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Abstract With the help of the Boussinesq perturba-
tion expansion, a new basic equation describing the
long, small-amplitude, unidirectional wave motion in
shallow water with surface tension is derived to fourth
order, namely ahigher-orderKorteweg–deVries (KdV)
equation. The procedure for deriving this equation
assumes that the relation between the small parameter
α, whichmeasures the ratio ofwave amplitude to undis-
turbed fluid depth, and the small parameter β, which
measures the square of the ratio of fluid depth to wave
length, is taken in the form β = 0(α) = ε, where ε is
a small, dimensionless parameter which is the order of

M. Fokou (B) · T. C. Kofane
Laboratory of Mechanics, Department of Physics, Faculty
of Science, University of Yaounde I, P.O. Box 812,
Yaoundé, Cameroon
e-mail: fokostinos@yahoo.fr

M. Fokou · T. C. Kofane · A. Mohamadou
Centre d’Excellence Africain en Technologies de
l’Information et de la Communication, University of
Yaounde I, P.O. Box 812, Yaoundé, Cameroon
e-mail: tckofane@yahoo.com

A. Mohamadou
Laboratory of Mechanics, Department of Physics, Faculty
of Science, University of Maroua, P.O. Box 814, Maroua,
Cameroon
e-mail: mohdoufr@yahoo.fr

E. Yomba
Department of Mathematics, California State
University-Northridge, Northridge, CA 91330-8313, USA
e-mail: eyomba@yahoo.com

the amplitude of the motion. Hirota’s bilinear method
is used to investigate one- and two-soliton solutions for
this new higher-order KdV equation.
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1 Introduction

Nature provides many examples of coherent nonlin-
ear structures and waves which have been observed in
various fields ranging form fluids, plasmas, solid state
physics, chemistry and biology. Among these beautiful
nonlinear phenomena, localized large-amplitudewaves
called solitons, which propagate without spreading and
have particle-like properties, and which are a continu-
ous source of fascination formathematicians andphysi-
cists, represent one of the most striking aspects of non-
linear phenomena. However, all kinds of wave pat-
terns, from linear systems to nonlinear ones, contribute
to understanding complex wave phenomena. All these
systems are only approximately described by the equa-
tions of the mathematical theory of solitons. Exam-
ples are the sine-Gordon (sG) equation, the nonlin-
ear Schrödinger (NLS) equation and the Korteweg–de
Vries (KdV) equation , just to name a few. These com-
pletly integrable equations, with their remarkable soli-
ton solutions, have proved to be very efficient to predict
their typical dynamical properties.
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In fact, in the real world none of these integrable
field equations is ever realized exactly; instead, they
are obtained by a small parameter expansion: They cor-
respond to the lowest nonlinear approximation. Today,
the experiments are becoming more and more sensi-
tive and accurate, allowing the observation of effects
which could not be detected before. Meanwhile, the
models can be improved: The higher-order terms first
ignored in the expansion can be taken into account,
leading generally to near integrable or partially inte-
grable equations with quasi-soliton solutions.

In the context of nonlinear optics, the standardmodel
for describing propagation of pulses in the well-known
NLS family of equations with cubic nonlinear terms
is derived from the slowly varying envelope approx-
imation of the Maxwell’s equations [1]. However, as
one increases the intensity of the light power to pro-
duce light pulses with shorter and shorter duration,
non-Kerr nonlinearity effects become important. Such
ultra-short pulses named in the literature as few-cycles,
video pulses, need other approaches to describe their
dynamics. In general, the dynamics of pulses should be
described by the NLS family of equations with higher-
order nonlinear terms [2–5].

In a recent experiment, it has been established that
the optical susceptibility of CdSx Se1−x -doped glass
possesses a considerable level of fifth-order suscep-
tibility χ(5). In semiconductor double-doped optical
fibers [6,7], the doping of silica fibers with two appro-
priate semiconductor particlesmay lead to an increased
value of third-order susceptibility χ(3) and a decreased
value of χ(5). Thus, in order to investigate pulse
propagation in such materials, it is necessary to con-
sider higher-order nonlinearities in place of the usual
Kerr nonlinearity. However, when the saturation is
very strong, a self-focusing χ(7) is also needed. Quite
recently, an experiment has been reported in mater-
ial such as chalcogenide glass which exhibits not only
third- and fifth-order nonlinearities but even seventh-
order nonlinearity [8,9]. In other word, chalcogenide
glass can be classified as a cubic-quintic-septic nonlin-
ear material.

In magnetic chains, the importance of theoretically
tractable models, describing experimentally accessible
systems including the nonlinear excitations and their
interactions, is clearly central to developing the under-
standing of nonlinear phenomena. Starting frommodel
Hamiltonians, in the continuum limit, the spin dynam-
ics of CsNiF3 and TMMC can be described by com-

plicated nonlinear partial differential equations. How-
ever, as in nonlinear optics, to lowest nonlinear order of
approximation, the nonlinear excitations are frequently
taken to be solutions of an integrable prototype equa-
tion which in this case is the sG equation. The approx-
imate validity of this model is limited to low or high
external magnetic field. In the low-amplitude limit, the
spin dynamics can be modeled by NLS-like equations.
Dynamical theory of solitary wave excitations in spin
chains has been studied by Nguenang and Kofané [10]
by a revised Hamiltonian in which the dipole–dipole
and biquadratic exchange interactions are taken into
account in addition to the Zeemann energy, uniaxial
anisotropy and the exchange energy. They have shown
that at sufficiently low temperature and with only a few
spin waves of sufficiently large magnitude which are
excited, the nonlinear terms in the Holstein–Primakoff
representation cannot be neglected. The NLS equa-
tion previously obtained in other works [11] which
describes the evolution of modulations of dispersive
waves with weak nonlinearity suffered from highly
inconsistent comparison of termswithin the framework
of the Holstein–Primakoff representation. To avoid this
inconsistency, Shi et al. [12] andNguenang andKofané
have used the Ursell theory of shallow water waves
[13,14].

The modulation of a one-dimensional weakly non-
linear purely dispersive quasi-monochromatic wave is
usually governed by the NLS equation. The critical
wave number for which the carrier is marginally mod-
ulationally unstable is determined by the condition that
the product of the coefficients of the nonlinear and dis-
persive terms in the NLS equation is zero. However,
near this marginal state the assumptions that lead to the
NLS equation are invalid and a modified form of the
NLS equation that involves higher-order nonlinearities
is appropriate [15].

The problem of incorporating higher-order terms
into the theory of long waves on a water surface has
recently attracted much attention [16–21]. For exam-
ples, in the field of fluid dynamics, the standard NLS
equation gives a good description of nonlinear deep
water waves in the case of small steepness, while it
fails when considering large steepness. In the latter
case, a significant improvement can be achieved by
taking into account higher-order terms in perturbation
analysis, that is, considering a higher-order nonlinear
Schrödinger equation [22]. More recently, by means
of this equation, Yemélé et al. [23] have studied the
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long-time dynamics of modulational instability of deep
waterwaves and have obtained the following results: (i)
The standard NLS equation yields satisfactory descrip-
tion of long-time envelope solitons dynamics for con-
sidered time scales. (ii) On the contrary, for modulated
periodic Stoke waves, serious nonlinear instabilities
and chaos may develop in the medium such that the
standard NLS equation fails to describe, but which can
be explained by means of the nonlinear Schrödinger
equation.

The Euler equation for a nonviscous and incom-
pressible fluid, the boundary conditions at the bottom
and at the surface, and the assumption of an irrotational
flow lead to the KdV equation, which is valid in the
weakly nonlinear case. The KdV equation shows up in
many areas of physics, when waves can propagate in
a weakly nonlinear long waves when nonlinearity and
dispersion are in balance at leading order. If higher-
order nonlinear and dispersive effects are of interest,
then the asymptotic expansion can be extended to the
higher orders in the wave amplitude which leads to
the KdV equation with higher-order corrections [16–
21,24,25]. The main purpose of this article is to go
beyond the newseventh-orderKdVequation derived by
Burde [19], for the right-moving wave assumed to have
a smaller amplitude 0(ε3). We show that the dynamics
of the wave amplitude for the unidirectional propaga-
tion of long waves over shallow water assumed to have
a smaller amplitude 0(ε4), is governed by a new KdV
equation with nonlinear and nonlocal terms

ut + ux + ε(α1uux + α2u3x ) + ε2(β1u5x

+β2uu3x + β3uxu2x + β4u
2ux )

+ ε3(γ1u7x + γ2uu5x + γ3uxu4x + γ4u
2u3x

+ γ5u2xu3x + γ6uuxu2x + γ7u
3ux + γ8u

3
x )

+ ε4
(

δ1u9x + δ2uu7x + δ3uxu6x + δ4u
2u5x

+ δ5u2xu5x + δ6uuxu4x + δ7u3xu4x + δ8u
3u3x

+ δ9uu2xu3x + δ10u
2
xu3x + δ11u

2uxu2x

+ δ12uu
2
2x + δ13u

4ux + δ14uu
3
x + δ15

∫
u32xdx

+ δ16ux

∫
u3xdx + δ17

∫
u3xdx

+ δ18

∫
u2xdx

)
= 0, (1)

Here x and t are the space and time variables, and sub-
scripts of the form “nx”denote derivatives of the order n

with respect to x. Coefficients in Eq. (1) will be defined
in the next section.

Then,we obtain the exact-one and two-solitarywave
solutions for this equation.

The paper is organized, as follows. In Sect. 2, we
present the shallow water problem and in nondimen-
sional variables. We describe briefly the Boussinesq
equations, from which the KdV equation with higher-
order corrections will be derived. Then, a new equa-
tion for KdV equation with higher-order corrections
with nonlocal terms is proposed for the right-moving
wave at 0(ε4) smaller amplitude. In Sect. 3, the one-
and two-solitary wave solutions are found using the
Hirota’s direct method. Section 4 concludes the paper.

2 Mathematical formulation of the problem

Let us consider a layer of an inviscid and incompress-
ible fluid, which has the mean depth h, lying above a
horizontal plane situated at altitude z = 0. We assume
that the motion of the fluid is two dimensional, i.e.,
all the properties of the system are independent of the
coordinate y and the component of the velocity along
y is zero.

We denote by u(x, z, t), 0 and w(x, z, t) the com-
ponents of the velocity field inside the fluid, and by
z = h+η(x, t) the equation of its surface,whereη(x, t)
is the surface elevation.

Above the fluid, there is a gaz at pressure pA, which
is variable and uniform in space. The fluid experiences
the force

−→
f = ρ

−→g per unit volume due to gravity,
where ρ is the density of the fluid, −→g the gravity field.
Equations defining the problem include [26,27]:

(i) The Euler equation inside the volume of the fluid.
Ifwedivide it byρ and express its z-momentum, it gives

wt + uwx + wwz = − 1

ρ
pz − g with

p = σ
ηxx

(1 + η2x )
3
2

, (2)

where p is the pressure in the fluid and σ is the sur-
face tension. These equations must be completed by
the mass conservation requirement

ux + wz = 0. (3)

(ii) The boundary condition at the bottom, which says
that the velocity of the fluid when z = 0, does not have
any vertical component,

w = 0 for z = 0. (4)
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(iii) The kinematic boundary condition at the surface,

w = ηt + uηx for z = h + η(x, t). (5)

(iv) The physical condition at the surface,

pA − p = 0 for z = h + η(x, t). (6)

Introducing the potential velocity v(x, z, t) = ∇
φ(x, z, t), where ∇ is the Nabla operator, we have
u = φx and w = φz for the horizontal and vertical
velocity components. The velocity potential φ(x, z, t)
must satisfyLaplace’s equation in the interior. Equation
(5) becomes

ηt + αφxηx − 1

β
φz = 0 for z = 1 + αη (7)

Equation (2) can nowbe integrated to yield the dynamic
boundary condition

ϕt + 1

2
α

(
φ2
x + 1

ρ
φ2
z

)
+ η − τβηxx

1 + α2βη2x
for z = 1 + αη (8)

In the following, we use the characteristic length L
along the direction x and the characteristic speed c0 =√
gh of the long-wavelength waves to define a charac-

teristic time t0 = L/c0, which will be used to measure
time. The equations for a fluid are written in a nondi-
mensionalized form by introducing

t ′ = t

t0
, x ′ = x

L
, z′ = z

h
,

η′ = η

A
, φ′ = φ

L(A/h)
√
gh

, (9)

where A is a typical amplitude of a surface wave η. The
Euler equations and the boundary conditions at the free
surface and at the bottom take the form

βφ2x + φ2z = 0 for 0 ≤ z ≤ 1 + αη(x, t), (10)

φz = 0 for z = 0, (11)

ηt + αφxηx − 1

β
φz = 0 for z = 1 + αη, (12)

ϕt + 1

2
α

(
φ2
x + 1

ρ
φ2
z

)
+ η − τβηxx

1 + α2βη2x
= 0,

z = 1 + αη. (13)

where α and β are small parameters given by α = A
h ,

β = ( hL )2 and the Bond number τ = T
ρgh2

, where T is
the surface tension coefficient.

3 Shallow water waves

3.1 Modelization of Boussinesq equations

More appropriate methods for approximating irregular
wave kinematics are those which do not compromise
the requirements of satisfying both the field equation
and bottom and free surface boundary conditions. The
basis of suchmethods is the representation of the veloc-
ity potential function φ within each local window in the
form of power series of z [28–30]. The power series
expansion used for the approximation of the velocity
potential φ is

φ =
∞∑
i=0

(−1)iβ i z2i

(2i)!
∂2i g

∂x2i
(14)

where the function g(x, t) is the value of the velocity
potential at the bottom z = 0.Within eachmovingwin-
dow, the velocity potential satisfies the Laplace’s equa-
tion and the boundary condition at the bottom exactly.
On substitution of Eq. (14) in kinematic boundary con-
dition and dynamic boundary condition, we obtain a
system of equations for η(x, t) and g(x, t) in the form
of infinite series with respect to β.

In the following, α and β are assumed to be of the
order of 0(ε) [19]. Then,make expansion at order 0(ε4),
we obtain the Boussinesq equations

ηt+wx+ε

(
ηwx + ηxw − 1

6
w3x

)
+ ε2

(
−1

2
ηxw2x

− 1

2
ηw3x+ 1

120
w5x

)
+ε3

(
−1

2
η2w3x + 1

24
ηxw4x

− ηηxw2x+ 1

24
ηw5x− 1

5040
w7x

)
+ε4

(
−1

6
η3w3x

+ 1

12
η2w5x − 1

720
ηw7x − 1

2
ηxη

2w2x + 1

6
ηηxw4x

− 1

720
ηxw6x + 1

362880
w9x

)
= 0, (15)

ηx + wt + ε

(
wwx − 1

2
w2xt − τη3x

)
+ ε2 (−ηxwxt

+ 1

2
wxw2x − ηw2xt − 1

2
ww3x + 1

24
w4xt

)

+ ε3
(

ηxw
2
x − ηηxwxt − wηxw2x + 1

6
ηxw3xt

− 1

2
η2w2xt + 1

12
w2xw3x − 1

8
wxw4x + ηwxw2x

− ηww3x + 1

6
ηw4xt + 1

24
ww5x − 1

720
w6xt

)
+ ε4
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(
1

2
η2wxw2x − 1

2
ηwxw4x − ηηxww2x

+ 1

144
wxw6x − 1

120
ηxw5xt − 1

2
η2ww3x

+ 1

6
wηxw4x + 1

6
ηww5x − 1

720
ww7x

+ 1

3
ηw2xw3x + 1

144
w3xw4x

+ 1

2
ηxw

2
2x − 1

80
w2xw5x + 1

2
ηηxw3xt

+ 1

4
η2w4xt + ηηxw

2
x

− 2

3
ηxwxw3x − 1

120
ηw6xt + 1

40320
w8xt

)
= 0.

(16)

that depend on the functionsw(x, t) and η(x, t), where
w(x, t) = ∂g(x,t)

∂x is the scaled horizontal velocity at the
bottom of the channel.

3.2 Unidirectional waves

As in the derivation of the KdV equation in Whitham
[26], we now restrict to unidirectional waves by assum-
ing a relationship w = η + ε f (η) between w, the hor-
izontal velocity at the mean height, and elevation η,
where the function f shall be determined so that the
Eqs. (15) and (16) both reduce to the same single equa-
tion for the height field η.

To lowest (zero) order in both α and β, the sys-
tem of equations for w and η reads ηt + wx = 0,
wt + ηx = 0, so both w and η satisfy the linear wave
equation ζt t − ζxx = 0, which describes waves travel-
ing in two directions η(x, t) = ηR(x − t) + ηL(x + t).
A wave moving to the right corresponds in this order of
approximation to w = η and ηt + ηx = 0. In the next
iterations, we assume that w can be represented by an
expansion having the form

w = η + εA(η) + ε2B(η) + ε3C(η) + ε4D(η) (17)

where A(η), B(η),C(η) and D(η) are unknown func-
tions of η at this point and their derivatives.

Uponordering in powers of the small parameters, the
coefficients in the transformation (17) are determined
by requiring that Boussinesq system equations in (15)
and (16) are satisfied simultaneously at each order. To
first order, we substitute Eq. (17) into Eqs. (15) and (16)
with terms of order higher than 0(ε) neglected, and we
obtain

ηt + ηx + ε(2ηηx − 1

6
η3x + A(1)

x ) = 0,

ηt + ηx + ε(ηηx − 1

2
η2xt − τη3x + A(1)

t ) = 0. (18)

The function A is such that the two equations in (18)
agree (up to the first order in ε) upon expressing all the
t-derivatives of η in terms of the x-derivatives using
the lower-order equation ηt + ηx = 0. The equation
defining A is

2ηηx − 1

6
η3x + A(1)

x = ηηx − 1

2
η2xt − τη3x + A(1)

t

(19)

Because the correction functions appear already in the
second order, it is enough to use the lowest order rela-
tion between their time and space derivatives (ηt =
−ηx and At = −Ax ) in Eq. (18). We obtain after inte-
gration

A = −1

4
η2 +

(
1

3
− 1

2
τ

)
η2x . (20)

Then, Eqs. (17) and (18) become

w = η + ε

(
−1

4
η2 + 1

6
(2 − 3τ)η3x

)
+ ε2B(η)

+ ε3C(η) + ε4D(η) (21)

ηt + ηx + ε

(
3

2
ηηx + 1

6
(1 − 3τ)η3x

)
= 0. (22)

Equation (22) is now reduced to the KdV equation in a
standard form

ηt̃ + 6ηηx̃ + η3x̃ = 0, (23)

provided that

x̃ =
√
3

2
(x − t), t̃ = 1

4

√
3

2
εt (24)

hold.
At the next step, Eq. (21) is substituted into Eqs. (15)

and (16), and then all the t-derivatives of η are replaced
by their expressions through the x derivatives using the
lowest order equation, namely Eq. (21). A condition
for the two equations obtained in such a way leads to
an equation for A, a solution of which is expressed in
terms of η and its x-derivatives. As a result, we have

w = η + ε(−1

4
η2 + 1

6
(2 − 3τ)η3x ) + ε2

1

8
η3

+ 1

16
(3 + 7τ)η2x + 1

4
(2 + τ)ηη2x

+ 1

120
(12 − 20τ − 15τ 2)η4x + ε3C(η)

+ ε4D(η), (25)
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where the perturbation of second order is given by

B(η) = 1

8
η3 + 1

16
(3 + 7τ)η2x + 1

4
(2 + τ)ηηx

+ 1

120
(12 − 20τ − 15τ 2)η4x . (26)

Inserting Eq. (25) into Eq. (15), yields in second order,
the equation

ηt + ηx + ε

(
3

2
ηηx + 1

6
(1 − 3τ)η3x

)
+ ε2

×
(

−3

8
η2ηx + 1

24
(23 + 15τ)ηxη2x + 1

12

×(5 − 3τ)ηη3x + 1

360
(19 − 30τ − 45τ 2)η5x

)
= 0.

(27)

Comparing Eq. (1)with Eq. (27), we obtain the coef-
ficients β1, β2, β3 and β4 which depend on τ . Taking
account of Eq. (25), from Eqs. (15) and (16), we get in
the third order the following equations

w = η + ε

(
−1

4
η2 + 1

6
(2 − 3τ)η2x

)
+ ε2

1

8
η3

+ 1

16
(3 + 7τ)η2x + 1

4
(2 + τ)ηη2x + 1

120

×(12 − 20τ − 15τ 2)η4x + ε3
(

− 5

64
η4

+
(
1

8
− 3

16
τ

)
η2η2x +

(
3

32
− 21

32
τ

)
ηη2x

+
(
1091

1440
+ 1

3
τ + 21

32
τ 2

)
ηxη3x

+
(

7

20
− 1

4
τ + 1

16
τ 2

)
ηη4x +

(
61

1890
− 1

20
τ

− 1

24
τ 2 − 1

16
τ 3

)
η6x +

(
3

16
− 3

16
τ

)
∫

η3dx

)
+ ε4D(η), (28)

ηt + ηx + ε

(
3

2
ηηx + 1

6
(1 − 3τ)η3x

)

+ ε2
(

−3

8
η2ηx + 1

24
(23 + 15τ)ηxη2x

+ 1

12
(5 − 3τ)ηη3x + 1

360

×(19 − 30τ − 45τ 2)η5x
)

+ ε3
(

1

15120

×(275 − 399τ − 315τ 2 − 945τ 4)u7x + 1

240

×(57 − 50τ − 15τ 2)uu5x + 1

1440

×(1079 − 150τ + 855τ 2)uxu4x

+ 1

16
(5 + τ)u2u3x +

(
317

288
+ 15

16
τ

+49

32
τ 2

)
u2xu3x + 1

16
(23 − 5τ)

uuxu2x + 3

16
u3ux + 1

32

×(19 − 13τ)u3x
)

= 0, (29)

where the correction at third order is given by

C(η) = − 5

64
η4 +

(
1

8
− 3

16
τ

)
η2η2x

+
(

3

32
− 21

32
τ

)
ηη2x +

(
1091

1440

−1

6
τ + 25

32
τ 2

)
ηxη3x

+
(

7

20
− 1

4
τ + 1

16
τ 2

)
ηη4x

+
(

61

1890
− 1

20
τ − 1

24
τ 2 − 1

16
τ 3

)
η6x

+
(

3

16
− 3

16
τ

) ∫
η3dx . (30)

At the next step, the derivation to fourth order correc-
tions is quite similar as discussed above, where again,
comparing Eq. (1) with Eq. (31) leads to the coeffi-
cients αi (i = 1, 2), βi (i = 1 . . . 4), γi (i = 1 . . . 8)
and δi (i = 1 . . . 19). Without details concerning the
derivation, the main results are given by

ηt + ηx + ε

(
3

2
ηηx + 1

6
(1 − 3τ)η3x

)

+ ε2
(

−3

8
η2ηx + 1

24
(23 + 15τ)ηxη2x

+ 1

12
(5 − 3τ)ηη3x + 1

360

(
19 − 30τ − 45τ 2

)
η5x

)

+ ε3
(

1

15120
(275 − 399τ − 315τ 2 − 945τ 4)u7x

+ 1

240
(57 − 50τ − 15τ 2)uu5x + 1

1440

×(1079 − 150τ + 855τ 2)uxu4x + 1

16

×(5 + τ)u2u3x +
(
317

288
+ 7

16
τ + 53

32
τ 2

)
u2xu3x

+ 1

16
(23 − 5τ)uuxu2x + 3

16
u3ux + 1

32
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(19 − 13τ)u3x
)

+ ε4
((

11813

1814400
− 55

6048
τ

− 19

2880
τ 2 − 1

96
τ 3 − 5

128
τ 4

)
u9x

+
(

715

6048
− 19

160
τ − 5

96
τ 2 − 1

32
τ 3

)
uu7x

+
(
26893

60480
− 57

320
τ + 5

192
τ 2 + 37

64
τ 3

)
uxu6x

+
(
133

320
− 5

32
τ + 1

64
τ 2

)
u2u5x

+
(
8657

8640
+ 1003

2880
τ + 163

192
τ 2 + 129

64
τ 3

)
u2xu5x

+
(
7553

2880
− 5

32
τ − 19

64
τ 2

)
uuxu4x

+
(
4973

3456
+ 1217

1152
τ + 707

384
τ 2 + 443

128
τ 3

)
u3xu4x

+
(

5

96
− 1

32
τ

)
u3u3x

+
(
2219

576
+ 45

32
τ − 49

64
τ 2

)
uu2xu3x

+
(
3941

2880
+ 47

96
τ − 105

32
τ 2

)
u2xu3x

+
(
23

64
+ 15

64
τ

)
u2uxu2x

+
(

− 6149

11520
+ 7

32
τ − 851

256
τ 2

)
uxu

2
2x

+
(

19

128
+ 39

64
τ

)
uu3x

+
(

− 3

64
+ 12

64
τ − 9

64
τ 2

) ∫
u32xdx

+
(

3

16
+ 3

16
τ

)
ux

∫
u3xdx+

(
9

64
− 9

64
τ

)∫
u3xdx

+
(

−27

64
+ 27

64
τ

) ∫
u2xdx = 0, (31)

and

D(η) = −
(

3

128
+ 105

128
τ

)
η2η2x

+
(
163

144
+ 129

96
τ − 21

32
τ 2

)
ηη22x

+
(

7

16
− 1

16
τ − 3

64
τ 2

)
η2η4x

+
(

− 31

128
+ 15

32
τ

) ∫
ηη3xdx

+
(

−8177

2304
− 67

96
τ + 645

256
τ 2

) ∫
ηxη

2
2xdx

+
(

− 3

64
+ 3

16
τ − 9

64
τ 2

) ∫
η3xη

2
xdx

+
(
673

576
− 107

192
τ − 45

16
τ 2

)
η2xη2x

+
(
35303

60480
− 37

360
τ + 5

24
τ 2 + 39

64
τ 3

)
ηxη5x

+
(
16019

15120
+ 457

720
τ + 55

48
τ 2 + 45

32
τ 3

)
η2xη4x

+
(
158323

241920
+ 6349

11520
τ + 607

768
τ 2 + 263

256
τ 3

)
η23x

+
(
1091

576
+ 1

6
τ − 63

64
τ 2

)
ηηxη3x

+
(

1261

113400
− 61

3780
τ − 1

80
τ 2 − 1

48
τ 3

− 5

128
τ 4

)
η8x

+
(

671

3780
− 7

40
τ − 1

16
τ 2 + 1

32
τ 3

)
ηη6x

+ 7

128
η5 +

(
− 1

48
+ 5

32
τ

)
η3η2x

+
(

− 3

64
+ 3

16
τ − 9

64
τ 2

) ∫ ∫
η32xdxdx

+
(

9

64
− 9

64
τ

) ∫ ∫
η3xdxdx

+
(

−27

64
+ 27

64
τ

) ∫ ∫
η3xdxdx (32)

It should be noted that Eq. (31) is the same as Eq.
(1), where all the coefficient expressions are depen-
dent strongly on the surface tension coefficient.Wewill
seek thereafter one- and two-soliton solutions of this
new KdV equation with nonlinear and nonlocal terms
equation by using Hirota’s bilinear method.

4 Soliton solutions and Hirota’s bilinear method

Many powerful methods for searching for exact solu-
tions to nonlinear evolution equations have been pro-
posed. Among these are inverse scattering method,
Bäcklund transformation, Darboux transformation,
Hirota method [31–35]. In recently years, some other
ansätz method have been developed, such as, tanh
method [36–38], extended tanh function method [39,
40],modified extended tanh functionmethod [41], gen-
eralized hyperbolic function method [42–44], variable
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separation method, the sine–cosine method [45–48],
the tanh–sech method [49–51], the tanh–coth method
[52].

Among the different available methods [26,31–
52] for solving soliton equations, the Hirota bilinear
method and its multilinear refinements has been one of
the most successful direct technique for constructing
exact solutions, in particular, the N-soliton solutions.
The method also allows testing if a certain equation
satisfies the necessary requirements to admit solitary
wave solutions and soliton solutions. The drawback of
Hirota’s method is that the bilinear form of the partial
derivative equations (PDE) must be known. Once the
bilinear form is obtained the method becomes algorith-
mic. The calculations, however, become very lengthy
and involved, in particular for PDEs of high order or
with highly nonlinear terms. The complexity of the cal-
culations also drastically increaseswith the type of soli-
ton solution one desires to obtain. Single soliton solu-
tions are easy to calculate; two- and three-soliton solu-
tions are barely manageable by hand. Once the form
of the two- and three-soliton solutions is known, its
structure reveals the form of higher soliton solutions.

4.1 One-soliton solution

Now, let us look for solutions of the travelingwave type
of our higher-orderKdVequation (1). The general form
of solution is given by

η(x, t) = R
∂2

∂x2
ln( f (x, t)), (33)

where R is constant and the function f is given by the
perturbation expansion,

f (x, t) = 1 +
∞∑
n=0

νn fn(x, t), (34)

where ν is a bookkeeping nonsmall parameter [31], and
fn(x, t), n = 1, 2, . . ., which are independent of ν, are
unknown functions that will be determined by substi-
tuting the Eq. (34) into the bilinear form and solving
the resulting equations by equating different powers of
ν to zero.

The simplest solution of the higher-order KdV equa-
tion is the one-soliton solution (N = 1) generated from

f1(x, t) = exp θ (35)

where the phase θ is given by

θ = kx − ωt + δ (36)

where k is the wave number,ω is the angular frequency
and δ is the phase shift. Substituting Eq. (27) into the
linear terms of Eq. (1) and solving the resulting equa-
tion, we obtain the dispersion law, in absence of the
surface tension

ω = k+1

6
εk3 − 3

8
ε2k5+ 55

3024
ε3k7 + 11813

181440
ε4k9

(37)

To determine R, we substitute Eq. (33) into Eq. (31)
where, f (x, t) is replaced by

f (x, t) = 1 + ν f1(x, t), (38)

with (N = 1) and after resolution, we find that R =
2. Without loss of generality, let ν = 1. By using
Eqs. (33), (34), (35), (36) and (37), we obtain one-
soliton solution of Eq. (31) as follows

u(x, t) = 2k21 exp(−ωt + k1x)

(1 + exp(−ωt + k1x))2
(39)

After some transformations [28], we get

u(x, t) = k21
2

sec h2
(
0.5

(
−

(
k1 + 1

6
βk31 − 3

8
β2k51

+ 55

3024
β3k71 + 11813

181440
β4k91

)
t + k1x

))
.

(40)

If one takes into account the surface tension, the solu-
tion becomes

u(x, t) = k21
2

sec h2
(
0.5

(
−

(
k1 + 1

6
(1 − 3τ)βk31

− 3

8
β2k51 + 1

15120
(275 − 399τ − 315τ 2

− 945τ 3)β3k71 +
(

11813

181440
− 55

6048
τ

− 19

2880
τ 2 − 1

96
τ 3 − 5

128
τ 4

)

β4k91

)
t + k1x

))
, (41)

where the dispersion law is given by

ω =
(
k + 1

6
(1 − 3τ)βk3 − 3

8
β2k5

+ 1

15120
(275 − 399τ − 315τ 2 − 945τ 3)

×β3k7 +
(

11813

181440
− 55

6048
τ

− 55

2880
τ 2 − 1

96
τ 3 − 5

128
τ 4

)
β4k9

)
. (42)
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4.2 Two-soliton solutions

In addition to the one-soliton solution as given in Eq.
(40), there exists also two-, three-soliton solutions, etc.
In particular, the two-soliton solution (N = 2) is typi-
cally of the form

f (x, t) = 1 + ν f1(x, t) + ν2 f2(x, t), (43)

where f1(x, t) is defined by

f1(x, t) = exp θ1 + exp θ2 (44)

and f2(x, t) by

f2(x, t) = a12 exp(θ1 + θ2), (45)

respectively, where the phases θ1 and θ2 are given by
θ1 = k1x−ω1t+δ1 and θ2 = k2x−ω2t+δ2. Again Eq.
(35) determines the dispersion laws with and without
surface tension

ωi = ki + 1

6
(1 − 3τ)βk3i − 3

8
β2k5i + 1

15120
×(275 − 399τ − 315τ 2 − 945τ 3)β3k7i

+
(

11813

181440
− 55

6048
τ − 55

2880
τ 2 − 1

96
τ 3

− 5

128
τ 4

)
β4k9i , i = 1, 2. (46)

Inserting Eq. (33) into Eq. (31), at 0(ν2), we obtain

a12 = − A

B
, (47)

where A is given by

A = ε3(118130k101 − 153569k19k2 + 208764k18k22

− 96909k17k
3
2 + 186739k16k24

− 108087k15k25 − 186739k14k26 − 96909k31k27

+ 208764k12k28 − 153569k1k29 + 118130k102 )

+ ε2(27500k17k2 + 15860k16k22 − 7040k15k
3
2

+ 34340k14k24 − 7040k31k25 + 15860k12k26

+ 27500k1k27) + ε(−715680k16

+ 945840k15k2 − 885360k14k22 + 927360k31k
3
2

− 885360k12k24 + 945840k1k25 − 715680k26)

+ 302400k31k2 − 1209600k12k22 + 302400k1k
3
2,

(48)

Fig. 1 One-soliton solution of the higher-order equations (39)
and (40) (k = 0.5, τ = 0.0) for different values of ε: a ε = 0.0,
b ε = 0.1, c ε = 0.3, d ε = 1.0; (k = 0.5, τ = 0.6) for different
values of ε: i ε = 0.0, j ε = 0.1, k ε = 0.3, l ε = 1.0; (k = 1,
τ = 0) for different values of ε: e ε = 0.0, f ε = 0.1, g ε = 0.3,
h ε = 1.0; (k = 1, τ = 0.6) for different values of ε:m ε = 0.0,
n ε = 0.1, o ε = 0.3, p ε = 1.0
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Fig. 2 Two-soliton solutions of the higher-order equation (48)
(k1 = 1, k2 = 2, τ = 0) for different values of ε: a ε = 0.7,
b ε = 0.8, c ε = 0.9, d ε = 1.0; (k1 = 1, k2 = 2, τ = 12)
for different values of ε: e ε = 0.05, f ε = 0.08, g ε = 0.09, h
ε = 0.1; (k1 = 0.5, k2 = 1, τ = 0.0) for ε: i ε = 1; (k1 = 1,
k2 = 2 τ = 0.0) for value of ε: j ε = 1.0; (k1 = 2, k2 = 3,
τ = 0.0) for value of ε: (k) ε = 1.0; (k1 = 3, k2 = 4, τ = 0.0)
for value of ε: l ε = 1.0; (k1 = 0.5, k2 = 1, τ = 12) for
value of ε: m ε = 0.0001; (k1 = 1, k2 = 2, τ = 12) for value
of ε n ε = 0.0001; (k1 = 2, k2 = 3, τ = 12) for value of
ε o ε = 0.0001; (k1 = 3, k2 = 4, τ = 12) for value of ε p
ε = 0.0001

and B by

B = (k1 + k2)2(ε
3(35439k18 − 70878k17k2

− 70878k16k22 − 259886k15k
3
2

− 236260k14k24 − 259886k31k25

− 70878k12k26 − 70878k1k27

+ 35439k28) + ε2(5500k16 − 44000k15k2

− 71500k14k22 − 121000k31k
3
2

− 71500k12k24 − 44000k1k25 + 5500k26)

+ ε(−194880k14 + 354480k2k
3
1 − 35280k12k22

+ 354480k1k
3
2 − 194880k24) − 302400k1k2).

(49)

For comparison, following Burde [19], we take k1 = 1
and k2 = 2, that leads to

a12 = −1

9

1814400+24648960ε − 4921320ε2 − 94728136ε3

604800 − 90720ε + 3536500ε2 + 19101621ε3
.

(50)

If one takes into account the surface tension, it
becomes

a12 = − (8 + α1ε + α2ε
2 + α3ε

3 + α4ε
4)

γ1ε + γ2ε2 + γ3ε3 + γ4ε4
, (51)

with

α1 =
(
82

3
+ 134τ

)

α2 =
(
2273

15
− 238τ − 321τ 2

)
,

α3 =
(

−229399

7560
+150071

360
τ+13901

24
τ 2+8429

8
τ 3

)

α4 =
(

−14378461

56700
− 1450667

945
τ − 217118

45
τ 2

+ 399

2
τ 3 + 9887

4
τ 4

)

γ1 = (54 − 243τ),

γ2 =
(

−81

10
+ 729

2
τ + 2187

4
τ 2

)

γ3 =
(
35365

112
− 41553

80
τ − 6561

16
τ 2 − 19683

16
τ 3

)
,

γ4 =
(
2728803

1600
− 150903

560
τ + 1043199

160
τ 2

− 177147

64
τ 4

)
. (52)

Finally, let ν = 1, one found the two-soliton solutions
of Eq. (31) as
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Fig. 3 Dependence of the
angular frequency versus
the wave number without
surface tension(τ = 0) for
different values of ε: a
ε = 0.0, b ε = 0.1, c
ε = 0.3, d ε = 1.0; with
surface tension (τ = 0.6)
for different values of ε: e
ε = 0.0, f ε = 0.1, g
ε = 0.3, h ε = 1.0
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η(x, t)

= 2(k21 exp(θ1) + k22 exp(θ2) + a12(k1 + k2)2 exp(θ1 + θ1)

1 + exp(θ1) + exp(θ2) + a12 exp(θ1 + θ2)

−2(k1 exp(θ1)+k2 exp(θ2) + a12(k1 + k2) exp(θ1+θ2))
2

(1+ exp(θ1) + exp(θ2) + a12 exp(θ1 + θ2))2
,

(53)

Rearranging Eq. (51) [53] can produce

η(x, t) =
(
k22 − k21

2

)

×
⎛
⎜⎝k22 cos ech

2
(

θ̃2
2

)
+ k21 sec h

2
(

θ̃1
2

)
(
k2 coth

(
θ̃2
2

)
− k1 tanh

(
θ̃1
2

))2
⎞
⎟⎠ .

(54)

where θ̃1 = k1x − ω1t + �1, θ̃2 = k2x − ω2t + �2,
where the phases shift �1 and �2 are constants.

Figures 1 and 2 show one- and two-soliton solutions
of Eqs. (40), (41) and (48) which have been constructed
by Hirota’s bilinear method. As seen, solutions of Eq.
(48) are strongly dependent on the amplitude parameter
ε and surface tension coefficient τ (see Fig. 2). We
remark also that the wave amplitude increases when
the wave number increases as indicated in Fig. 2. In
Fig. 3, we note that the dispersion law is a increasing
function of the surface tension coefficient.

5 Conclusion

We have studied the dynamics of nonlinear excita-
tions in the two-dimensional shallow water wave prob-
lems from the equations of hydrodynamics, with and
without surface tension. The Boussinesq perturbation
expansion of the Euler equations has given a system
of coupled equations for the scaled horizontal veloc-
ity w and the surface elevation η. The above system
has been decoupled, restricting to unidirectionalwaves,
by assuming a relationships between the horizontal
velocity at the mean height, and elevation. Equation
of motion which governs the dynamics of the elevation
has been found, which is a new KdV evolution equa-
tion with nonlinear and nonlocal terms for the water
wave problem. The Hirota’s bilinear method was used
to derive the single and two-soliton solutions. Periodic
solutions can be derived by using the tanh–cothmethod
[28,30,46,47]. The model can be extended to other
physically interesting situations, such as bidirectional

water wave problems [19]. These problems are under
consideration and will be published in future works.
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