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Abstract Under investigation in this paper is a gen-
eralized coupled nonlinear Schrödinger system with
higher-order terms, which describes the propagation
properties of ultrashort solitons in two ultrashort opti-
cal fields. Based on the 3×3 lax pair, the N -fold
Darboux transformation (DT) has been constructed.
Several kinds of solitons, breathers, and rogue wave
solutions are generated on the vanishing and nonvan-
ishing backgrounds by virtue of the DT. Figures are
plotted to reveal the dynamic features of those solu-
tions: (1) elastic interactions between two solitons; (2)
mutual attractions and repulsions of bound solitons;
(3) propagation properties of Ma-breathers, Akhme-
diev breathers, two-breathers, and rogue waves. The
results show that the rogue waves can result from two
different ways: the limit process of Ma-breathers and
Akhmediev breathers.
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1 Introduction

During the past decades, investigations on the nonlin-
ear Schrödinger (NLS) system have attracted much
research interest because the propagation of slowly
varying amplitude electromagnetic waves in a single-
mode fiber can be described by the NLS system [1–10]

i qt ± 1

2
qxx + |q|2 q = 0, (1.1)

where q denotes the slowly varying complex envelope
of the wave, and subscripts x and t are the longitudi-
nal distance and retarded time, respectively. However,
when increasing the bit rates, it is necessary to decrease
the pulsewidth, and theNLSsystemwill become inade-
quatewhen the pulse lengths become comparable; then,
the higher-order terms have to be considered, includ-
ing the third-order dispersion (TOD), self-steepening
(SS), and stimulated raman scattering terms [11–20]. In
addition, in the case of achieving wavelength division
multiplexing, one have to consider more than one field
simultaneously [21–28]. Especially, the wave dynam-
ics of simultaneous propagation of two ultrashort opti-
cal fields in a fiber is governed by the coupled NLS
system with higher-order terms as [29,30]

i q1t + q1xx + 2
(
σ1|q1|2 + σ2|q2|2

)
q1 + iε [q1xxx

+ 3
(
σ1|q1|2 + σ2|q2|2

)
q1x

+ 3
(
σ1q

∗
1q1x + σ2q

∗
2q2xq1

)] = 0, (1.2a)

i q2t + q2xx + 2
(
σ1|q1|2 + σ2|q2|2

)
q2 + iε [q2xxx
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+ 3
(
σ1|q1|2 + σ2|q2|2

)
q2x

+ 3
(
σ1q

∗
1q1x + σ2q

∗
2q2xq2

)] = 0, (1.2b)

where q1 and q2 are the field functions; σ1 and σ2 refer
to self-phase modulation (SPM) and cross-phase mod-
ulation (XPM), respectively; ε denotes the strength of
higher-order linear and nonlinear effects.

System (1.2) is a completely integrable model, and
some properties of System (1.2) have been analyzed
recently. Tasgal and Potasek [29] have obtained one-
soliton solutions by the inverse scattering method;
Wang et al. [30] have reported the Lax integrable
property and derived bright soliton solutions by the
Riemann Hilbert formulation. The soliton solutions
obtained in Refs. [29,30] are all deduced on the van-
ishing backgrounds. In common cases, vanishing back-
grounds can generate soliton solutions, while nonvan-
ishing backgrounds can generate breather and rogue
wave solutions. Thus, the aim of this paper was to ana-
lyze the dynamic behaviors of soliton solutions, derive
several kinds of breather and rogue wave solutions on
vanishing and nonvanishing backgrounds, and to ana-
lyze how the solutions are affected by higher-order
terms for System (1.2).

This paper will be organized as follows: In Sect. 2,
we will present 3×3 Lax pair and construct the Dar-
boux transformation (DT) for System (1.2). In Sect. 3,
using the DT obtained, we will derive soliton solu-
tions on vanishing backgrounds. In Sect. 4, breather
and rogue wave solutions will be discussed on non-
vanishing backgrounds, and the dynamic behaviors of
those solutions will be analyzed with some graphical
illustration. Finally, our conclusions will be addressed
in Sect. 5.

2 Lax pair and Darboux transformation

Employing the Ablowitz–Kaup–Newell–Segur proce-
dure [31], one can derive the 3×3 Lax pair associated
with System (1.2) as [30]

Ψx = FΨ = (λ F1 + F0) Ψ, (2.1a)

Ψt = GΨ =
(
λ3 G3 + λ2 G2 + 2 λG1 + G0

)
Ψ,

(2.1b)

where λ is the spectral parameter, Ψ = (ψ1, ψ2, ψ3)
T

(T denotes the transpose of a vector) is the vector eigen-
function, and

F0 =
⎛
⎝

0 q1 q2
−σ1 q∗

1 0 0
−σ2 q∗

2 0 0

⎞
⎠ , F1=

⎛
⎝

i 0 0
0 −i 0
0 0 −i

⎞
⎠ , G3 = 4 εF1,

G2 =
⎛
⎝

−2i 4 ε q1 4 ε q2
−4 ε σ1 q∗

1 2i 0
−4 ε σ2 q∗

2 0 2i

⎞
⎠ , G0 =

⎛
⎝

A1 A2 A3

B1 B2 B3

C1 C2 C3

⎞
⎠ ,

G1 =
⎛
⎝
i ε

(
σ1 |q1|2 + σ2 |q2|2

) −q1 − i ε q1x −q2 − i ε q2x
σ1q∗

1 − i ε σ1q∗
1x i ε σ1|q1|2 i ε σ1 q∗

1 q2
σ2q∗

2 − i ε σ2q∗
2x i ε σ2q1 q∗

2 i ε σ2|q2|2

⎞
⎠ ,

with

A1 = σ1

(
i |q1|2 − ε q1x q

∗
1 + ε q∗

1x q1
)

+ σ2

(
i |q2|2 − ε q2x q

∗
2 + ε q∗

2x q2
)

,

A2 = i q1x − ε q1xx − 2 ε q1
(
σ1|q1|2 + σ2|q2|2

)
,

A3 = i q2x − ε q2xx − 2 ε q2
(
σ1|q1|2 + σ2|q2|2

)
,

B1 = i σ1 q
∗
1x + ε σ1 q

∗
1xx + 2 ε σ1 q

∗
1

(
σ1 |q1|2 + σ2 |q2|2

)
,

B2 = ε σ1 q1x q
∗
1 − i σ1 |q1|2 − ε σ1 q

∗
1x q1,

B3 = ε σ1 q2x q
∗
1 − i σ1 q

∗
1x q2 − i σ1 q2 q

∗
1 ,

C1 = i σ2 q
∗
2x + ε σ2 q

∗
2xx + 2 ε σ2 q

∗
2x

(
σ1|q1|2 + σ2|q2|2

)
,

C2 = ε σ2 q1x q
∗
2 − ε σ2 q

∗
2x q1 − i σ2 q1 q

∗
2 ,

C3 = ε σ2 q2x q
∗
2 − ε σ2 q

∗
2x q2 − i σ2 |q2|2.

Through direct computation, one can find that the com-
patibility condition Ut − Vx + U V − V U = 0 will
give rise to System (1.2).

DT technique is a method which can derive multi-
soliton solutions from trivial seeds in a purely algebraic
procedure for the integrable nonlinear evolution equa-
tions (NLEEs) [32,33]. Main feature of DT is that the
Lax pair associated with the NLEE remains covariant
under the gauge transformation [34,35]. By using Lax
pair (2.1), we construct the DT for System (1.2) as

Ψ ′ = TΨ = (λ I + S)Ψ,

Ψ ′
x = F ′Ψ ′, Ψ ′

t = G ′Ψ ′, (2.2)

where I denotes the identity matrix, F ′ and G ′ have
the same forms as F and G except that q1 and q2
are replaced by q ′

1 and q ′
2, respectively. Defining S =

−H Λ H−1 and

Λ =
⎛
⎝

λ1 0 0
0 λ∗

1 0
0 0 λ∗

1

⎞
⎠ , H =

⎛
⎝

φ1 ϕ∗
1 ψ∗

1
ϕ1 −σ1φ

∗
1 0

ψ1 0 −σ2φ
∗
1

⎞
⎠ ,

where the vector (φ1, ϕ1, ψ1)
T is the solution of Lax

pair (2.1) associated with the eigenvalue λ1, we can
obtain the transformation between potential functions
q ′
1, q

′
2 and q1, q2 as
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q ′
1 = q1 + 2 i

(
λ1 − λ∗

1

)

σ2 φ1 ϕ∗
1

σ1 σ2|φ1|2 + σ2|ϕ1|2 + σ1|ψ1|2 , (2.3a)

q ′
2 = q2 + 2 i

(
λ1 − λ∗

1

)

σ1 φ1 ψ∗
1

σ1 σ2|φ1|2 + σ2|ϕ1|2 + σ1|ψ1|2 . (2.3b)

For the convenience of calculation, we can rewrite the
DT (2.3) as the following determinant representations:

q ′
1 = q1 − 2 i

|Ω1|
|Ω2| , q ′

2 = q2 − 2 i
|Ω3|
|Ω2| , (2.4)

where

Ω1 =
⎛
⎝

φ1 −λ1 φ1 ψ1

ϕ∗
1 −λ∗

1 ϕ∗
1 0

ψ∗
1 −λ∗

1 ψ∗
1 −σ2 φ∗

1

⎞
⎠ ,

Ω3 =
⎛
⎝

φ1 ϕ1 −λ1 φ1

ϕ1 −σ1φ
∗
1 −λ∗

1 ϕ∗
1

ψ1 0 −λ∗
1 ψ∗

1

⎞
⎠ ,

Ω2 =
⎛
⎝

φ1 ϕ1 ψ1

ϕ∗
1 −σ1φ

∗
1 0

ψ∗
1 0 −σ2 φ∗

1

⎞
⎠ .

TheDT investigated above is of degree one.Now,we
will discuss the DT of higher degree for System (1.2).
In fact, the DT of higher degree can be regarded as a
superposition of that of degree one. Now, we define

Tn = Tn(λ; λ1, λ2, . . . , λn) =
n∑

k=0

Sn−kλ
k,

S0 = I, (2.5)

where Si (i = 1, 2, . . . , n (n � 2)) are 3 × 3 matrices,
the elements of which are some functions depending
on the variables x and t .

Using Expression (2.5), we can obtain

Ψ [n] = TnΨ =
(

n∑
k=0

Sn−kλ
k

)
Ψ, (2.6a)

U (n)
0 = U0 + Sn−1U1 −U ′

1 Sn−1. (2.6b)

By using Expressions (2.6), we can deduce the
potential formula

q(n)
1 = q1 − 2 i (Sn−1)12, (2.7a)

q(n)
2 = q2 − 2 i (Sn−1)13, (2.7b)

where

(Sn−1)12 = |Δ1n|
|Δ2n| , (Sn−1)13 = |Δ3n|

|Δ2n| ,
with

Δ1n =
⎛
⎝

Ξ1 · · · α1

· · · · · · · · ·
Ξn · · · αn

⎞
⎠ , Δ3n =

⎛
⎝

Θ1 · · · α1

· · · · · · · · ·
Θn · · · αn

⎞
⎠ ,

Δ2n =
⎛
⎝

Γ1 · · · α1

· · · · · · · · ·
Γn · · · αn

⎞
⎠ ,

and

Ξ1 =
⎛
⎝

λn−1
1 φ1 −λn1φ1 λn−1

1 ψ1

(λ∗
1)

n−1ϕ∗
1 −(λ∗

1)
nϕ∗

1 0
(λ∗

1)
n−1ψ∗

1 −(λ∗
1)

nψ∗
1 −σ2(λ

∗
1)

n−1φ∗
1

⎞
⎠ ,

Ξn =
⎛
⎜⎝

λn−1
n φn −λnnφn λn−1

n ψn(
λ∗
n

)n−1
ϕ∗
n − (

λ∗
n

)n
ϕ∗
n 0(

λ∗
n

)n−1
ψ∗
n − (

λ∗
n

)n
ψ∗
n −σ2

(
λ∗
n

)n−1
φ∗
n

⎞
⎟⎠ ,

α1 =
⎛
⎝

φ1 ϕ1 ψ1

ϕ∗
1 −σ1φ

∗
1 0

ψ∗
1 0 −σ2φ

∗
1

⎞
⎠ ,

αn =
⎛
⎝

φn ϕn ψn

ϕ∗
n −σ1φ

∗
n 0

ψ∗
n 0 −σ2φ

∗
n

⎞
⎠ ,

Θ1 =
⎛
⎝

λn−1
1 φ1 λn−1

1 ϕ1 −λn1φ1

(λ∗
1)

n−1ϕ∗
1 −σ1(λ

∗
1)

n−1φ∗
1 0

(λ∗
1)

n−1ψ∗
1 0 −σ2(λ

∗
1)

n−1φ∗
1

⎞
⎠ ,

Θn =
⎛
⎜⎝

λn−1
n φn λn−1

n ϕn −λnnφn(
λ∗
n

)n−1
ϕ∗
n −σ1

(
λ∗
n

)n−1
φ∗
n 0(

λ∗
n

)n−1
ψ∗
n 0 −σ2

(
λ∗
n

)n−1
φ∗
n

⎞
⎟⎠ ,

Γ1 =
⎛
⎝

λn−1
1 φ1 λn−1

1 ϕ1 λn−1
1 ψ1

(λ∗
1)

n−1ϕ∗
1 −σ1(λ

∗
1)

n−1φ∗
1 −(λ∗

1)
nϕ∗

1
(λ∗

1)
n−1ψ∗

1 0 −(λ∗
1)

nψ∗
1

⎞
⎠ ,

Γn =
⎛
⎜⎝

λn−1
n φn λn−1

n ϕn λn−1
n ψn(

λ∗
n

)n−1
ϕ∗
n −σ1

(
λ∗
n

)n−1
φ∗
n − (

λ∗
n

)n
ϕ∗
n(

λ∗
n

)n−1
ψ∗
n 0 − (

λ∗
n

)n
ψ∗
n

⎞
⎟⎠ ,

andΨ j = Ψ (x, t, λ)|λ=λ j = (φ j , ϕ j , ψ j )
T is the basic

solutions of the Lax pair (2.1) corresponding to λ =
λi (i = 1, 2, . . . , n).

3 Soliton solutions on vanishing backgrounds
for System (1.2)

In this section, we will construct soliton solutions for
System (1.2) by using the obtained DT on vanishing
backgrounds, i.e., q1 = q2 = 0, including one-soliton,
two-soliton, and bound-soliton solutions.
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Table 1 Physical quantities
of solitons for q1 and q2 via
Solutions (3.1)

Solitons Velocities Widths Amplitudes Initial phases

q1 |2(a + 6a2ε − 2b2ε)| |1/2b|
∣∣∣∣ 2 b σ2√

σ1σ2(σ1+σ2)

∣∣∣∣
∣∣∣ln

√
σ1σ2

σ1+σ2
/2b

∣∣∣

q2 2(a + 6a2ε − 2b2ε) |1/2b|
∣∣∣∣ 2 b σ1√

σ1σ2(σ1+σ2)

∣∣∣∣
∣∣∣ln

√
σ1σ2

σ1+σ2
/2b

∣∣∣

Case 3.1 Under the seeds as q1 = q2 = 0, from
Lax pair (2.1), we can obtain φ1 = c1 exp θ1, ϕ1 =
c2 exp (−θ1), ψ1 = c3 exp (−θ1), here θ1 = i λ1 x +
(−2 i λ21 + 4i ε λ31) t and c1, c2, c3 are complex para-
meters and λ1 = a + i b. Then, Eq. (2.3) can give
one-soliton solutions for System (1.2) as

q ′
1 = 2i

(
λ1 − λ∗

1

) σ2

2
√

(σ1 + σ2)σ1σ2

× sech

(
θ1 + θ∗

1 + ln

√
σ1σ2

σ1 + σ2

)
exp

(
θ1 − θ∗

1

)
,

(3.1a)

q ′
2 = 2i

(
λ1 − λ∗

1

) σ1

2
√

(σ1 + σ2)σ1σ2

× sech

(
θ1 + θ∗

1 + ln

√
σ1σ2

σ1 + σ2

)
exp

(
θ1 − θ∗

1

)
.

(3.1b)

Moreover, through symbolic computation, one can con-
clude some physical quantities for q1 and q2 via Solu-
tions (3.1) as portrayed in Table 1.

From Table 1, one can remarkably find that the soli-
ton amplitudes, widths, and initial phases are indepen-
dent to the parameter ε, i.e., the higher-order terms do
not influence the soliton amplitude, widths, and initial
phases. However, the soliton velocities become a com-
plicated mix of the eigenvalues and the higher-order
term parameters, so the higher-order terms will influ-
ence the soliton velocities.

Case 3.2 Taking n = 2 in Eq. (2.7), choosing two
sets of solutions forLaxPair (2.1):Ψ1=Ψ (x, t, λ)|λ=λ1

= (φ1, ϕ1, ψ1)
T and Ψ2 = Ψ (x, t, λ)|λ=λ2 = (φ2, ϕ2,

ψ2)
T , through direct computations, we obtain two-

soliton solutions for System (1.2) as

q(2)
1 = q1 − 2 i

|Δ12|
|Δ22| , q(2)

2 = q2 − 2 i
|Δ32|
|Δ22| ,

(3.2)

where

Δ12 =

⎛
⎜⎜⎜⎜⎜⎜⎝

λ1φ1 −λ21φ1 λ1ψ1 φ1 ϕ1 ψ1

λ∗
1ϕ

∗
1 −λ∗2

1 ϕ∗
1 0 ϕ∗

1 −σ1φ
∗
1 0

λ∗
1ψ

∗
1 −λ∗2

1 ψ∗
1 −σ2λ

∗
1φ

∗
1 ψ∗

1 0 −σ2φ
∗
1

λ2φ2 −λ22φ2 λ2ψ2 φ2 ϕ2 ψ2

λ∗
2ϕ

∗
2 −λ∗2

2 ϕ∗
2 0 ϕ∗

2 −σ1φ
∗
2 0

λ∗
2ψ

∗
2 −λ∗2

2 ψ∗
2 −σ2λ

∗
2φ

∗
2 ψ∗

2 0 −σ2φ
∗
2

⎞
⎟⎟⎟⎟⎟⎟⎠

,

Δ32 =

⎛
⎜⎜⎜⎜⎜⎜⎝

λ1φ1 λ1ϕ1 −λ21φ1 φ1 ϕ1 ψ1

λ∗
1ϕ

∗
1 −σ1λ

∗
1φ

∗
1 0 ϕ∗

1 −σ1φ
∗
1 0

λ∗
1ψ

∗
1 0 −σ2λ

∗
1φ

∗
1 ψ∗

1 0 −σ2φ
∗
1

λ2φ2 λ2φ2 −λ22φ2 φ2 ϕ2 ψ2

λ∗
2ϕ

∗
2 −σ1λ

∗
2φ

∗
2 −λ∗2

2 ϕ∗
2 ϕ∗

2 −σ1φ
∗
2 0

λ∗
2ψ

∗
2 0 −λ∗2

2 ψ∗
2 ψ∗

n 0 −σ2φ
∗
2

⎞
⎟⎟⎟⎟⎟⎟⎠

,

Δ22 =

⎛
⎜⎜⎜⎜⎜⎜⎝

λ1φ1 λ1ϕ1 λ1ψ1 φ1 ϕ1 ψ1

λ∗
1ϕ

∗
1 −σ1λ

∗
1φ

∗
1 −λ∗2

1 ϕ∗
1 ϕ∗

1 −σ1φ
∗
1 0

λ∗
1ψ

∗
1 0 −λ∗2

1 ψ∗
1 ψ∗

1 0 −σ2φ
∗
1

λ2φ2 λ2φ2 λ2ψ2 φ2 ϕ2 ψ2

λ∗
2ϕ

∗
2 −σ1λ

∗
2φ

∗
2 0 ϕ∗

2 −σ1φ
∗
2 0

λ∗
2ψ

∗
2 0 −σ2λ

∗
2φ

∗
2 ψ∗

2 0 −σ2φ
∗
2

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Figure 1 describes the interactions of two bright soli-
tons with different amplitudes and velocities expressed
via Eq. (3.2), and as depicted in Fig. 1, the main fea-
ture of the collisions is that the shapes, amplitudes,
and pulse widths of the solitons all reserve invariant
except for slightly visible phase shifts after the process
of interaction; that is to say, the interactions are elas-
tic. In addition, one can observe that the interaction
between the two solitons is centered at the origin (0, 0)
due to the choice of the phase φ = 0.

Now, we introduce a special type of two-soliton
solutions for System (1.2) named bound solitons [36].
Considering the initial pulses as q1(0, t) = q2(0, t) =
sech (t − t0)+ sech (t + t0), t0 is the initial separations
of two solitons, we will investigate the interaction sce-
narios between two neighboring solitons.

Calculated from Lax pair (2.1), the real parts of the
eigenvalues λ1, λ2 will be zero, i.e., λ1 = i �1, λ2 =
i �2, by using the Taylor series of q1(0, t), q2(0, t), the
expressions of the two-soliton solutions (3.2) and the
first conservative law of System (1.2)
∫ ∞

−∞

(
|q1|2 − |q2|2

)
dt = 2(�1 + �2), (3.3)
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A higher-order coupled nonlinear Schrödinger system 2479

Fig. 1 Elastic interactions between the two-soliton solutions. Parameters are: λ1 = 1 + 0.5i , λ2 = −1 + 0.6i , σ1 = 1, σ2 = 2 and
ε = 0.1

Fig. 2 Periodically mutual attractions and repulsions of bound-soliton solution. Parameters are: λ1 = 1.07311 i, λ2 = 0.95243 i ,
σ1 = σ2 = 1 and ε = 0

we can deduce that

�1,2 = 1 + 2 t0
sinh(2 t0)

± sech t0. (3.4)

When t0=3.5,Eq. (3.4) results inλ1=1.07311 i, λ2
= 0.95243 i ; then, we can obtain the bound solitons
which periodically propagate as shown in Fig. 2. Main
feature of the bound soliton is that when the two soli-
tons propagate along their own trajectories, the mutual
attraction between them takes place, and consequently,
the two solitons merge. At the spot of the interaction,
the amplitudes of solitons get higher instantly. After the
interaction, the mutual repulsion between the two soli-
tons occur, and this repulsion causes that the two soli-

tons separate. However, once they separate, the mutual
attraction takes place again, and the process will repeat
periodically.

However, when t0 = 8.1, Eq. (3.4) results in λ1 =
1.00061 i, λ2 = 0.99994 i ; then, the mutual attrac-
tions and repulsions between two solitons disappear,
and the two solitons will eventually separate owing
to their different velocities. In addition, if we choose
�1 = 0.5, �2 = −0.501, then the two solitons will
propagate in parallel without any effect on each other
even if the propagation distance grows long enough as
shown in Fig. 3. Sowe can suppress the effects between
bound solitons by virtue of adjusting the values of �1
and �2.
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Fig. 3 Parallel propagation of two-soliton solutions. Parameters are: λ1 = 0.5 i, λ2 = −0.501 i , σ1 = σ2 = 1 and ε = 0.1

4 Breather and rogue wave solutions on
nonvanishing backgrounds for Eq. (1.2)

In this section, we will construct one- and two-breather
and rogue wave solutions for System (1.2) on nonva-
nishing backgrounds: the continuous wave (cw) back-
grounds as q1 = a exp i (κ x+ωt), q2 = b exp i (κ x+
ωt).

Substituting the nonvanishing seeds q1 = a exp i (κ

x+ωt), q2 = b exp i (κ x+ωt) into Lax pair (2.1) and
setting φ1 = f1, ϕ1 = f2 exp [−i (κ x + ωt)], ψ1 =
f3 [−i (κ x + ωt)], one can obtain

f1x = i λ1 f1 + a f2 + b f3, (4.1a)

f2x + i λ1 f2 = −a σ1 f1 + i κ f2, (4.1b)

f3x + i λ1 f3 = −b σ2 f1 + i κ f3, (4.1c)

f1t = γ f1 − a α f2 − b α f3, (4.1d)

f2t − i ω f2 = a σ1 α f1 + [i a2σ1(β + 2 ε κ)

− 2 i β λ21] f2 + i a b σ1 (β + 2 ε κ) f3, (4.1e)

f3t − i ω f3 = b σ2 α f1 + i a b σ2 (β + 2 ε κ) f2

+ [i b2σ1(β + 2 ε κ) − 2 i β λ21] f3, (4.1f)

where α = κ − κ2 ε − 2κ ε λ1 + 2(λ1 − 2ε λ21 +
ε a2σ1+ε b2 σ2), β = 2ε λ1, γ = i[2 β λ21−(a2σ1+
b2 σ2)(β + 2ε κ)].

Supposing λ1 = κs+i As = κ/2+i As and through
direct computations, we can obtain

φ1 = i (μ1 − 2λ1)

2 b σ2
exp (μ1 x + ϑ1 t)

+ i (μ2 − 2λ1)

2 b σ2
exp (μ2 x + ϑ2 t), (4.2a)

ϕ1 = a σ1

b σ2
exp (μ1 x + ϑ1 t) + a σ1

b σ2
exp (μ2 x + ϑ2 t)

− b

a
exp (μ3 x + ϑ3 t), (4.2b)

ψ1 = exp (μ1 x + ϑ1 t) + exp (μ2 x + ϑ2 t)

+ exp (μ3 x + ϑ3 t), (4.2c)

whereμ1 = i(κ+s)/2, μ2 = i(κ−s)/2, μ3 = i(κ−
λ1), ν1 = k1 μ1 + k0, ν2 = k1 μ2 + k0, ν3 = i(ω +
2 λ21 − 4 ε λ31) and s = 2

√
a2 σ1 + b2 σ2 − A2

s , k1 =
i[κ − κ2ε − 2κ ε λ1 + 2(λ1 − 2ελ21 + a2 σ1 ε +
b2 σ2 ε)]/2, k0 = i[ω + κ2 ε λ1 − a2 σ1 − b2 σ2 +
κ(−λ1 + 2 ε λ21 + 2 a2 ε σ1 + 2 b2 ε σ2)]. Substituting
the above conclusions into Eq. (2.3), we can obtain
three types of solutions for System (1.2). Now, we will
analyze the novel properties of those solutions under
three different cases.

Case 4.1 When a2 σ1 + b2 σ2 = A2
s , then the solu-

tions will have nothing to do with x and t , and in this
case, the solutions are not significant.

Case 4.2 In case of a2 σ1 + b2 σ2 > A2
s , taking

s = ζ + i η, then ζ = 2
√
a2 σ1 + b2 σ2 − A2

s , η =
0. Substituting the above conclusions into Eqs. (4.2)
and (2.3), one can derive the Ma-breather solutions for
System (1.2) as shown in Fig. 4. One can observe from
Fig. 4 that the breathers time periodically propagate on
cw backgrounds, i.e., they are the Ma-breathers [37].

In addition, defining As = √
a2 σ1 + b2 σ2−ε2 and

taking ε → 0, that is to say, As → (
√
a2 σ1 + b2 σ2)

−,
we can derive rogue wave solutions for System (1.2) as
shown in Fig. 5.

123



A higher-order coupled nonlinear Schrödinger system 2481

Fig. 4 Evolution of the Ma-breather solutions. Parameters are: a = 1, b = 1.2, κ = 1, As = 1, σ1 = σ2 = 1 and ε = 0.1

Fig. 5 Evolution of the rogue wave solutions. Parameters are: a = 1, b = 1.2, κ = 1, As = 1, σ1 = σ2 = 1 and ε = 0.1

Case 4.3 In case of a2 σ1 + b2 σ2 < A2
s , taking s =

ζ + i η, then ζ = 0, η = 2
√
A2
s − a2 σ1 − b2 σ2. Sub-

stituting the above conclusions intoEqs. (4.2) and (2.3),
one can derive the Akhmediev breather solutions for
System (1.2) as shown in Fig. 6. From Fig. 6, one can
find that the Akhmediev breathers [38] are periodic in
the space coordinate and aperiodic in the time coor-
dinate. Generally, the time-aperiodic solution can be
regarded as a homoclinic or separatrix trajectory in the
infinite-dimension phase space of the solutions for Sys-
tem (1.2) with periodic boundary conditions in space.
Through numerical simulation, one can gain the facts
that in Fig. 6:

(1) the periods are in inverse proportion to the value
of A2

s − a2 σ1 − b2 σ2, so the group velocities of

the Akhmediev breathers are dependent on parameters
As, a, b, σ1 and σ2;

(2) parameters a and b can affect the amplitudes.
Similarly,Case4.2, defining As = √

a2 σ1 + b2 σ2+
ε2 and taking ε → 0, that is to say, As →
(
√
a2 σ1 + b2 σ2)

+, we can derive another rogue wave
solutions for System (1.2) as shown in Fig. 7.

Comparing with Figs. 5 and 7, one can observe that
the rogue wave solitons can be resulted from two dif-
ferent processes: the localized process of the Akhme-
diev breathers and the reduction process of the Ma-
breathers.

Case 4.4 Choosing λ2 = κ/2 + i Bs and through
direct computations, we can obtain
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Fig. 6 Evolution of the Akhmediev breather solutions. Parameters are: a = 1, b = 0.6, κ = 2.2, As = 1.4, σ1 = σ2 = 1 and ε = 0.1

Fig. 7 Evolution of the rogue wave solutions. Parameters are: a = 1, b = 0.6, κ = 2.2, As = 1.4, σ1 = σ2 = 1 and ε = 0.1

φ2 = i (�1 − 2λ2)

2 b σ2
exp (�1 x + δ1 t)

+ i (�2 − 2λ2)

2 b σ2
exp (�2 x + δ2 t), (4.3a)

ϕ2 = a σ1

b σ2
exp (�1 x + δ1 t) + a σ1

b σ2
exp (�2 x + δ2 t)

− b

a
exp (�3 x + δ3 t), (4.3b)

ψ2 = exp (�1 x + δ1 t) + exp (�2 x + δ2 t)

+ exp (�3 x + δ3 t), (4.3c)

where �1 = i(κ +θ)/2, �2 = i(κ −θ)/2, �3 = i(κ −
λ2), δ1 = m1 �1 +m0, δ2 = m1 �2 +m0, δ3 = i(ω+
2 λ22 − 4 ε λ32) and θ = 2

√
a2 σ1 + b2 σ2 − B2

s , m1 =
i[κ − κ2ε − 2κ ε λ2 + 2(λ2 − 2ελ22 + a2 σ1 ε +
b2 σ2 ε)]/2, m0 = i[ω + κ2 ε λ2 − a2 σ1 − b2 σ2 +

κ(−λ2 + 2 ε λ22 + 2 a2 ε σ1 + 2 b2 ε σ2)]. Substituting
the above conclusions into Eq. (3.2), we can obtain
two-breather solutions for System (1.2) as shown in
Fig. 8.

5 Conclusions

Our main attention has focused on System (1.2) which
governs the propagation properties of ultrashort soli-
tons in two ultrashort optical fields. We have obtained
constructed N -fold DT based on 3× 3 lax pair for
System (1.2). In addition, we have derived one- and
two-soliton solutions on vanishing backgrounds and
breather and rogue wave solutions on nonvanishing
backgrounds for System (1.2). Figures have been plot-
ted to display the dynamic features of those solutions.
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Fig. 8 Evolution of the two-breather solutions. Parameters are: a = 1, b = 0.6, κ = 2.2, As = 1.4, Bs = 1.7 σ1 = σ2 = 1 and ε = 1.3

By the graphical analysis of Figs. 1, 2, 3, 4, 5, 6, 7, and
8, we have discussed the following characteristics of
the solitons in the propagation:

• Elastic interactions of two solitons.
• Mutual attractions and repulsions of bound soli-
tons.

• Propagation properties of Ma-breathers, Akhme-
diev breathers, two-breathers, and rogue waves.
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