 0.

(2.6)

By Routh–Hurwitz criterion [9], we have the fol-
lowing Lemma.

Lemma 2.1 For the system (2.2) with τ = 0,

(i) if

bx0 + ky0e−cx0

x0
+ kcy0e

−cx0 >
ky0
x0

+ px0E0

px0 − s
,

then the positive equilibrium point X0 is locally
asymptotically stable, i.e., X0 is locally asymptot-
ically stable;

(ii) if

bx0 + ky0e−cx0

x0
+ kcy0e

−cx0 <
ky0
x0

+ px0E0

px0 − s
,

then the positive equilibrium point X0 is unstable,
i.e., X0 is unstable.

When τ �= 0, if λ = iω (ω > 0) is a root of (2.5),
then we can get

− ω2 + iω

(
bx0(cosωτ − i sinωτ) + ky0e−cx0

x0

+ kcy0e
−cx0 −

(
ky0
x0

+ px0E0

px0 − s

))

+ ky0
(
1 − e−cx0

) = 0.

That is,

− ω2 + ky0
(
1 − e−cx0

) + bωx0 sinωτ

+ i

(
bωx0 cosωτ + kcωy0e

−cx0 + kωy0e−cx0

x0

−
(
kωy0
x0

+ pωx0E0

px0 − s

))
= 0.

Hence,

bωx0 sinωτ = ω2 − ky0
(
1 − e−cx0

)
, (2.7)

bωx0 cosωτ = kωy0
x0

+ pωx0E0

px0 − s

− kcωy0e
−cx0 − kωy0e−cx0

x0
. (2.8)

It is known that sin2 ωτ + cos2 ωτ = 1, by Eqs. (2.7)
and (2.8), we get

ω4 +
[ (

ky0
x0

+ px0E0

px0 − s
− kcy0e

−cx0 − ky0e−cx0

x0

)2

− b2x20 − 2ky0
(
1 − e−cx0

) ]
ω2

+ k2y20
(
1 − e−cx0

)2 = 0. (2.9)
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Lemma 2.2 For the system (2.2),

(i) if(
ky0
x0

+ px0E0

px0 − s
− kcy0e

−cx0 − ky0e−cx0

x0

)2

> b2x20 + 2ky0
(
1 − e−cx0

)
and

bx0 + ky0e−cx0

x0
+ kcy0e

−cx0 >
ky0
x0

+ px0E0

px0 − s
,

then all the roots of Eq. (2.5) have negative real
parts for all τ > 0;

(ii) if

[ (
ky0
x0

+ px0E0

px0 − s
− kcy0e

−cx0 − ky0e−cx0

x0

)2

− b2x20 − 2ky0
(
1 − e−cx0

) ]2

> 4k2y20
(
1 − e−cx0

)2

and(
ky0
x0

+ px0E0

px0 − s
− kcy0e

−cx0 − ky0e−cx0

x0

)2

< b2x20 + 2ky0
(
1 − e−cx0

)
,

then Eq. (2.5) has two positive roots ω+ and ω−.
Substituting ω± into Eq. (2.8), we derive

τ±
k = 1

ω± arccos

(
ky0
bx20

+ pE0

b(px0 − s)
− kcy0e−cx0

bx0

−ky0e−cx0

bx20

)
+ 2kπ

ω± , k = 0, 1, 2, . . . .

Proof It follows from (2.9) that if
(
ky0
x0

+ px0E0

px0 − s
− kcy0e

−cx0 − ky0e−cx0

x0

)2

> b2x20 + 2ky0
(
1 − e−cx0

)
,

then Eq. (2.9) does not have positive roots. Subse-
quently, Eq. (2.5) does not have purely imaginary roots.
Besides, when

bx0 + ky0e−cx0

x0
+ kcy0e

−cx0 >
ky0
x0

+ px0E0

px0 − s

holds, then all roots of Eq. (2.6) have negative real parts.
By Rouche’s theorem [13], Eq. (2.5) also have negative
real parts. ��

If

[ (
ky0
x0

+ px0E0

px0 − s
− kcy0e

−cx0 − ky0e−cx0

x0

)2

− b2x20 − 2ky0
(
1 − e−cx0

) ]2

> 4k2y20
(
1 − e−cx0

)2

and(
ky0
x0

+ px0E0

px0 − s
− kcy0e

−cx0 − ky0e−cx0

x0

)2

< b2x20 + 2ky0
(
1 − e−cx0

)
,

then Eq. (2.9) has two positive roots ω+ and ω−,

ω± =
{−B ±

√
B2 − 4k2y20

(
1 − e−cx0

)2
2

}1/2

,

where

B =
(
ky0
x0

+ px0E0

px0 − s
− kcy0e

−cx0 − ky0e−cx0

x0

)2

−b2x20 − 2ky0
(
1 − e−cx0

)
.

Substituting ω± into Eq. (2.8), then we get τ±
k . The

proof is completed.
Differentiating the characteristic Eq. (2.5) with

respect to τ , we have

2λ
dλ

dτ
+

(
bx0e

−λτ + ky0e−cx0

x0
+ kcy0e

−cx0 − ky0
x0

− px0E0

px0 − s

)
dλ

dτ
+ bx0λe

−λτ

(
−λ − τ

dλ

dτ

)
= 0.

Thus,

(
dλ

dτ

)−1

=
2λ + bx0e−λτ + ky0e−cx0

x0
+ kcy0e−cx0 − ky0

x0
− px0E0

px0 − s
− bx0λτe−λτ

bx0λ2e−λτ
.

We can calculate that

(
dλ

dτ

)−1
∣∣∣∣∣
λ=iω

=
(

− 1

ω2 + 2 sin λτ

bx0ω
− cos λτ

bx0ω2
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×
(
ky0e−cx0

x0
+ kcy0e

−cx0 − ky0
x0

− px0E0

px0 − s

))

+ i

(
τ

ω
− 2 cos λτ

bx0ω
− sin λτ

bx0ω2

(
ky0e−cx0

x0

+ kcy0e
−cx0 − ky0

x0
− px0E0

px0 − s

))
. (2.10)

By Eqs. (2.7), (2.8) and (2.10), we have

sign

{
Re

(
dλ

dτ

)}
λ=iω

= sign

{
Re

(
dλ

dτ

)−1
}

λ=iω

=sign

{
− 1

ω2 + 2

bx0ω

(
ω

bx0
− ky0

(
1 − e−cx0

)
bx0ω

)

− 1

bx0ω2

(
ky0e−cx0

x0
+ kcy0e

−cx0 − ky0
x0

− px0E0

px0 − s

)

×
(
ky0
bx20

+ pE0

b(px0 − s)
− kcy0e−cx0

bx0
− ky0e−cx0

bx20

)}

=sign

{
1

b2x20ω
2

[
2ω2 − 2ky0

(
1 − e−cx0

) − b2x20

+
(
ky0
x0

+ px0E0

px0 − s
− kcy0e

−cx0 − ky0e−cx0

x0

)2 ]}
.

Then the transversality conditions

sign

{
Re

(
dλ

dτ

)}
τ=τ+

k , ω=ω+
> 0,

sign

{
Re

(
dλ

dτ

)}
τ=τ−

k , ω=ω−
< 0

are satisfied. Hence, we have the following theorem in
view of Refs. [5,6].

Theorem 2.1 For the system (2.2), we assume that

bx0 + ky0e−cx0

x0
+ kcy0e

−cx0 >
ky0
x0

+ px0E0

px0 − s

holds, then

(i) if(
ky0
x0

+ px0E0

px0 − s
− kcy0e

−cx0 − ky0e−cx0

x0

)2

> b2x20 + 2ky0
(
1 − e−cx0

)
,

all the roots of Eq. (2.5) have negative real parts
for all τ > 0, and the equilibrium point X0 of
system (1.5) is asymptotically stable;

(ii) if

[ (
ky0
x0

+ px0E0

px0 − s
− kcy0e

−cx0 − ky0e−cx0

x0

)2

− b2x20 − 2ky0
(
1 − e−cx0

) ]2

> 4k2y20
(
1 − e−cx0

)2

and
(
ky0
x0

+ px0E0

px0 − s
− kcy0e

−cx0 − ky0e−cx0

x0

)2

< b2x20 + 2ky0
(
1 − e−cx0

)
,

there is a positive integer N, such that the equi-
librium point X0 of system (1.5) switches N times
from stability to instability and to stability. That is,
the equilibrium point X0 is asymptotically stable

when τ ∈ [0, τ+
0 )

⋃ (
N−1⋃
n=0

(τ−
n , τ+

n+1)

)
, and X0 is

unstable when τ ∈
(
N−1⋃
n=0

(τ+
n , τ−

n )

)⋃
(τ+

N ,+∞).

Remark 2.1 It is clear that the system (1.5) undergoes
Hopf bifurcations at the equilibrium point X0 when
τ = τ±

n . Besides, when τ = 0 and the roots of Eq. (2.5)
exist zero real parts, the system (1.5) also undergoes
Hopf bifurcation.

3 Direction and stability of the Hopf bifurcation

As pointed out by Hassard et al. [6], it is interesting
to determine the direction, stability and period of the
bifurcating periodic solutions. In this section, we aim
to establish the formulae for determining these factors
at the critical value τ = τn using the normal form [5]
and the center manifold theory [6].

Throughout this section, we assume that the system
(1.5) undergoes Hopf bifurcations at the positive equi-
librium X0 for τ = τn , and iω0 is the corresponding
purely imaginary root of the characteristic equation at
the positive equilibrium X0. For the sake of simplicity,
throughout this section we use the notation iω for iω0.

Let y1(t) = x(τ t)−x0, y2(t) = y(τ t)−y0, τ = μ+
τn , then the parametric system (2.3) can be transformed
into a FDE in C = C([−1, 0],R2):

Ẏ (t) = Lμ(Yt ) + F(μ,Yt ), (3.1)

whereY (t) = (y1(t), y2(t))T ,Yt = Y (t+θ) = (y1(t+
θ), y2(t + θ)), θ ∈ [−1, 0], for � = (�1,�2) ∈ C ,
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Lμ� = (τn + μ)

⎛
⎝ky0

x0
+ px0E0

px0 − s
− kcy0e−cx0 − ky0e−cx0

x0
−k

(
1 − e−cx0

)
y0 0

⎞
⎠ �T (0)

+ (τn + μ)

(−bx0 0
0 0

)
�T (−1),

and

F(μ,�) = (τn + μ)

(
F11
F22

)
,

where

F11 =
(
1

2
kc2y0e

−cx0 − psE0

(px0 − s)2

)

�2
1(0) − b�2

1(−1) − kce−cx0�1(0)�2(0) + · · · ,

F22 = �1(0)�2(0) + · · · .

ByRiesz representation theorem, there exists a function
η(θ, μ) of bounded variation for θ ∈ [−1, 0], such that

Lμ� =
∫ 0

−1
dη(θ, μ)�(θ), � ∈ C.

In fact, we can choose

η(θ, μ) = (τn + μ)

⎛
⎝ky0

x0
+ px0E0

px0 − s
− kcy0e−cx0 − ky0e−cx0

x0
−k

(
1 − e−cx0

)
y0 0

⎞
⎠ δ(θ)

+ (τn + μ)

(
bx0 0
0 0

)
δ(θ + 1),

where δ(θ) =
{
0, θ �= 0,
1, θ = 0.

For � ∈ C1([−1, 0],R2), define

A(μ)� =
⎧⎨
⎩

d�(θ)

dθ
, −1 ≤ θ < 0,∫ 0

−1 dη(θ, μ)�(θ), θ = 0,

and

R(μ)� =
{
0, −1 ≤ θ < 0,
F(μ,�), θ = 0.

Then the system (3.1) can be written as

Ẏ (t) = A(μ)Yt + R(μ)Yt . (3.2)

For � ∈ C1([−1, 0], (R2)∗), where (R2)∗ is the
2-dimensional space of row vectors, the adjoint opera-
tor A∗ of A(0) is defined as

A∗�(s) =
⎧⎨
⎩

−d�(s)

ds
, 0 < s ≤ 1,∫ 0

−1 dη
T (s, 0)�(−s), s = 0.

For � ∈ C1([−1, 0],R2), � ∈ C1([−1, 0], (R2)∗),
we define the bilinear form

< �(s),�(θ) >= �̄(0)�(0)

−
∫ 0

θ=−1

∫ θ

ξ=0
�̄(ξ − θ)dη(θ)�(ξ)dξ,

where η(θ) = η(θ, 0). By the discussion in Sect.
2, we know that ±iωτn are eigenvalues of A(0) and
A∗. We need to calculate the eigenvector of A(0) and
A∗ corresponding to iωτn and −iωτn , respectively.
Suppose that q(θ) = (1, q2)T eiωτnθ is the eigenvec-
tor of A(0) corresponding to iωτn , then A(0)q(θ) =

iωτnq(θ). Let q∗(s) = 1
D (q∗

2 , 1)eiωτns be the eigen-
vector of A∗ corresponding to −iωτn , then A∗q∗(s) =
−iωτnq∗(s). Some computations can show that

q2 =
ky0
x0

+ px0E0

px0 − s
− kcy0e−cx0 − ky0e−cx0

x0
− iω − bx0e−iωτn

k
(
1 − e−cx0

) ,

q∗
2 = iω

k
(
1 − e−cx0

) , D̄ = q2 + q̄∗
2 + bx0q̄∗

2 τne
−iωτn .

Clearly, < q∗, q >= 1 and < q∗, q̄ >= 0.
At first, we construct the coordinates to describe the

center manifold C0 at μ = 0 (i.e., τ = τn). Define

ż(t) =< q∗,Yt >, W (t, θ) = Yt − 2Re{z(t)q(θ)}.
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On the center manifold C0, we have W (t, θ) =
W (z(t), z̄(t), θ), where

W (z, z̄, θ) = W20(θ)
z2

2
+ W11(θ)zz̄

+W02(θ)
z̄2

2
+ · · · . (3.3)

z and z̄ are local coordinates for C0 in the direction of
q and q̄∗. Note that W is real if Yt is real. We only
consider real solutions. For the solution Yt ∈ C0, since
μ = 0, from (3.2), we have

ż = iωτnz + q̄∗(0)F0(z, z̄) := iωτnz + g(z, z̄), (3.4)

where

g(z, z̄) = g20(θ)
z2

2
+ g11(θ)zz̄ + g02(θ)

z̄2

2
+ · · · .

(3.5)

By Eq. (3.4), we have

g(z, z̄) = q̄∗(0)F0(z, z̄) = 1

D̄
τn(q̄∗

2 , 1)

(
F0
11

F0
22

)
,

where

F0
11 =

(
1

2
kc2y0e

−cx0 − psE0

(px0 − s)2

)
y21t (0)

− by21t (−1) − kce−cx0 y1t (0)y2t (0) + · · · ,

F0
22 = y1t (0)y2t (0) + · · · .

In view of Eq. (3.3), we get

g(z, z̄) = τn

D̄

{
q̄∗
2

[
1

2
kc2y0e

−cx0 − psE0

(px0 − s)2

]

×
[
z + z̄ + W (1)

20 (0)
z2

2
+ W (1)

11 (0)zz̄ + W (1)
02 (0)

z̄2

2

]2

− bq̄∗
2

[
ze−iωτnθ + z̄eiωτnθ + W (1)

20 (−1)
z2

2

+ W (1)
11 (−1)zz̄ + W (1)

02 (−1)
z̄2

2

]2

− kce−cx0 q̄∗
2

[
z + z̄ + W (1)

20 (0)
z2

2
+ W (1)

11 (0)zz̄ + W (1)
02 (0)

z̄2

2

]

×
[
q2z + q̄2 z̄ + W (2)

20 (0)
z2

2
+ W (2)

11 (0)zz̄ + W (2)
02 (0)

z̄2

2

]

+
[
z + z̄ + W (1)

20 (0)
z2

2
+ W (1)

11 (0)zz̄ + W (1)
02 (0)

z̄2

2

]

×
[
q2z + q̄2 z̄ + W (2)

20 (0)
z2

2
+ W (2)

11 (0)zz̄

+ W (2)
02 (0)

z̄2

2

]
+ · · ·

}
.

That is,

g(z, z̄) = τn

D̄

{
z2

[
1

2
kc2q̄∗

2 y0e
−cx0 − psq̄∗

2 E0

(px0 − s)2

− bq̄∗
2 e

−2iωτnθ − kcq2q̄∗
2 e

−cx0 + q2

]

+ zz̄

[
kc2q̄∗

2 y0e
−cx0 − 2psq̄∗

2 E0

(px0 − s)2

− 2bq̄∗
2 − 2kcq̄∗

2 e
−cx0Re(q2) + 2Re(q2)

]

+ z̄2
[
1

2
kc2q̄∗

2 y0e
−cx0 − psq̄∗

2 E0

(px0 − s)2

− bq̄∗
2 e

2iωτnθ − kcq̄2q̄∗
2 e

−cx0 + q̄2

]

+ z2 z̄

[(
kc2q̄∗

2 y0e
−cx0 − 2psq̄∗

2 E0

(px0 − s)2

− kcq2q̄∗
2 e

−cx0 + q2

)
W (1)

11 (0) +
(
1 − kcq̄∗

2 e
−cx0

)
W (2)

11 (0)

+
(
1

2
kc2q̄∗

2 y0e
−cx0 − psq̄∗

2 E0

(px0 − s)2
− 1

2
kcq̄2q̄∗

2 e
−cx0

+ 1

2
q̄2

)
W (1)

20 (0)

+
(
1

2
− 1

2
kcq̄∗

2 e
−cx0

)
W (2)

20 (0) − 2bq̄∗
2 e

−iωτnθW (1)
11 (−1)

− bq̄∗
2 e

iωτnθW (1)
20 (−1)

]
+ · · ·

}
.

Comparing the coefficients with (3.5), we have

g20 = 2τn
D̄

[
1

2
kc2q̄∗

2 y0e
−cx0 − psq̄∗

2 E0

(px0 − s)2

− bq̄∗
2 e

−2iωτnθ − kcq2q̄∗
2 e

−cx0 + q2

]
,

g11 = τn

D̄

[
kc2q̄∗

2 y0e
−cx0

− 2psq̄∗
2 E0

(px0 − s)2
− 2bq̄∗

2 − 2kcq̄∗
2 e

−cx0Re(q2) + 2Re(q2)

]
,

g02 = 2τn
D̄

[
1

2
kc2q̄∗

2 y0e
−cx0

− psq̄∗
2 E0

(px0 − s)2
− bq̄∗

2 e
2iωτnθ − kcq̄2q̄∗

2 e
−cx0 + q̄2

]
,

g21 =
(
kc2q̄∗

2 y0e
−cx0 − 2psq̄∗

2 E0

(px0 − s)2
− kcq2q̄∗

2 e
−cx0 + q2

)

× W (1)
11 (0) +

(
1 − kcq̄∗

2 e
−cx0

)
W (2)

11 (0)

+
(
1

2
kc2q̄∗

2 y0e
−cx0 − psq̄∗

2 E0

(px0 − s)2

− 1

2
kcq̄2q̄∗

2 e
−cx0 + 1

2
q̄2

)
W (1)

20 (0)
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Fig. 1 The equilibrium point X0 of system (4.1) is asymptotically stable when τ = 0.295 < τ+
0 and the initial conditions x0 =

1.999, y0 = 1.0062, E0 = 0.999

+
(
1

2
− 1

2
kcq̄∗

2 e
−cx0

)
W (2)

20 (0)

− 2bq̄∗
2 e

−iωτnθW (1)
11 (−1) − bq̄∗

2 e
iωτnθW (1)

20 (−1).

Now we have known the expressions of g20, g11, g02.
In order to obtain the expression of g21, we need to
calculateW20(θ) andW11(θ). According to themethod
in Ref. [6], one can obtain

W20(θ) = ig20
ωτn

q(0)eiωτnθ + i ḡ02
3ωτn

q̄(0)e−iωτnθ + M1e
2iωτnθ ,

W11(θ) = − ig11
ωτn

q(0)eiωτnθ + i ḡ11
ωτn

q̄(0)e−iωτnθ + M2,

where

M1 =
⎛
⎝2iω − ky0

x0
− px0E0

px0 − s
+ kcy0e−cx0 + ky0e−cx0

x0
+ bx0e−2iωτn k

(
1 − e−cx0

)
−y0 2iω

⎞
⎠

−1

× 2

(
G11

G21

)
,

M2 =
⎛
⎝bx0 + kcy0e−cx0 + ky0e−cx0

x0
− ky0

x0
− px0E0

px0 − s
k

(
1 − e−cx0

)
−y0 0

⎞
⎠

−1

× 2

(
H11

H21

)
,
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Fig. 2 Periodic solutions bifurcating from the equilibrium point X0 of system (4.1) when τ = 0.3001 < τ+
0 and the initial conditions

x0 = 1.999, y0 = 1.0062, E0 = 0.999

with

G11 = 1

2
kc2y0e

−cx0 − psE0

(px0 − s)2
− be−2iωτnθ

− kcq2e
−cx0 ,

G21 = q2,

H11 = 1

2
kc2y0e

−cx0 − psE0

(px0 − s)2
− b

− kce−cx0Re(q2),

H21 = Re(q2).

Consequently, we have

M1 =
⎛
⎜⎝

4G11iω − 2k
(
1 − e−cx0

)
G21


�



⎞
⎟⎠ ,

M2 =

⎛
⎜⎜⎜⎜⎝

−2H21

y0

2y0H11 −
(
2ky0
x0

+ 2px0E0

px0 − s
− 2kcy0e−cx0 − 2ky0e−cx0

x0
− 2bx0

)
H21

ky0
(
1 − e−cx0

)

⎞
⎟⎟⎟⎟⎠ ,
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Fig. 3 The bifurcating periodic solutions are unstable and increase when τ = 0.3004 > τ+
0 and the initial conditions x0 = 1.999, y0 =

1.0062, E0 = 0.999

where

 = ky0
(
1 − e−cx0

) + 2bx0iωe
−2iωτn − 4ω2

−
(
2ky0
x0

+ 2px0E0
px0 − s

− 2kcy0e
−cx0 − 2ky0e−cx0

x0

)
iω,

� = 2y0G11 +
(
4iω − 2ky0

x0
− 2px0E0

px0 − s

+ 2kcy0e
−cx0 + 2ky0e−cx0

x0
+ 2bx0e

−2iωτn

)
G21.

And then we can evaluate the following values:

c1(0) = i

2ωτn

(
g11g20 − 2 |g11|2

−|g02|2
3

)
+ g21

2
, μ2 = − Re{c1(0)}

Re{λ′(τn)} ,

β2 = 2Re{c1(0)}, T2 = − Im{c1(0)} + μ2Im{λ′(τn)}
ωτn

,

which determine the properties of bifurcating periodic
solutions at the critical value τn . μ2 determines the
direction of Hopf bifurcation, β2 determines the stabil-
ity of bifurcating periodic solutions and T2 determines
the period of the bifurcating periodic solutions. In view
of Ref. [6], we have the following Theorem.

Theorem 3.1 For the system (1.5),

(i) if μ2 > 0 (μ2 < 0), then the Hopf bifurcation is
supercritical (subcritical);

(ii) if β2 < 0 (β2 > 0), then the bifurcating periodic
solutions are stable (unstable);

(iii) if T2 > 0 (T2 < 0), then the bifurcating periodic
solutions increase (decrease).

4 Numerical simulations

In this section, we will present some numerical simu-
lations to verify the theoretical results in Sects. 2 and
3. With the sole purpose of illustrating the results that
we have established in the previous sections, in view of
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Fig. 4 The equilibrium point X0 of system (4.1) is unstable when τ = 0.303 > τ+
0 and the initial conditions x0 = 1.999, y0 =

1.0062, E0 = 0.999

(2.1) and the conditions in Theorem 2.1, we choose the
parameters of the modified predator–prey system (1.5)
as a = 5.5 − 1.5e−1, b = 2 − 0.5e−1, k = 1, c =
0.5, d = 2, p = 1, s = 1, v = 1, then we have the
following system

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ẋ(t) = x(t)

( (
5.5−1.5e−1

) − (
2 − 0.5e−1

)

× x(t−τ)− y(t)

x(t)

(
1 − e−0.5x(t)

) − E(t)

)
,

ẏ(t) = y(t)(−2 + x(t)),
0 = E(t)(x(t) − 1) − 1.

(4.1)

The system (4.1) has a positive equilibrium point X0 =
(2, 1, 1). In view of the discussion in Sect. 2, we can
obtain that ω+ = 3.1417 and ω− = 0.2012. And then,
the critical values of the time delay corresponding to
ω± are τ+

0 = 0.3003 and τ−
0 = 4.6890. By Theorem

2.1, X0 = (2, 1, 1) is asymptotically stable when τ ∈
[0, 0.3003) and unstable when τ ∈ (0.3003, 4.6890).

Thus the system (4.1) undergoes a Hopf bifurcation at
τ = 0.3003.

Besides, according to the algorithms used in Sect. 3,
we can obtain the following values with the help of
Matlab 7.0 : c1(0) = 1.7529 − 8.7556i, λ′(τ+

0 ) =
10.2460 − 5.5445i, μ2 = −0.1711 < 0, β2 =
3.5058 > 0, T2 = 8.2749 > 0. By the discussion
in Sect. 3, we know that the system (4.1) undergoes
a subcritical Hopf bifurcation at the positive equilib-
rium X0, the bifurcating periodic solutions occur when
τ crosses τ+

0 to the left, and the bifurcating periodic
solutions are unstable and increase.

According to Theorem 2.1 and Theorem 3.1, the
equilibrium point X0 = (2, 1, 1) is locally asymptoti-
cally stable when τ = 0.295 < τ+

0 as it is illustrated by
computer simulations in Fig. 1. The periodic solutions
occur from X0 when τ = 0.3001 < τ+

0 as it is illus-
trated by computer simulations in Fig. 2. The bifurcat-
ing periodic solutions are unstable and increase when
τ = 0.3004 > τ+

0 as it is illustrated by computer sim-
ulations in Fig. 3. The equilibrium point X0 is unstable
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when τ = 0.303 > τ+
0 as it is illustrated by computer

simulations in Fig. 4.

5 Discussion

As we known, time delay plays an important role in the
dynamic behavior of predator–prey systems. From the
stability analysis of the system in Sect. 2, we can see
that the time delay switches the stability of the proposed
system.When there is no time delay or the time delay is
less than the critical value τ+

0 , the positive equilibrium
X0 is asymptotically stable. That is, the prey popula-
tion, the predator population and the harvest effort will
stay at steady states. And then, the sustainable develop-
ment of the biological resources can be ensured. As the
time delay increases beyond the critical value τ+

0 , the
time delay can cause a stable equilibrium to become
unstable and a Hopf bifurcation occurs, which would
induce ecosystem unbalance and even biological disas-
ter. In Sect. 3, the formulae for determining the direc-
tion of the bifurcations and the stability of the bifur-
cating periodic solutions are given by using the normal
form theory and center manifold theorem. The biolog-
ical meaning implies that both the species may coexist
in an oscillatory mode when the bifurcating periodic
solutions are stable.

In this paper, the harvest reward p and the cost s are
constants. However, from real-world view, they are not
always constants and may vary with numerous factors,
such as seasonality, market supply, market demand and
so on. Hence, it is more reasonable that the reward p
and the cost s should be variables. Besides, the exis-
tence of the periodic solutions remain valid only in a
small neighborhood of the critical values here, we may
investigate the global continuation of the local Hopf
bifurcation. Furthermore, the feedback delay of preda-
tor species, or more time delays may be introduced into
the model system and consider the combined effect of
multiple delays for the dynamical behavior of biologi-
cal populations.

We leave these issues for future consideration.
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