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Abstract This paper is concerned with stability and
tracking control of positive nonlinear systems via
Takagi–Sugeno (T–S) fuzzy modeling. Firstly, some
less conservative stability conditions for positive non-
linear systems that can be represented by a class
of positive T–S fuzzy model with only nonnegative
state variables are derived by proposing the so-called
quadratic copositive Lyapunov functions. Secondly, a
constrained control via the parallel distributed compen-
sation scheme is designed to stabilize a positive non-
linear system, while imposing positivity in closed loop,
upon which a constrained fuzzy tracking controller is
also given to guarantee the tracking performance and
positivity in closed loop. Finally, a numerical exam-
ple is provided to show the advantages of the proposed
methods, and an example of a real plant is presented to
demonstrate the controller design scheme.
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1 Introduction

Many physical systems involve variables that are
always confined to the positive orthant [1,2]. For exam-
ple, absolute temperatures, levels of liquids in tanks,
and concentrations of substances in chemical processes
are always positive. Such systems are generally termed
as positive systems [1]. The positivity can yield some
interesting and special properties to positive systems
[3]. For instance, it is widely known that time delay
may cause instability to a general linear system, but for
a positive system, the system stability is independent
of delays [4]. More typical phenomena are described
in [5] and the references therein.

In recent years, considerable attention has been paid
to positive systemsdue to their extensive applications in
areas such as economics, biology, and communication
networks. Major efforts have been devoted to proper-
ties such as realizability [6], reachability/controllability
[7], and particularly stability [8,9]. For positive sys-
tems, Lyapunov functions for general systems may
result in conservative conditions. Meanwhile, the exis-
tence of a linear copositive Lyapunov function (LCLF)
is necessary and sufficient for stability of a positive
linear system [1].

For positive systems, relatively fewer attempts have
been put on control synthesis [10–14]. Control of pos-
itive systems must take the positivity constraint into
account. Otherwise, the mathematical model of such
systems can move into infeasible regions, causing loss
of stability or performance. Because of the positivity,
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some traditional techniques, such as linear transfor-
mation and variable elimination, may not be applica-
ble, which makes control synthesis more difficult. By
proposing some effective methodologies, the output-
feedback control was solved in [15]; the observer was
designed in [16]; the problem of model reduction was
presented in [17], to list a few.

However, the aforementioned works are all focused
on positive linear systems, and few results have been
reported for positive nonlinear systems. Yet positive
nonlinear systems have a notably wide range of prac-
tical applications such as gas-lifted oil wells [18], syn-
chronized communication networks [8], energy mar-
kets [19]. Therefore, it is of fundamental importance to
numerous applications and theoretically challenging to
carry out studies of positive nonlinear systems.

During the past years, the fuzzy control [20–22],
in particular, Takagi–Sugeno (T–S) fuzzy model-based
control has been considered in the development of
analysis and synthesis of nonlinear systems? [23,24].
It has been proved that T–S fuzzy models can approxi-
mate any smooth nonlinear system to any accuracy on a
compact set [25]. The main idea of the T–S fuzzy mod-
eling is to obtain linear time-invariant models close
to the nonlinear system in some regions of the state
space and then combine these linear models using non-
linear fuzzy membership functions. Such a “blending”
makes T–S fuzzy systems similar to linear system, and
thus, some analysis and synthesis techniques devel-
oped for linear systems can be used for T–S fuzzy sys-
tems. For the stability analysis of T–S fuzzy control
systems, many researchers have presented the conven-
tional quadratic Lyapunov function approaches to find
a constant positive definite matrix of a quadratic Lya-
punov function satisfying the stability conditions of all
subsystems, since the quadratic stability conditions are
likely generalized to tackle the problems of control syn-
thesis [26,27]. If the obtained conditions are formulated
in terms of linear matrix inequalities (LMIs) [28], the
problemcanbe efficiently solved by recently developed
convex optimization techniques. So far, many control
issues for nonlinear systems have been investigated
based on the T–S fuzzy model [29]. To list a few, the
problems of stability analysis and stabilization were
studied in [30]; H∞ control designs were reported in
[31]; estimation and filtering were addressed in [32];
output regulation was investigated in [33]; fault detec-
tion was considered in [34]; and adaptive sliding-mode
control was designed in [35].

Given are the widespread applications of T–S fuzzy
control [36,37]. Recently, some efforts have been put
on the T–S fuzzy modeling, analysis, and synthe-
sis of positive nonlinear systems. Using the common
quadratic Lyapunov function approach, the authors
in [38] presented the process control of four linked
tanks on the basis of continuous-time T–S fuzzy
modeling. Then, by adopting similar techniques, the
delay-dependent stabilization of controlled positive T–
S fuzzy systems with time-varying delay was inves-
tigated in [39]. Exploring the fuzzy Lyapunov func-
tion method, the authors in [40] established improved
results. Meanwhile, the problems of stability analy-
sis and constrained control of positive nonlinear sys-
tems based on discrete-time T–S fuzzy models have
also been considered in [19]. Note that the Lyapunov
functions employed in the above-mentioned works are
introduced from those applicable for general T–S fuzzy
systems.However, asmentioned above that the states of
a positive system are always restricted in the first quad-
rant, those Lyapunov functions defined in the whole
state space will obviously lead to conservative results.
Considering the positivity, improved results on stabil-
ity and constrained control of positive T–S fuzzy sys-
tems have been obtained in [41] by utilizing the LCLF
approach that has been proved efficient for positive lin-
ear systems. However, although the existence of an
LCLF is sufficient and necessary for the stability of
a given positive linear system, the existence of a com-
mon LCLF for all linear subsystems is only sufficient
for a positive T–S fuzzy system [42].

The above observations motivate us to carry out the
present study: proposing the so-called quadratic copos-
itive Lyapunov function (QCLF) that generalizes the
linear copositive Lyapunov function and the quadratic
Lyapunov function to improve some existing results
on fuzzy control of positive nonlinear systems based
on T–S fuzzy model.

The first contribution of this paper lies in that the
so-called quadratic copositive Lyapunov function is
proposed to establish improved and numerically eas-
ily verified stability conditions for positive T–S fuzzy
systems. In addition, our approach admits further relax-
ations in the obtained stability conditions. Besides, a
constrained fuzzy tracking controller is designed such
that the state of the resulting closed-loop system can
track a given reference input with a prescribed perfor-
mance index while preserving positivity. The remain-
der of the paper is organized as follows. Section 2
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reviews necessary definitions and lemmas. In Sect.
3, some existence conditions of the QCLF ensuring
the stability of a given positive T–S fuzzy system are
derived, where relationships among these conditions
are also discussed. Then, the problems of controlled
stabilization and constrained tracking control are also
presented. Section 4 provides a numerical example and
an example of a real plant to verify the theoretical find-
ings, and Sect. 5 concludes the paper.

Notations: In this paper, the notations used are fairly
standard. A � 0 and x � 0 (or A � 0, x � 0) mean
that all elements of matrix A and x are positive (or non-
negative);R,Rn andRn×n denote the field of real num-
bers, n-dimensional Euclidean space, and the space of
n × n matrices with real entries, respectively, and R

n
0

denotesRn\{0n};Rn+ stands for the nonnegative orthant
in R

n
0; N+ is the set of positive natural numbers and

integers; y[m] := [
ym
1 ym

2 . . . ym
n

]T
,∀y ∈ R

n ; y{m} is
a base vector containing all homogeneous monomials
of degree m in y; the script Im = [0(n−m+1)×(m−1)

|In−m+1] ∈ R
(n−m+1)×n ; A ≡ [ai j ]n×n; ϑ(n, m) ≡

(n + m − 1)!/((n − 1)!m!); A ⊗ B denotes the Kro-
necker product of matrices A and B; in addition, the
notation P > 0(≥0) means that P is a real sym-
metric and positive definite (semi-positive definite)
matrix.

2 Problem formulation and preliminaries

This paper considers the following positive nonlinear
system

ẋ(t) = f (x(t), u(t), t), x(t0) = x0 � 0 (1)

can be represented as follows:
� Model rule i : IF θ1(t) is Mi

1 and · · · θp(t) is Mi
p,

THEN

ẋ(t) = Ai x(t) + Bi u(t), i ∈ R = {1, 2, . . . , r} (2)

where x(t) ∈ R
n is the state vector; u(t) ∈ R

m is the
control input; Mi

j is the fuzzy set, and r denotes the

number of IF-THEN rules; θ(t) = [
θ1(t), θ2(t), . . . ,

θp(t)
]T is the premise variable vector assumed inde-

pendent of inputu(t); in addition, Ai , Bi , i ∈ R, are real
matriceswith appropriate dimensions.Amore compact
presentation of the continuous-time T–S fuzzy model
can be given by

ẋ(t) = A(h(t))x(t) + B(h(t))u(t)

=
r∑

i=1

hi (θ(t))(Ai x(t) + Bi u(t)) (3)

where hi (θ(t)) are the normalized membership func-
tions:

hi (θ(t)) =
∏p

j=1 Mi
j (θ j (t))

∑r
i=1

∏p
j=1 Mi

j (θ j (t))
≥ 0,

r∑

i=1

hi (θ(t)) = 1

with Mi
j (θ j (t)) representing the grade of membership

of premise variable θ j (t) in Mi
j .

Definition 1 System (1) is said to be positive if for
any initial condition x(0) ∈ R

n+ and any input func-
tion u(t), the corresponding state trajectory x(t) ∈ R

n+,
∀t > 0.

Definition 2 A linear system ẋ(t) = Ax(t) + Br(t)
is positive, if for any initial condition x(0) ∈ R

n+ and
r(t) ∈ R

n+, the corresponding state trajectory x(t) ∈
R

n+.

Lemma 1 A linear system ẋ(t) = Ax(t) + Br(t) is
positive for any r(t) ∈ R

n+, if and only if A is a Metzler
matrix and B is a nonnegative matrix.

Lemma 2 System (3) is positive when u(t) ∈ R
n+, if

Ai , i ∈ R, are Metzler matrices and Bi , i ∈ R are
nonnegative matrices.

Remark 1 Due to the fact that 0 ≤ hi (θ(t)) ≤ 1,
Lemma 2 can be easily obtained by Lemma 1.

Definition 3 Positive T–S fuzzy system (3) is said to
be controlled positive relative to an initial state x(0) ∈
R

n+ if there exists a control input u(t) such that the
corresponding state trajectory x(t) ∈ R

n+, ∀t > 0.

Remark 2 Definition 2, Lemmas 1 and 2 mean that a
fuzzy system is positive if each of its local linear sys-
tems is positive. The stability of each local system is
equivalent to the existence of a linear copositive Lya-
punov function (LCLF) V (x(t)) = xT (t)v, v ∈ R

n+.
However, the existence of an LCLF is only sufficient
but not necessary for the stability of positive T–S fuzzy
system (3). On the other hand, when we design a con-
troller for T–S fuzzy system (3), the positivity of the
closed-loop system should be considered for correct
approximation. Therefore, it is of importance to intro-
duce the concept of constrained positive control.
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In this paper, we establish less conservative stability
conditions for positive nonlinear system (1) based on
T–S fuzzymodel (3), uponwhich a control input u(t) is
designed such that the resulting closed-loop system (3)
is controlled positive, and the state x(t) tracks a given
reference input xr (t) in the positive orthant.

3 Main results

3.1 Stability analysis

When u(t) = 0, we consider the positive nonlinear
system (1) which can be approximated by positive T–S
fuzzy system (3). In this subsection, we shall focus on
deriving improved global stability criteria for positive
T–S fuzzy system (3) by exploring a new Lyapunov
function. Before proceeding, the following remark is
presented for the subsequent derivations.

Remark 3 For a polynomial p(x) with any order in
x ∈ R

n
0, it can be easily verified that p(x) > 0, ∀x ∈

R
n+ ⇔ p

(
x [2]) > 0, ∀x ∈ R

n
0.

Now, we are in a position to provide the first version
of the stability conditions for positive T–S fuzzy system
(3) in the following theorem by QCLF approach.

Theorem 1 Consider positive T–S fuzzy system (3)
with u(t) = 0, if there exist real matrices P ∈ R

n×n,

Φ = [
φpq

]
(p, q)∈n×n and Θi =

[
θ i

pq

]

(p, q)∈n×n
,

i ∈ R, such that ∀i ∈ R,

−Φ + diag{φ11, φ22, . . . , φnn} − P < 0 (4)

diag{φ̄1, . . . , φ̄n−1} < 0 (5)

AT
i P + P Ai + diag{θ i

11, θ
i
22, . . . , θ

i
nn} − Θi < 0 (6)

diag{θ̄ i

1, . . . , θ̄
i
n−1} < 0 (7)

where

φ̄k � diag
{
φk(k+1) + φ(k+1)k, . . . , φkn + φnk

}

θ̄ i
k � diag

{
θ i

k(k+1) + θ i
(k+1)k, . . . , θ

i
kn + θ i

nk

}

k ∈ {1, 2, . . . , n − 1},
then V (x(t)) = xT (t)Px(t) is a QCLF that ensures the
underlying system to be asymptotically stable in R

n+.

Proof Here, we choose a QCLF candidate for positive
T–S fuzzy system (3) as follows:

V (x(t)) = xT (t)Px(t), x(t) ∈ R
n+ (8)

where P = [ppq ](p,q)∈n×n is a real matrix satisfy-
ing (4) and (6). Then, one has from Remark 3 that
V (x(t)) > 0,∀x(t) ∈ R

n+, is equivalent to,∀x(t) ∈ R
n
0

V
(

x [2](t)
)

=
n∑

p=1

n∑

q=1

ppq x2p(t)x2q (t) > 0 (9)

Define x̃(t) � [(x1(t)I2x(t))T , (x2(t)I3x(t))T , . . . ,

(xn−1(t)In x(t))T ]T . One can get that

(
x [2](t)

)T
Φx [2](t) =

n∑

p=1

n∑

q=1,q �=p

φpq x2p(t)x2q (t)

+
n∑

p=1

φppx4p(t)

=
n−1∑

p=1

n∑

q=p+1

(φpq + φqp)x2p(t)

x2q (t) +
n∑

p=1

φppx4p(t)

= x̃ T (t)diag{φ̄1, · · · , φ̄n−1}x̃(t)

+
(

x [2](t)
)T

diag{φ11, φ22,

· · · , φnn}x [2](t) (10)

Set x̂(t) �
[(

x [2](t)
)T

, x̃ T (t)
]T ∈ R

ϑ(n,2). This

together with (4), (5), and (10) yields that

(
x [2](t)

)T
Px [2](t)

= −x̃ T (t)diag{φ̄1, . . . , φ̄n−1}x̃(t)

+
(

x [2](t)
)T [

ppq + φpq
]
(p,q)∈n×n

× x [2](t) −
(

x [2](t)
)T

diag{φ11, φ22,

· · · , φnn}x [2](t)
= x̂ T (t)diag{P + Φ − diag{φ11, φ22,

· · · , φnn},−diag{φ̄1, . . . , φ̄n−1}}
× x̂(t)

> 0 (11)

In the sequel, one can obtain from (8) and (9) that
∀x(t) ∈ R

n+,

V (x(t)) > 0 (12)
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Moreover, it can be derived from (8) that ∀x(t) ∈
R

n+,

V̇ (x(t)) = xT (t)

(
r∑

i=1

hi (θ(t))AT
i P + P

r∑

i=1

hi (θ(t))Ai

)

×x(t)

=
r∑

i=1

hi (θ(t))xT (t)[v̄i
pq ](p,q)∈n×n x(t)

=
r∑

i=1

n∑

p=1

n∑

q=1

hi (θ(t))v̄i
pq x p(t)xq(t) (13)

where [v̄i
pq ](p,q)∈n×n = AT

i P+P Ai . Likewise,we can

get from Remark 3 and (13) that V̇ (x(t)) < 0,∀x(t) ∈
R

n+, is equivalent to, ∀x(t) ∈ R
n
0

V̇
(

x [2](t)
)

=
r∑

i=1

n∑

p=1

n∑

q=1

hi (θ(t))v̄i
pq x2p(t)x2q (t) < 0

(14)

Note that 1 ≥ hi (θ(t)) ≥ 0. Thus, it can be seen from
(14) that V̇ (x [2](t)) < 0,∀x(t) ∈ R

n
0, if∀i ∈ R, x(t) ∈

R
n
0,

n∑

p=1

n∑

q=1

v̄i
pq x2p(t)x2q (t) < 0 (15)

Then, according to the similar developments in (10)–
(12), it can be obtained from (15) that (6)–(7) imply
∀x(t) ∈ R

n+,

V̇ (x(t)) < 0 (16)

Finally, we can conclude from (12) and (16) that if (4)–
(7) hold, V (x(t)) = xT (t)Px(t) is a QCLF that guar-
antees the positive T–S fuzzy system (3) to be asymp-
totically stable in Rn+. This completes the proof. 
�
Remark 4 In Theorem 1, QCLF is essentially a qua
dratic Lyapunov function that satisfies the following
two inequalities:

V (x(t)) = xT (t)Px(t) > 0, ∀x(t) ∈ R
n+

V̇ (x(t)) = xT (t)

(
r∑

i=1

hi (θ(t))AT
i P

+
r∑

i=1

hi (θ(t))P Ai

)

×x(t) < 0, ∀x(t) ∈ R
n+

Note that we do not require P > 0 and AT
i P +

P Ai < 0,∀i ∈ R. Besides, another merit of our pro-
posed QCLF lies in that the obtained stability condi-
tions in Theorem 1 can be further improved via high-
order relaxations in the QCLF and its time derivative.

Note the fact that x(t) ∈ R
n+.Hence,

(∑n
j=1 x j (k)

)l

> 0 for any integer l ∈ N+. Then, for positive fuzzy
system (3), we define V l(x(t)) and Ul

i (x(t)), i ∈ R, as
follows

V l(x(t)) =
⎛

⎝
n∑

j=1

x j (t)

⎞

⎠

l

V (x(t)) (17)

Ul(x(t)) =
⎛

⎝
n∑

j=1

x j (t)

⎞

⎠

l

V̇ (x(t)) (18)

where V (x(t)) is the QCLF defined in (8). It is immedi-
ately clear that V l(x(t)) > 0 and Ul(x(t)) < 0, if and
only if V (x(t)) > 0 and V̇ (x(t)) < 0 since x(t) ∈ R

n+.
Considering (8) and (17), we have,

V l(x(t)) =
⎛

⎝
n∑

j=1

x j (t)

⎞

⎠

l
n∑

p=1

n∑

q=1

ppq x p(t)xq(t)

(19)

Subsequently, we can get from Remark 3 that V l(x(t))
> 0,∀x(t) ∈ R

n+, is equivalent to ∀x(t) ∈ R
n
0,

V l
(

x [2](t)
)

=
⎛

⎝
n∑

j=1

x2j (t)

⎞

⎠

l
n∑

p=1

n∑

q=1

ppq x2p(k)x2q (k) > 0 (20)

Note that V l(x [2](t)) is a polynomial with degree 2l+4
in x(t). Thus, a sufficient condition for (20) is the exis-
tence of appropriately defined sum of squares decom-
position which can be understood as the existence of a
matrix V (often called the Gram matrix) such that

V l(x [2](t)) =
(

x {l+2}(t)
)T

V x {l+2}(t) (21)
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where

x {l+2}(k) =
[(

x1(t)x {l+1}(t)
)T

,
(

x2(t)(I2x(t)){l+1})T
,

· · · ,
(

xn−1(t)(In−1x(t)){l+1})T
, xl+2

n (t)

]T

∈ R
ϑ(n,l+2). (22)

The representation ofmatrices describingV l(x [2](t)) is
not unique. Let V be a symmetric matrix variable, then,
by expanding the right-hand side of (21) and matching
the corresponding coefficients, we get ϑ(n, 2(l + 2))
independent linear constraints on the entries of V in
a linear system. Accordingly, a linear parameteriza-
tion expression for the family of matrices representing
V l(x [2](t)) is obtained,

V
′
(z) = V + V (z) (23)

where z ∈ R
ϑ(n,l+2)(ϑ(n,l+2)+1)/2−ϑ(n,2(l+2)) is a vec-

tor of free parameters. Followed by (23), (21) can be
rewritten as

V l
(

x [2](t)
)

=
(

x {l+2}(t)
)T

V
′
(z)x {l+2}(t)

=
(

x {l+2}(t)
)T

(V + V (z))x {l+2}(t)
(24)

On the other hand, it is obvious from (13) and (18)
that

Ul(x(t)) =
⎛

⎝
n∑

j=1

x j (t)

⎞

⎠

l
r∑

i=1

n∑

p=1

n∑

q=1

hi (θ(t))v̄i
pq

x p(t)xq(t) (25)

It is immediate from 1 ≥ hi (θ(t)) ≥ 0 and (25) that
Ul(x(t)) < 0, ∀x(t) ∈ R

n+, if ∀x(t) ∈ R
n+,

Ul
i (x(t)) =

⎛

⎝
n∑

j=1

x j (t)

⎞

⎠

l
n∑

p=1

n∑

q=1

v̄i
pq x p(t)xq(t) < 0

(26)

Then, similar to the derivations in (20)–(24), we can
also find a linear parameterization U

′
i (wi ) = Ui +

Ui (wi ) ∈ R
ϑ(n,l+2)×ϑ(n,l+2), i ∈ R, fulfilling

Ul
i

(
x [2](t)

)
=
(

x {l+2}(t)
)T

(Ui + Ui (wi ))x {l+2}(t)
(27)

So far, the following improved stability conditions for
positive T–S fuzzy system (3) can be given on the basis
of the above discussions.

Theorem 2 Consider positive T–S fuzzy system (3), if
there exist a scalar l ∈ N+ and parameter vectors z,
wi ∈ R

ϑ(n,l+2)(ϑ(n,l+2)+1)/2−ϑ(n,2(l+2)), i ∈ R, such
that, ∀i ∈ R,

V + V (z) > 0 (28)

Ui + Ui (wi ) < 0 (29)

where V, V (z), Ui , Ui (wi ) ∈ R
ϑ(n,l+2)×ϑ(n,l+2) are

symmetric matrices defined in (24) and (27), and then,
system (3) has a QCLF in the form of (8) which guar-
antees that system (3) is asymptotically stable in R

n+.

Proof By the discussions in (17)–(27), it is immedi-
ately clear that if (28)–(29) hold, then ∀x(t) ∈ R

n+,

V l(x(t)) > 0 (30)

Ul(x(t)) < 0 (31)

This togetherwith (17) and (18) implies that V (x(t)) >

0 and V̇ (x(t)) < 0,∀x(t) ∈ R
n+. This completes the

proof. 
�
Remark 5 In Theorem 2, an improved stability result
is derived by performing high-order relaxations in the
QCLF and its time derivative by the positive states. In
the case of n = 1, (20) and (26) are equivalent to (21)
and (27), respectively. Thus, the stability conditions
of Theorem 2 are equivalent for all l ∈ N+. Then, a
question naturally arises: Is there a relation between
the conditions of l and l + 1 for other n. The following
theorem answers the question.

Theorem 3 For a given scalar l ∈ N+, if
there exist parameter vectors z, wi ∈
R

ϑ(n,l+2)(ϑ(n,l+2)+1)/2−ϑ(n,2(l+2)), i ∈ R such that
(28)–(29) hold, then there also exist parameter vectors
z̄, w̄i ∈ R

ϑ(n,l+3)(ϑ(n,l+3)+1)/2−ϑ(n,2(l+3)) such that
∀i ∈ R,

V̄ + V̄ (z̄) > 0 (32)

Ūi + Ūi (w̄i ) < 0 (33)

where V̄ + V̄ (z̄), Ūi + Ūi (w̄i ) ∈ R
ϑ(n,l+3)×ϑ(n,l+3)

are linear parameterization expressions of the matrices
representing V l+1(x [2](t)) and Ul+1

i (x [2](t)) which
are defined in (20) and (26), respectively.
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Proof It is true that

V l+1
(

x [2](t)
)

=
(

x {l+3}(t)
)T

(V̄ + V̄ (z̄))x {l+3}(t) (34)

where x {l+3}(t) = [(x1(t)x {l+2}(t)
)T

, . . . ,
(
xn−1(t)

(In−1x(t)){l+2})T
, xl+3

n (t)]T ∈ R
ϑ(n,l+3). It is also

clear:

V l+1
(

x [2](t)
)

=
⎛

⎝
n∑

j=1

x2j (t)

⎞

⎠ V l(x [2](t))

=
⎛

⎝
n∑

j=1

x2j (t)

⎞

⎠
(

x {l+2}(t)
)T

(V + V (z))

× x {l+2}(t)

= xT (t)x(t)
(

x {l+2}(t)
)T

(V + V (z))

× x {l+2}(t)

=
(

x(t) ⊗ x {l+2}(t)
)T

(In ⊗ (V + V (z)))

×
(

x(t) ⊗ x {l+2}(t)
)

=
(

x {l+3}(t)
)T

[
Y T

l+3(In ⊗ (V

+V (z)))Yl+3

]
x {l+3}(t) (35)

whereYl+3 is a full column rankmatrix such that x(t)⊗
x {l+2}(t) = Yl+3x {l+3}(t),∀l ∈ N+, x(t) ∈ R

n
0. On

the other hand, it is noted that V +V (z) > 0. Therefore,
there exists a parameter vector

z̄ ∈ R
ϑ(n,γ+3)(ϑ(n,γ+3)+1)/2−ϑ(n,2(γ+3)) such that

Y T
l+3 [In ⊗ (V + V (z))] Yl+3 = V̄ + V̄ (z̄) > 0

Furthermore, in accordance with the similar processes
above, we can conclude that if there exist parameter
vectorswi , i ∈ R such that (29) holds, then we can also
find w̄i such that (33) is satisfied, which completes the
proof. 
�

Remark 6 We can see from Theorem 3 that if (28) and
(29) have feasible solutions for a given l ∈ N+, then
for scalar l + 1, we can also find a QCLF ensuring the
stability of system (3). Yet, the converse is not true.

3.2 Constrained fuzzy controller design

In this subsection, the problem of constrained tracking
control for positive nonlinear system (1) is presented
basedonT–S fuzzymodeling.Our objective is to design
a controller to ensure the positivity of the system (3) and
the state x(t) can track a given reference input xr (t) in
the positive orthant. Before designing the tracking con-
troller, we first establish the constrained stabilization
conditions for system (3). Here, the well-known PDC
technique is employed to design the fuzzy controller,
and the PDC fuzzy controller is defined as follows:
� Model rule i : IF θ1(t) is Mi

1 and · · · θp(t) is Mi
p,

THEN

u(t) = Ki x(t), i ∈ R = {1, 2, . . . , r} (36)

Then, the closed-loop system (3) can be rewritten as
follows:

ẋ(t) = A(h(θ))x(t) + B(h(θ))K (h(θ))x(t)

= Ā(h(θ))x(t) (37)

Theorem 4 Considering the closed-loop T–S fuzzy
system in (37), if there exist symmetric matrices V ∈
R

n×n, Ψ = [
ψpq

]
(p, q)∈n×n, Πi j =

[
π

i j
pq

]

(p, q)∈n×n
,

(i, j) ∈ R × R, such that ∀(i, j) ∈ R × R,

−Ψ + Q1 − V < 0 (38)

diag{ψ̄1, . . . , ψ̄n−1} < 0 (39)

(Ai + Bi K j )
T V + V (Ai + Bi K j )

+Q2 − Πi j < 0 (40)

diag
{
π̄

i j
1 , . . . , π̄

i j
n−1

}
< 0 (41)

−ep(Ai + Bi K j )e
T
q ≤ 0,

(p, q) ∈ k × k = {1, 2, . . . , n}, p �= q (42)

where Q1 = diag{ψ11, ψ22, . . . , ψnn},
Q2 = diag{π i j

11, π
i j
22, . . . , π

i j
nn},

ψ̄k � diag{2ψk(k+1), . . . , 2ψkn},
and π̄

i j
k � diag{2π i j

k(k+1), . . . , 2π
i j
kn}, k ∈ {1, 2, . . . ,

n − 1}, then there exists a stabilizing controller in the
form of (36) with gains Ki such that system (37) is
controlled positive and asymptotically stable.

Proof It can be derived from (42) that Ai + Bi K j , ∀(i,
j) ∈ R × R, are Metzler matrices. Also note that 1 ≥
hi (θ(t)) ≥ 0,∀i ∈ R. Therefore, it is seen that
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Ā(h(t)) =
r∑

i=1

hi (θ(t))
r∑

j=1

h j (θ(t))(Ai + Bi K j )

are Metzler matrices, ∀t > 0. One can conclude by
Lemma2 andDefinition 3 that system (37) is controlled
positive.

On the other hand, we substitute the Lyapunov
matrix P in Theorem 1 by a symmetricmatrix V . Then,
by similar derivations in Theorem 1, the closed-loop
system (37) can be proved to be asymptotically stable
if the conditions (38)–(41) are satisfied. We omit the
proof here. 
�

Next, we design a constrained fuzzy tracking con-
troller. Here, we suppose that the reference signal
xr (t) ∈ R

n+ is generated by:

ẋr (t) = Ar xr (t) + r(t)

where Ar is a specific Hurwitz Metzler matrix, and
r(t) ∈ R

n+ is a bounded input. To achieve ourmain aim,
we nowpropose the following fuzzy tracking controller
which shares the same fuzzy rules as (2):
� Model rule i : IF θ1(t) is Mi

1 and · · · θp(t) is Mi
p,

THEN

u(t) = K1i x(t) + K2i xr (t), i ∈ R = {1, 2, . . . , r}
(43)

Then, the closed-loop system can be represented by

ẋ(t) = A(h(θ))x(t) + B(h(θ))K1(h(θ))x(t)

+B(h(θ))K2(h(θ))xr (t)

=
r∑

i=1

hi (θ(t))
r∑

j=1

h j (θ(t))(Ai + Bi K1 j )x(t)

+
r∑

i=1

hi (θ(t))
r∑

j=1

h j (θ(t))Bi K2 j xr (t) (44)

Based on the above stabilization criterion, the objec-
tive is that the state x(t) of (44) tracks a given reference
xr (t) as t → ∞. In order to do so, the following aug-
mented system is first defined:

Ẋ(t) = Ã(h(θ))X (t) + B̃(h(θ))u(t) + D̃(h(θ))r(t)

(45)

where

Ã(h(θ)) =
r∑

i=1

hi (θ(t))

[
Ai 0
0 Ar

]
=

r∑

i=1

hi (θ(t)) Ãi

B̃(h(θ)) =
r∑

i=1

hi (θ(t))

[
Bi

0

]
=

r∑

i=1

hi (θ(t))B̃i

D̃(h(θ)) =
r∑

i=1

hi (θ(t))

[
0
I

]
=

r∑

i=1

hi (θ(t))D̃i

X (t) =
[

x(t)
xr (t)

]

and

u(t) =
r∑

i=1

hi (θ(t))K1i x(t) +
r∑

i=1

hi (θ(t))K2i xr (t)

= K1i (h(θ))x(t) + K2i (h(θ))xr (t).

Theorem 5 Consider the closed-loop T–S fuzzy system
in (44). For given scalars εi j > 0, γ > 0 and a semi-
definite matrix Q ∈ R

n×n, if there exist a symmetric
nonsingular matrix Ṽ ∈ R

2n×2n, and symmetric matri-
ces Ψ̃ = [ψ̃pq ](p,q)∈2n×2n, Π̃i j = [π̃ i j

pq ](p,q)∈3n×3n,
(i, j) ∈ R × R, such that ∀(i, j) ∈ R × R,
⎡

⎢
⎣

T1 Ṽ D̃i − Π̃12
i j T2

D̃T
i Ṽ − Π̃21

i j T3 0

T4 0 −εi j Ṽ −1

⎤

⎥
⎦ < 0 (46)

−Ψ̃ + diag
{
ψ̃11, ψ̃22, · · · , ψ̃(2n)(2n)

}
− Ṽ < 0

(47)

diag
{
ψ̃

′
1, . . . , ψ̃

′
2n−1

}
< 0 (48)

diag
{
π̃

i j
1 , . . . , π̃

i j
3n−1

}
< 0 (49)

−ep( Ãi + B̃i K̃ j )e
T
q ≤ 0, (50)

(p, q) ∈ k̃ × k̃ = {1, 2, . . . , 2n}, p �= q

where T1 = −2Ṽ − Π̃11
i j − εi j Ṽ + Q̃ + Π̄11

i j ,

T2 = εi j I + ( Ãi + B̃i K̃ j + I )T ,
T3 = −γ 2 I − Π̃22

i j + Π̄22
i j ,

T4 = εi j I + Ãi + B̃i K̃ j + I ,
Π̃i j = [Π̃11

i j , Π̃12
i j ; Π̃21

i j , Π̃22
i j ], Q̃ = [Q, −Q;−Q,

Q], Π̄11
i j = diag{π̃ i j

11, . . . , π̃
i j
(2n)(2n)}, Π̄22

i j = diag

{π̃ i j
(2n+1)(2n+1), . . . , π̃

i j
(3n)(3n)}, ψ̃

′
k � diag{2ψ̃k(k+1),

. . . , 2ψ̃k(2n)}, k ∈ {1, 2, . . . , 2n − 1} , π̃
i j
k � diag

{2π̃ i j
k(k+1), . . . , 2π̃

i j
k(2n)},

k ∈ {1, 2, . . . , 3n − 1}, K̃i � [K1i , K2i ], then there
exists a constrained fuzzy state-feedback controller in
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the form of (43) with gains K̃i such that system (44) is
controlled positive and the states x(t) can track a given
reference xr (t) with attenuation performance γ .

Proof First, define a QCLF candidate for system (45)
as:

V (X (t)) = X T (t)Ṽ X (t)

Then, by the above discussions, Schur complement,
and Theorem 4, the following result can be trivially
derived: If (46)–(50) have feasible solutions, then there
exists a constrained fuzzy state-feedback controller in
the form of (43) with gains K̃i , such that the closed-
loop augmented system (45)with r(t) = 0 is controlled
positive and asymptotically stable. This implies that
system (44) is controlled positive and asymptotically
stable. Furthermore, when r(t) �= 0, one has

V̇ (X (t)) + (x(t) − xr (t))
T Q(x(t) − xr (t))

−γ 2r T (t)r(t)

=
r∑

i=1

hi (θ(t))
r∑

j=1

h j (θ(t))

[
X (t)
r(t)

]T

[
F1 Ṽ D̃i

(Ṽ D̃i )
T −γ 2 I

]

×
[

X (t)
r(t)

]
(51)

where F1 =
(

Ãi + B̃i K̃ j

)T
Ṽ +Ṽ

(
Ãi + B̃i K̃ j

)
+ Q̃.

Since 1 ≥ hi (θ(t)) ≥ 0 and [X T (t) r T (t)] � 0,
V̇ (X (t))+(x(t)−xr (t))T Q(x(t)−xr (t))−γ 2r T (t)r(t)
< 0, if ∀(i, j) ∈ R × R, (49) holds and

[
F2 Ṽ D̃i − Π̃12

i j

(Ṽ D̃i )
T − Π̃21

i j −γ 2 I − Π̃22
i j + Π̄22

i j

]

< 0 (52)

where F2 =
(

Ãi + B̃i K̃ j

)T
Ṽ + Ṽ

(
Ãi + B̃i K̃ j

)
+

Q̃ − Π̃11
i j + Π̄11

i j .
It is true that

(
Ãi + B̃i K̃ j

)T
Ṽ + Ṽ

(
Ãi + B̃i K̃ j

)
+ Q̃ − Π̃11

i j + Π̄11
i j

=
(

Ãi + B̃i K̃ j + I
)T

Ṽ + Ṽ
(

Ãi + B̃i K̃ j + I
)

−2Ṽ + Q̃ − Π̃11
i j + Π̄11

i j (53)

Therefore, (52) holds if and only if there exist suffi-
ciently small scalars εi j > 0,∀(i, j) ∈ R × R, such
that

[
F3 Ṽ D̃i − Π̃12

i j

(Ṽ D̃i )
T − Π̃21

i j −γ 2 I − Π̃22
i j + Π̄22

i j

]

< 0

where F3 =
(

Ãi + B̃i K̃ j + I
)T

Ṽ + Ṽ
(

Ãi + B̃i K̃ j +
I
)−2Ṽ +Q̃−Π̃11

i j +εT
i j

(
Ãi + B̃i K̃ j +I

)
V
(

Ãi + B̃i K̃ j +
I
)+ Π̄11

i j , which is equivalent to ∀(i, j) ∈ R × R,

[
F4 Ṽ D̃i − Π̃12

i j

(Ṽ D̃i )
T − Π̃21

i j −γ 2 I − Π̃22
i j + Π̄22

i j

]

< 0 (54)

where F4 =
[

I + εi j ( Ãi + B̃i K̃ j + I )
]T

ε−1
i j Ṽ

[
I + εi j ( Ãi + B̃i K̃ j + I )

]
−2Ṽ + Q̃−Π̃11

i j −ε−1
i j Ṽ +

Π̄11
i j . It then follows by Schur complement that (54)

holds, if and only if ∀(i, j) ∈ R × R,

⎡

⎢
⎣

F5 Ṽ D̃i − Π̃12
i j F6

D̃T
i Ṽ − Π̃21

i j −γ 2 I − Π̃22
i j + Π̄22

i j 0

F7 0 −εi j Ṽ −1

⎤

⎥
⎦ < 0

(55)

where F5 = −2Ṽ − Π̃11
i j − ε−1

i j Ṽ + Q̃ + Π̄11
i j , F6 =

I +εi j ( Ãi + B̃i K̃ j + I )T , F7 = I +εi j ( Ãi + B̃i K̃ j + I ).
Next, by setting εi j = ε−1

i j and performing a congru-

ence transformation to (55) via diag
(
I, I, εi j I

)
, we can

obtain that (46) and (55) are equivalent. Noting that
V (X (t)) > 0,∀X (t) ∈ R

2n+ , t > 0, and V (X (0)) = 0
for X (0) = 0, it is clear that

∫ t

0
[V̇ (X (s)) + (x(s) − xr (s))

T Q(x(s) − xr (s))

−γ 2r T (s)r(s)]ds

>

∫ t

0
[(x(s) − xr (s))

T Q(x(s) − xr (s))

−γ 2r T (s)r(s)]ds (56)
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Thus, it yields from (51)–(56) that if (46) and (49)
are satisfied, then, for a finite time t > 0,
∫ t

0
(x(s) − xr (s))

T Q(x(s) − xr (s))ds

< γ 2
∫ t

0
r T (s)r(s)ds (57)

which implies that the effect of input r(t) on the track-
ing error x(t) − xr (t) is attenuated with a prescribed
performance γ .

Finally, we conclude that if (46)–(50) are feasible,
then the closed-loop system (44) is controlled positive,
and the state x(t) can track the reference xr (t), which
completes the proof. 
�

The conditions of Theorem 5 are nonconvex. How-
ever, such a problem can be solved by using the cone
complementarity linearization (CCL). Next, the fol-
lowing algorithm solves the nonconvex problem for-
mulated in Theorem 5.

Algorithm 1 (solving controller gain for system
(44)):

[Step 1.] For given scalars εi j > 0, (i, j) ∈
R × R, γ > 0 and a semi-definite matrix
Q ∈ Rn×n , find a feasible solution denoted
as (K̃ 0

i , Π̃0
i j , Ψ̃

0, Ṽ 0, Ũ 0) for the linear matrix
inequalities (47)–(50) and, ∀(i, j) ∈ R × R,
⎡

⎢
⎣

M1 Ṽ D̃i − Π̃12
i j M2

D̃T
i Ṽ − Π̃21

i j M3 0

M4 0 −εi j Ũ

⎤

⎥
⎦ < 0

(58)
[

Ṽ I
I Ũ

]
≥ 0 (59)

where M1 = −2Ṽ −Π̃11
i j −εi j Ṽ + Q̃+Π̄11

i j , M2 =
εi j I +( Ãi + B̃i K̃ j +I )T , M3 = −γ 2 I −Π̃22

i j +Π̄22
i j ,

M4 = εi j I + Ãi + B̃i K̃ j + I . Then, set k = 0, Ṽ 0,
and Ũ 0 as the iterative initial values.
[Step 2.] Find a feasible solution with respect to
the convex minimization problem:

min(
K̃ p+1

i ,Π̃
p+1
i j ,Ψ̃ p+1,Ṽ p+1,Ũ p+1

) trace{Ṽ p+1Ũ p

+Ũ p+1Ṽ p}
s.t. (47)–(50) and (58)–(59)
[Step 3.] If (46)–(50) are satisfied for (Ki , Π̃i j , Ψ̃ ,

Ṽ , Ũ ) = (K̃ k+1
i , Π̃k+1

i j , Ψ̃ k+1, Ṽ k+1, Ũ k+1), then

K̃i is a set of stabilizing controllers, EXIT.

[Step 4.] If k > N0 (N0 is the prescribed iteration
number), EXIT. Otherwise, k = k + 1, and go to
Step 2.

Examples in the next section demonstrate the valid-
ity of our obtained criteria, as well as the less conserv-
ativeness than some existing ones.

4 Numerical examples

We provide the following two examples in this section
to verify the developed results.

Example 1 Consider the following autonomous
continuous-time nonlinear positive system described
by

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ẋ1(t) = −(1 + 9 sin2(x1(t)))x1(t)
+(a − a sin2(x1(t)) + 10 sin2(x1(t)))x3(t)

ẋ2(t) = (b − b sin2(x1(t)))x1(t)
−(1 + 9 sin2(x1(t)))x2(t)

ẋ3(t) = 10 sin2(x1(t))x2(t)
−(10 − 9 sin2(x1(t)))x3(t)

(60)

with a > 0 and b > 0.

Now, we formulate the T–S fuzzy model of pos-
itive nonlinear system (60) as follows: Let θ(t) =
sin2(x1(t)) with two fuzzy rules:

Modelrule 1 : IF θ(t) is 0,THEN

ẋ(t) = A1x(t)

Modelrule 2 : IF θ(t) is 1,THEN

ẋ(t) = A2x(t)

where the normalized membership functions are h1(θ)

= 1 − sin2(x1(t)), h2(θ) = sin2(x1(t)), and

A1 =
⎡

⎣
−1 0 a
b −1 0
0 0 −10

⎤

⎦ , A2 =
⎡

⎣
−10 0 10
0 −10 0
0 10 −1

⎤

⎦ .

Note that both A1 and A2 are Metzler matrices. There-
fore, the positive nonlinear system (60) has been
described by a positive T–S fuzzy model, which means
that both Theorem 1 and Theorem 2 can be applied for
the system. Next, we identify the region of the plane
a × b ∈ [0, 10] × [0, 5] such that global asymptotic
stability of the system with x(t) ∈ R

n+ is preserved.
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We can obtain the regions of the plane a × b by some
existing results including Proposition 1 of [43], Theo-
rem 3.1 of [39], Theorem 3 of [42], Theorems 1 and 2
of this paper, respectively, and the comparison results
are depicted in Fig. 1. We can see that the results in our
paper yield larger regions than the other ones. Taking
a = 2 and b = 2 for instance, it can be seen from Fig.
2 that the corresponding system is stable, which cannot
be checked out by existing methods other than Theo-
rems 1 and 2 (l = 1) in our paper. In this case, we can
obtain a QCLF ensuring the stability of the above sys-
tem by Theorem 1 with the following parameters (note
that the matrix P is not symmetric positive definite):

P = 105 ×
⎡

⎣
0.0008 0.8692 1.1196

−0.8695 0.0007 −0.2359
−1.1203 0.2373 0.0009

⎤

⎦

Example 2 [41] Consider the process composed of
two linked tanks of both 22 l capacity, which can be
described by:

{
ẋ1(t) = u1(t) − Q12(t) − Q1(t)
ẋ2(t) = u2(t) + Q12(t) − Q2(t)

(61)

where xi (t) stands for the level of tank i in liter; ui (t)
represents the flow of pump i in liter/min; Q12(t) is
the variation of the flow between the two tanks; Qi (t)
denotes the loss flow of tank i, i ∈ {1, 2}.

By Torricelli law [38], we can obtain

Q1(t) = γ1S1
√
2gx1(t)

Q2(t) = γ1S2
√
2gx2(t)

Q12(t) = γ12S1
√
2g |x1(t) − x2(t)|sign (x1(t) − x2(t))

where γ1 and γ12 are physical constants, Si is the i th
tank sectional area, and g represents the gravity accel-
eration. The process (61) is then described by:

⎧
⎪⎪⎨

⎪⎪⎩

ẋ1(t) = u1(t) − R1
√

x1(t)
−R12

√|x1(t) − x2(t)|sign(x1(t) − x2(t))
ẋ2(t) = u2(t) − R2

√
x2(t)

+R12
√|x1(t) − x2(t)|sign(x1(t) − x2(t))

(62)

where R1 = γ1S1
√
2g, R2 = γ1S2

√
2g and R12 =

γ12S1
√
2g. We use the parameter values R1 = R2 =

0.9 and R12 = 0.5. It should be pointed out that model
(62) is a positive nonlinear system since xi (t) must be
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Fig. 1 Comparison of the regions with respect to (a, b) obtained
by different stability criteria
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Fig. 2 State trajectory of positive nonlinear system (60)

positive. Then, by setting θi (t) = 1√
xi (t)

> 0, we have
√|x1(t) − x2(t)| =

√∣∣θ21 (t) − θ22 (t)
∣∣/θ1(t)θ2(t).Thus,

system (62) is rewritten as ẋ(t) = A(t)x(t) + Bu(t),
where

A(t) =
[

a11 a12
a21 a22

]
, B = I

with a11 = −R1θ1(t) − R12θ1(t)θ2(t)√∣
∣θ21 (t) − θ22 (t)

∣
∣
,

a12 = R12θ1(t)θ2(t)√∣∣θ21 (t) − θ22 (t)
∣∣
,

a21 = − R12θ1(t)θ2(t)√∣∣θ21 (t) − θ22 (t)
∣∣
,

a22 = −R2θ2(t) + R12θ1(t)θ2(t)√∣∣θ21 (t) − θ22 (t)
∣∣
.

Suppose that θi (t) ∈ [ai , bi ] , and consider the fol-
lowing 4 fuzzy rules:
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Modelrule 1 : IF θ1(t) is about a1, and θ2(t) is about a2,

THEN A(t) = A1.

Modelrule 2 : IF θ1(t) is about a1, and θ2(t) is about b2,

THEN A(t) = A2.

Modelrule 3 : IF θ1(t) is about b1, and θ2(t) is about a2,

THEN A(t) = A3.

Modelrule 4 : IF θ1(t) is about b1, and θ2(t) is about b2,

THEN A(t) = A4.

The membership functions are chosen as: h1(θ) =
f11(θ) f21(θ), h2(θ) = f11(θ) f22(t), h3(θ) = f12(θ)

f21(θ), h4(θ) = f12(θ) f22(θ), with fi1(θ) = (θi (t) −
bi )/(ai − bi ), fi2(θ) = 1− fi1(θ). Thus, the obtained
matrices Ai are:

A1 =

⎡

⎢⎢⎢⎢⎢
⎣

−R1a1 − R12a1a2√∣∣a2
1 − a2

2

∣∣

R12a1a2√∣∣a2
1 − a2

2

∣∣

− R12a1a2√∣∣a2
1 − a2

2

∣∣
−R2a2 + R12a1a2√∣∣a2

1 − a2
2

∣∣

⎤

⎥⎥⎥⎥⎥
⎦

A2 =

⎡

⎢⎢⎢⎢⎢
⎣

−R1a1 − R12a1b2√∣∣a2
1 − b22

∣∣

R12a1b2√∣∣a2
1 − b22

∣∣

− R12a1b2√∣∣a2
1 − b22

∣∣
−R2b2 + R12a1b2√∣∣a2

1 − b22
∣∣

⎤

⎥⎥⎥⎥⎥
⎦

(63)

A3 =

⎡

⎢⎢⎢⎢⎢
⎣

−R1b1 − R12b1a2√∣∣b21 − a2
2

∣∣

R12b1a2√∣∣b21 − a2
2

∣∣

− R12b1a2√∣∣b21 − a2
2

∣∣
−R2a2 + R12b1a2√∣∣b21 − a2

2

∣∣

⎤

⎥⎥⎥⎥⎥
⎦

A4 =

⎡

⎢⎢⎢⎢⎢
⎣

−R1b1 − R12b1b2√∣∣b21 − b22
∣∣

R12b1b2√∣∣b21 − b22
∣∣

− R12b1b2√∣∣b21 − b22
∣∣

−R2b2 + R12b1b2√∣∣b21 − b22
∣∣

⎤

⎥⎥⎥⎥⎥
⎦

(64)

Next, we are interested in designing a controller in the
form of (43) such that the resulting closed-loop sys-
tem is positive, and x(t) can track a given reference
xr (t) = [9 + 2 sin(t); 6 + sin(0.7t)]. Assume that the
level of tank 1 is between 6 and 20 l, while the level
of tank 2 is between 5 and 15 l. Then, a1 = 0.26,
b1 = 0.45, a2 = 0.22, and b2 = 0.41. To meet the
target, we set γ = 0.67, Q = I, Ar = −I, r(t) =
[9 + 2 sin(t); 6 + sin(0.7t)]. Applying Algorithm 1 to
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Fig. 3 State responses of the corresponding closed-loop system

the obtained T–S fuzzy system, we can get the follow-
ing solutions after 11 iterations:

K11 =
[−1.6117 −0.1369

0.2757 −2.0603

]
, K21 =

[
2.0070 0.0462
0.0462 2.0069

]

K12 =
[−1.7004 −0.1006

0.2356 −1.9016

]
, K22 =

[
2.0590 0.0473
0.0473 2.0590

]

K13 =
[−1.5388 −0.0572

0.1950 −1.9980

]
, K23 =

[
2.0265 0.0449
0.0448 2.0264

]

K14 =
[−1.1852 −0.4297

0.5654 −2.2161

]
, K24 =

[
2.0450 0.0462
0.0462 2.0447

]

Finally, the corresponding state responses of the sys-

tem under initial state condition x(0) = [
10 10

]T
and

xr (0) = [
0 0

]T
are shown in Fig. 3, from which one

can see that the obtained controller achieves the track-
ingpurpose as t increases,while imposing the positivity
in closed loop.

5 Conclusions

The problems of stability and control for a class of
positive nonlinear systems are investigated in this paper
based onT–S fuzzymodeling.Byproposing a quadratic
copositive Lyapunov function approach, improved sta-
bility conditions are first established for positive non-
linear systems that can be represented by positive T–S
fuzzy systems. Then, the concept of “controlled posi-
tive” is introduced for a given positive nonlinear sys-
tem, based on which, the problem of constrained sta-
bilization is solved. Furthermore, a constrained fuzzy
controller ensuring the tracking performance and pos-
itivity in closed loop is also designed for the underly-
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ing systems by defining an augmented system. Finally,
two examples are provided to verify the advantages and
applicability of our proposed results by comparingwith
the existing ones. By our proposed idea, extending the
results of this paper to positive nonlinear systems with
time delay or tomembership-dependent conditionswill
be considered in our future work.
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