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Abstract The coupled nonlinear Schrödinger equa-
tion in parity-time-symmetric coupled waveguides
with variable coefficients is studied, and exact com-
bined Peregrine soliton and Akhmediev breather solu-
tion is derived. Based on this solution, by adjusting
the relation between the maximal value Zm and the
exciting location value Z0, we discuss the controllable
behaviors including the complete excitation, recur-
rence, maintenance and restraint of the combined Pere-
grine soliton and Akhmediev breather.
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1 Introduction

Localized structures are intensely studied by engi-
neers, physicists and mathematicians because of their
potential application in different fields [1–5]. The
current growth of interest in localized structures in
PT -symmetric potentials is motivated by the pioneer-
ing theoretical contributions of Christodoulides et al.
[6].

The parity-time (PT ) symmetry has received con-
siderable attention in quantum mechanics and optics
since Bender and coworkers [6] in 1998 pointed out
that non-Hermitian Hamiltonians can have an entirely
real eigenvalue spectrum under thePT -symmetry con-
straint. ThePT symmetry dictates that the potential has
the following property V (x) = V ∗(−x) with ∗ denot-
ing complex conjugation [6,7]. Optics provide themost
straightforwardway to realize such systems by combin-
ing a spatially symmetric profile of the refractive index
with symmetrically placed mutually balanced gain and
loss [6].

Musslimani et al. [8] were the first research group to
realize optical spatial solitons inPT -symmetric poten-
tials. Stable bright spatial solitons [9], dark solitons and
vortices [10] in nonlinear media with PT -symmetric
potentials have been investigated. Spatiotemporal soli-
tons [11–13] in nonlinear Kerr media with different
PT -symmetric potentials have also been reported.
Moreover, spatial [14] and spatiotemporal [15–17]
solitons in power-law nonlinear media with PT -
symmetric potentials have been discussed, too.
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Rogue waves (RWs), as relatively large and spon-
taneous waves recorded and studied in oceanogra-
phy [18], sometimes can be several times higher than
the average wave crests. So far, the Peregrine soli-
tons (PS) [19], the space-periodic Akhmediev breather
(AB) [20] and the time-periodic Kuznetsov [21] or
Ma [22] (KM) soliton have been suggested as the-
oretical prototypes to describe RWs [23]. Recently,
based on the concept of nonautonomous solitons [24],
Dai et al. [25,26] and Zhu et al. [27] also studied the
controllable superposed AB and KM solitons, respec-
tively. However, the controllable behaviors of the com-
bined PS and AB have not been reported. Further-
more, although localized structures have been dis-
cussed in PT -symmetric couplers [28–31], the con-
trollable behaviors of RWs in PT -symmetric coupled
waveguides have hardly been investigated, too.

In this present paper, we obtain the combined PS and
AB based on the coupled NLSE with variable coeffi-
cients in PT -symmetric coupled waveguides, and dis-
cuss the controllable behaviors including the complete
excitation, recurrence, maintenance and restraint of the
combined PS and AB. Two issues are firstly investi-
gated in this present paper: (1) The combined PS and
AB solution is firstly obtained in PT -symmetric cou-
pled waveguides, and (2) the controllable behaviors of
the combined PS and AB are also investigated firstly in
PT -symmetric coupled waveguides. Our analysis and
results are applicable for certain applications of syn-
thetic PT -symmetric systems in nonlinear optics and
condensed matter physics.

2 Model and exact solution

The dynamics of light beams and pulses in PT -
symmetric coupled waveguides can be governed by the
following coupled NLSE [32]

iuz + 1

2
uxx +

(
χ1|u|2 + χ |v|2

)
u = −v + iγ u,

ivz + 1

2
vxx +

(
χ |u|2 + χ1|v|2

)
v = −u − iγ v, (1)

where u(z, x) and v(z, x) are two normalized complex
mode fields in two parallel planar waveguides and z
and x are dimensionless propagation and transverse
coordinates. In Eq. (1), the second term in the left-
hand sides describes diffraction, the last two terms in
the left-hand sides are the nonlinearly coupled terms

of the self-phase-modulation (SPM) and cross-phase-
modulation (XPM), and the first term in the right-hand
sides denotes the coupling term between the modes
propagating in the two waveguides. Here the positive
and negative values of χ and χ1 represent the focusing
and defocusing nonlinearities, respectively. The first
terms in the right-hand sides of Eq. (1) account for the
coupling between the modes propagating in the two
waveguides. The opposite signs of the γ term in the
second term of Eq. (1) describe the PT -balanced gain
in the first equation of Eq. (1) and loss in the second
equation of Eq. (1).

In a real waveguide, the core medium is inhomoge-
neous [33] because of the variation in the lattice para-
meters of the waveguide medium and the waveguide
geometry (diameter fluctuations, etc). In these cases,
the governing equations are various variable-coefficient
NLSEs. In this paper, we consider the following equa-
tion

iuz + 1

2
β(z)uxx +

[
χ1(z)|u|2 + χ(z)|v|2

]
u

= η(z)(−v + iγ u),

ivz + 1

2
β(z)vxx +

[
χ(z)|u|2 + χ1(z)|v|2

]
v

= η(z)(−u − iγ v), (2)

where all terms have the same meaning as those in
Eq. (1).

In the following, we consider the gain/loss term is
small enough, such as γ ≤ 1, and thus, the energy
through linear coupling is transferred from the core
with gain to the lossy one, and modes can be excited
in the system by input beams but do not arise spon-
taneously. Without loss of generality, we can make a
change of variable with γ = sin(θ). In order to obtain
PT -symmetric (+) and PT -antisymmetric (−) solu-
tions of Eq. (2), we construct the following relation

v(x, z) = ±u(x, z) exp (±iθ),

u(x, z) = A0α
1
2 (z)U

[
Z ≡ D(z)α(z)

W 2
0

, X ≡ x − xc
W (z)

]

× exp {i[cos(θ)Λ(z) + φ(x, z)]} , (3)

with the width W (z) = W0/α(z), the beam center
xc = x0 − (d0 + s0x0)D(z), the phase φ(x, z) =
−s0α(z)x2/2 − d0α(z)x − d0D(z)α(z)/2, the chirp
factor α(z) = 1− s0D(z), the accumulated diffraction
D(z) = ∫ z

0 β(s)ds andΛ(z) = ∫ z
0 η(s)ds, then Eq. (2)

can be transformed into the standard NLSE

iUZ + 1

2
UXX + |U |2U = 0. (4)
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Fig. 1 (Color online) The combined PS and AB for Eq. (4): a shifts are Z ′
0 = 4, Z0 = −4, b shifts are Z ′

0 = −4, Z0 = 4 and c shifts
are Z ′

0 = Z0 = 4. Parameters are chosen as n = 0.85i, v = 0.2, X1 = X2 = 0

Moreover, the parameters of systems satisfy the fol-
lowing relation

χ(z) + χ1(z) = β(z)α(z)

A2
0W

2
0

. (5)

As we all know, the standard NLSE possesses abun-
dant exact solutions, such as single and multiple bright
and dark solitons, rational rogue wave solutions, KM
solitons and ABs. Here we focus on the combined PS
and AB. According to the modified DT technique in
Ref. [23], based on the solution of NLSE (4), we can
obtain the combined Peregrine soliton and AB solution
of Eq. (2) as follows

u = A0α
1
2 (z)

[
1+ P+iQ

R

]
exp

{
i
[(

1− v0

2

)
(Z−Z0)

+ v0(X − X0) + cos(θ)Λ(z) + φ(x, z)
]}

, (6)

where P = κ{κ[κ2(4Z2
s2+4X ′2

s2+1)−8] cosh(δZs1)+
8δ cos(κX ′

s1)}/8, Q = κ{8Zs2[δ cos(κX ′
s1) − κ cosh

(δZs1)] + δκ(4Z2
s2 + 4X ′2

s2 + 1) sinh(δZs1)}/4, R =
−{δ[κ2(4Z2

s2+4X ′2
s2+1)−16] cos(κX ′

s1)+κ([κ2(4Z2
s2

+4X ′2
s2 −3)+16] cosh(δZs1)−16δ[Zs2 sinh(δZs1)+

X ′
s2 sin(κX

′
s1)])}/(4κ) with Zs1 = Z − Z ′

0, Zs2 =
Z − Z0, X ′

s1 = Xs1 − v0Z , X ′
s2 = Xs2 − v0Z , Xsj =

X − X j , δ = κ
√
4 − κ2/2, κ = 2

√
1 + n2, j = 1, 2.

Here Z , X and φ have the expressions in Eq. (3), v0
is an arbitrary constant, κ is the modulation frequency,
and Z0, Z ′

0 and X j determine the center of solution in
Z − X coordinates. If 0 < Im(n) < 1 and Im(n) > 1
in solution (6), the PS is combined by AB and KM
soliton, respectively.

3 Dynamical properties of the combined PS and
AB

Here we give a nonlinear superposition structure of an
AB with a PS in Fig. 1. In Fig. 1a, b, the PS is parallel
with the AB, and they are separated. However, Fig. 1c
displays that the PS is embedded in the AB.

In the following, we will analyze how to realize the
control of these combined PS and AB structures by
studying the relation between the effective propagation
distance Z and the original propagation distance z. As
the first example, we consider the following diffraction
decreasing waveguide (DDW) with logarithmic profile
[34,35]

β(z) = ln

{
e + z

L

[
exp

(
1

C

)
− e

]}
, (7)

which is expressed in terms of the compression ratio
parameter 1/C (value of dispersion parameter β(z) at
distance z = L) and length of the waveguide L with
the natural logarithm e.

In the framework of NLSE (4), the AB in Fig. 1a
and PS in Fig. 1b reach their maximal amplitudes at
Z = Z0 and then disappear. In the DDWwith logarith-
mic profile (7), the effective propagation distance Z has
relation to the original propagation distance z with Z =

β0

s0W 2
0

(
1+ e1/C−e

s0β0{ln[(ze1/C+(L−z)e)/L]−1}[ze1/C+(L−z)e]+e−e1/C

)
.

From this expression above, we can find that Z exists
a maximal value Zm, that is, when z = L(e − 1)/(e −
e1/C ), Z → Zm = Lβ0/[W0(e − e1/C − s0β0L)].

From the analysis above, the real propagation dis-
tance z can choose from a certain value to infinity
(+∞); however, Z might be restricted in certain range
and has a boundary or limit (such as Zm) from the rela-
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Fig. 2 (Color online) Controllable behaviors of the combined
PS and AB corresponding to Fig. 1a, b in the DDW with loga-
rithmic profile: a, d complete excitation, b, e maintenance and

c, f restraint. Parameters are chosen s0 = 0.01, A0 = d0 =
0.1, x0 = 0.3,W0 = 0.5, L = 40,C = 5 with a, d β0 = 0.2, b,
e β0 = 0.037 and c, f β0 = 0.01

tion between Z and z. The propagation behaviors of
the combined PS and AB can be controlled by adjust-
ing the relation between the maximal value Zm and
the exciting location value Z0. When Zm is obviously
bigger than Z0, the combined PS and ABs correspond-
ing to Fig. 1a, b are excited very quickly in Fig. 2a,
d. If Zmax = Z0, the PS of the combined structure
in Fig. 1a is completely excited, and the AB of the
combined structure in Fig. 1a is excited to the max-
imum amplitude and maintain this amplitude a long
distance with self-similar propagating behaviors (see
Fig. 2b). On the contrary, theABof the combined struc-
ture in Fig. 1b is completely excited, and the PS of the
combined structure in Fig. 1b is excited to the max-
imum amplitude and maintain this amplitude a long
distance with self-similar propagating behaviors (see
Fig. 2e). When Zm < Z0, the thresholds of excit-
ing the AB of the combined structure in Fig. 1a and
the PS of the combined structure in Fig. 1b are never
reached and the excitation of them is restrained (see
Fig. 2c, f).

Figure 3 displays the controllable behaviors of the
combined PS and AB in Fig. 1c. When Zm is remark-
ably bigger than Z0, the complete combined PS and
AB corresponding to Fig. 1c is excited quickly (see
Fig. 3a). If Zm = Z0, both the PS and AB in the com-
bined PS and AB are excited to their maximal ampli-
tudes and maintain a long distance (see Fig. 3b). At
last, if Zm < Z0, wave in the framework of Eq. (4) is
not sufficient to be excited, and restraint of the com-
bined PS and ABwill happen (see Fig. 3c). Only initial
part of the combined PS and AB is produced, and these
initial parts sustain a long distance.

Besides these controllable behaviors in Figs. 2 and 3,
we can find other behaviors, such as the recurrence
of the combined PS and AB, in the second example,
namely the periodic distributed amplification system
(PDAS) [36,37]

β(z) = β0 exp(−σ z) cos(ωz), (8)

where β0 is the parameter related to the initial peak
power in system. This system produces alternating
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Fig. 3 (Color online) Controllable behaviors of the combined PS and AB corresponding to Fig. 1c in the DDWwith logarithmic profile:
a complete excitation, b maintenance and c restraint. Parameters are chosen as the same as those in Fig. 2

Fig. 4 (Color online)
Controllable behaviors of
the combined PS and AB
corresponding to Fig. 1a, b
in the periodic amplification
system: a, c recurrence and
b, d restraint. Parameters
are chosen as the same as
those in Fig. 2 except for
σ = 0.01, δ = 0.3 with a, c
β0 = 1 and b, d β0 = 0.1
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regions of positive and negative values of β, which are
helpful for the eventual stability of solutions [38,39];
especially, when ω = 0 and σ > 0, Eq. (8) is an expo-
nential DDW [27,40]. Moreover, Eq. (8) with σ = 0
corresponds to the inhomogeneous fibers with a peri-
odic modulation [38].

If we choose β as the PDAS expressed as (8),
we can obtain the relation between Z and z as

Z = Λ(z)/{W 2
0 [σ 2 + ω2 − s0Λ(z)]} with Λ(z) =

β0{σ − exp(−σ z)[σ cos(ωz) + ω sin(ωz)]}. From this
expression above, we can find that Z periodically
oscillates with the increase in z and exists a max-
imal value Zm; namely, when z = π/(2ω), Z →
Zm = β0{σ + ω exp[−σπ/(2ω)]}/W0/{σ 2 + ω2 −
s0β0(σ + ω exp[−σπ/(2ω)])}. We can modulate
the relation between Zm and Z0 to control the
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Fig. 5 (Color online)
Controllable behaviors of
the combined PS and AB
corresponding to Fig. 1c in
the periodic amplification
system: a recurrence and b
restraint. Parameters are
chosen as the same as those
in Fig. 4
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degree of excitation of the combined PS and
AB.

In the PDAS, corresponding to the combined PS and
AB in Fig. 1a, b, when Zm > Z0, the combined PS
and AB will recur periodically (c.f. Figs. 4a or c, 1a).
Figure 4a, c display two kinds of recurrence corre-
sponding to Fig. 1a and b, respectively. The recurrence
behavior in the form of a cluster for the combined PS
and AB is shown in Fig. 4a, c. We call the combined
PS and AB in Fig. 4a, c as clusters I and II, respec-
tively, according to the occurrence sequence of PS and
AB in the combined PS and AB. In cluster I, the PS
appears prior to the AB along the propagation distance
z, and in cluster II, the AB appears prior to the PS
along the propagation distance z. Thus, this behav-
ior in Fig. 4a is named the “I-II-I-II” mode after its
occurrence sequence of the cluster, and this behavior
in Fig. 4c is named the “II-I-II-I” mode after its occur-
rence sequence of the cluster. If Zm < Z0, the threshold
of exciting the PS and AB is never reached and only
the initial parts in the combined PS and AB are excited.
The full excitation is restrained (see Fig. 4b, d).

In the PDAS, the combined PS and AB in Fig. 1c
also exists the behaviors of recurrence and restraint.
When Zm > Z0, the combined PS and AB also recurs
periodically (c.f. Figs. 5a, 1c). When Zm < Z0, the
threshold of exciting the combined PS and AB is never
reached and their excitation is restrained or even elim-
inated (see Fig. 5b).

4 Conclusions

In conclusion,we investigate the coupledNLSE inPT -
symmetric coupled waveguides with variable coeffi-

cients and obtain exact combined PS and AB solu-
tion. Based on this solution, by adjusting the relation
between the maximal value Zm and the exciting loca-
tion value Z0, we discuss the controllable behaviors
including the complete excitation, recurrence, mainte-
nance and restraint of the combined PS and AB. In the
DDW with logarithmic profile, the combined PS and
AB possesses the phenomena of the complete excita-
tion, maintenance and restraint when Zm > Z0, Zm =
Z0 and Zm < Z0, respectively. In the PDAS, the com-
bined PS and AB exists the behaviors of recurrence
and restraint when Zm > Z0 and Zm < Z0, respec-
tively. Our analysis and results are applicable for cer-
tain applications of synthetic PT -symmetric systems
in nonlinear optics and condensed matter physics.
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