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Abstract In order to overcome the disadvantages of
logisticmap in designing chaos-based cipher, the piece-
wise logistic map (PLM) is presented. Some properties
related to cryptography of the PLM, such as ergod-
icity, Lyapunov exponent, and bifurcation, are ana-
lyzed and compared with the logistic map. From the
view of cryptography, the PLM owns better proper-
ties than the logistic map. Then, a novel pseudorandom
number generator (PRNG) based on the PLM is pro-
posed. Since the cryptographic properties of the PLM
are enhanced, the presented PRNG achieves a trade-
off between efficiency and security. Both performance
analysis and simulation test confirm that our scheme is
simple, secure, and efficient, with high potential to be
adopted as a stream cipher for secure communication.
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1 Introduction

Over the past 10 years, the chaoticmap has been attract-
ing more and more interests from researchers in the
field of cryptography. It has been widely applied to
secure communication and encryption algorithms. In
the encryption algorithm, the chaotic map is usually
used as the core component to generate pseudoran-
dom sequences. Then, the plain message is masked
or encrypted by the sequences from chaotic maps,
which is the general idea of designing chaos-based
cipher [1–7]. Thus, the cryptographic properties of
the sequences generated from chaotic map are very
important to the security of encryption algorithms.
The logistic map is one of the popular chaotic map
used in chaos-based cryptography, which has been
widely used in block cipher [6,7], stream cipher [8,9]
and Hash function [10,11]. Although logistic map
owns some advantages from chaotic system, it still
has some inherent problem from the view of cryp-
tography, such as uneven density probability distrib-
ution. The security problems of logistic map are pre-
sented and some encryption schemes based on logis-
tic map are cryptanalyzed [12,13]. Thus, it is neces-
sary to improve the cryptographic properties of logis-
tic map. In this paper, the enhanced form of logistic
map, i.e., the piecewise logistic map (PLM) is pre-
sented. Some cryptographic properties of this chaotic
map are analyzed by numeric method and compared
with the logistic map. The results show that the PLM
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has better cryptographic performance than the logis-
tic map. Furthermore, to improve the density proba-
bility distribution of the PLM, the piecewise logistic
map with variable parameter (PLMVP) is suggested.
These researches on enhancing the cryptographic per-
formance of the chaotic map benefit the designing of
pseudorandom number generator and encryption algo-
rithm.

In stream cipher, the pseudorandom number gen-
erator (PRNG) is one of the most important compo-
nents. Recently, some PRNGs are proposed based on
chaotic systems [14–18]. To achieve high speed, a sim-
ple chaotic map, such as tent map or logistic map, is
iterated to generate pseudorandom numbers. Although
one-dimensional chaotic system has the advantages of
high-level efficiency and simplicity, there are funda-
mental drawbacks in this chaotic cryptosystem, such
as small key space and weak security [12,19]. Most
of the PRNGs based on chaos are obtained directly
by sampling the trajectory of the chaotic map. In this
case, some information of the chaotic map is probably
exposed, which leads to some loopholes. Moreover,
methods for predicting chaotic time series have been
suggested [20–22]. To prevent attackers from breaking
the PRNG by predicting the chaotic series, complex
chaotic system should be considered. In Refs. [23,24],
high-dimensional chaos and spatiotemporal chaos are
applied to design PRNG. Owing to making full use of
the traits of a complex system, the algorithms satisfy the
security requirement of PRNG. However, more com-
putation is needed in these algorithms, when producing
pseudorandom numbers. Therefore, further studying
PRNG on the trade-off between efficiency and secu-
rity is needed.

In this paper, the PRNG is proposed based on the
PLM, which is an enhanced version of logistic map.
To break the relation between the chaotic sequences
and the pseudorandom numbers, some special opera-
tions, such as substitution and feedback, are employed
in our scheme. Theory analysis and simulation tests
both confirm that the proposed PRNG is simple, secure,
and efficient. The rest of the paper is organized as fol-
lows. Section 2 analyzes the logisticmap and its crypto-
graphic properties. In Sect. 3, the PLM is defined and its
properties related to cryptography are discussed. The
PLMVP with better uniform density probability is pre-
sented in Sect. 4. The new PRNG and its performance
are discussed in Sects. 5 and 6, respectively. Finally,
conclusion is drawn in Sect. 7.

2 Logistic map

The logistic map is a simple chaotic map often used
to describe the growth of biological population. The
logistic system has very complex dynamic behavior,
which has been widely applied to data security and
secure communication [3,4,25]. The logistic map is a
discrete-time dynamic system, being mathematically
expressed as

xn+1 = f (xn) = μxn(1 − xn) (1)

where x0 ∈ (0, 1) is the state value and μ is the control
parameter. When μ ∈ [3.57, 4], the logistic map is in
chaotic status.

2.1 Ergodicity of logistic map

In statistics, the ergodicity describes a random process
for which the time average of one sequence of events
is the same as the ensemble average. The ergodicity
can be expressed by the statistics distribution of state
value. In Fig. 1, the logistic map is plotted for different
μ. It can be seen from Fig. 1 that the maximum state
value of the logistic map is smaller than 1 whenμ < 4.
Moreover, the maximum state value of logistic map
becomes smaller with the decrease of μ. It means that
the ergodicity of logistic map in interval [0, 1] becomes
better with the increase of μ.

To further demonstrate the ergodicity changes of
logistic map with the control parameter, the following
numeric experiment is done:

(1) Fix the value of control parameterμ and randomly
set the initial value x0.

(2) Iterate the logistic map for 10,000 times.
(3) The distribution of the logistic state values is plot-

ted.

The experiment is repeated for different μ and all
results are shown in Fig. 2. According to Fig. 2, we can
see that the logistic map has the best uniform distribu-
tion and ergodicity when μ is 4. The results as shown
in Fig. 2 also confirm that the ergodicity of logistic map
in interval [0, 1] becomes better with the increase of μ.

2.2 Bifurcation of logistic map

In the dynamic system, the bifurcation diagram shows
the qualitative changes of a system as amap of parame-
ter. The period-doubling bifurcation of the logistic map
is depicted in Fig. 3. Since the map is surjection in the
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Fig. 1 Chaotic attractors of the logistic map for different μ

intervals (0, 1), the separation speed of period-doubling
orbit of the logistic map is the fastest when μ is 4.

2.3 Lyapunov exponent of logistic map

For dynamical systems, the Lyapunov exponent char-
acterizes the velocity of evolution between two near
trajectories. For function xn+1 = f (xn), its Lyapunov
exponent λ is defined as follows [26–28]

λ = lim
n→∞

1

n

n−1∑

i=0

ln | f ′(xn)| (2)

A quantitative measurement of chaotic behavior of
the function is given by the positive values of Lyapunov

exponent (i.e., λ > 0). The Lyapunov exponent of the
logistic map is calculated by quantitative method under
the condition that the control parameter μ is changed
from 3 to 4 with step 0.01. The distribution of Lya-
punov exponents is shown in Fig. 4. Based on Fig. 4,
it can be seen that the Lyapunov exponent of the logis-
tic map begins to be greater than 0 when μ > 3.57.
Meanwhile, there are some points less than 0 when
μ ∈ [3.57, 3.9]. Most Lyapunov exponents become
positive and their values are greater when μ ∈ [3.9, 4].
Thus, the logistic map hasmore stable chaotic behavior
when μ ∈ [3.9, 4].

2.4 Density probability of logistic map

The density function of logistic map for μ = 4 is illus-
trated by numeric simulation in Fig. 5 [29]. Obviously,
the density distribution of the logistic map is not uni-
form,whichmeans that the sequence directly generated
by this chaotic map probably has no enough good ran-
dom properties.

3 The PLM

According to the analysis in Sect. 2, the logistic map
has some potential problems, such as mediocre ergod-
icity and uneven density probability, when it is applied
to designing encryption algorithms. In order to further
improve the cryptographic properties, we present an
enhanced version of the logistic map, i.e., the PLM,
which is defined by

x j+1 = PLM(x j )

=

⎧
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(3)

where x j ∈ (0, 1) is the state value of PLM, μ ∈ (0, 4]
is the control parameter, and N is the segment number
of the PLM. For example, when N = 4 and μ = 4, the
PLM can be expressed in the form

123



2376 Y. Wang et al.

Fig. 2 The state value
distribution of logistic map
for different μ

x j+1=PLM(x j )=
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(4)

and plotted in Fig. 6.

To compare the PLMwith the logistic map, we have
performed the following test: For the PLM with fixed
μ = 4, set N = 4 and randomly select an initial state
value of PLM. Then, the PLM is iterated for 30 times.
Finally, the state values are plotted in Fig. 7. Repeat
performing this test with the same initial value but dif-
ferent N . Moreover, the test result of the logistic map
is also illustrated in Fig. 7. It can be seen from Fig. 7
that the sequences generated by the PLM and the logis-
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Fig. 3 Bifurcation diagram of the logistic map

Fig. 4 The Lyapunov exponents of the logistic map

Fig. 5 Density probability distribution of the logistic map

tic map are total different. Furthermore, we change the
initial state value and repeat the comparison mentioned
above. The same result is obtained, which means that
the PLM is not related to the logistic map and it is a
new map.

3.1 Ergodicity of the PLM

Here, we give some simulation test to show the ergod-
icity changes of the PLM. The curves of the PLM for

Fig. 6 The piecewise logistic map when N = 4 and μ = 4

different μ are shown in Fig. 8, where N = 4. It can
be seen that the PLM occupies the whole intervals (0,
1) when μ ∈ [2, 4]. As we know from Fig. 1, the logis-
tic map can achieve the same result when μ is only 4.
Moreover, the state value distributions of the PLMwith
different μ and N are obtained by the same method
in Sect. 2.1. They are shown in Fig. 9. According to
Fig. 9, it can be concluded that: (1) The sequences gen-
erate by the piecewise logistic map with different N
has good randomness when μ ∈ [2, 4]. (2) Compared
with Fig. 2, the value range ofμ corresponding to good
ergodicity is extended with the increase of N , which
means that the ergodicity of PLM is improved.

3.2 Bifurcation of the PLM

In this section, we discussed the period-doubling bifur-
cation of the PLM with different N . With numeric
method, the bifurcation diagrams of the PLM for dif-
ferent N are plotted in Fig. 10, where the initial value
is a random value. In Fig. 10, the control parameter μ

is shown on the horizontal axis and the vertical axis
shows the possible long-term status values of PLM. It
is clear by comparing Fig. 10 with Fig. 3 that the value
of μ corresponding to the starting point of the PLM
falling into chaos is smaller than that of logistic map.
Furthermore, the value of μ corresponding to the start-
ing point of the PLM being chaotic becomes smaller
with the increase of N .

3.3 Lyapunov exponent of the PLM

Sinceμ and N both affect the Lyapunov exponent, only
one parameter is varied each time with the other para-
meter fixed, so as to observe the influence of the varying
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Fig. 7 The state values of
the PLM and the logistic
map

Fig. 8 The curves of the
PLM for different μ

parameter on the Lyapunov exponent. The Lyapunov
exponents with various μ or N are shown in Figs. 11
and 12, respectively.

According to the result of numerical analysis in
Figs. 4, 11 and 12, some conclusions are drawn below:

(1) The Lyapunov exponent of the PLM is increased
with the increase of N when μ is fixed.

(2) With the increase of N , the interval of μ cor-
responding to the positive Lyapunov exponent
becomes wider.

(3) Compared with the logistic map, the PLM has
greater Lyapunov exponent when the parameter μ

is set as the same value.

3.4 The density probability of the PLM

By the method in the Sect. 2.4, we analyze the density
probability of the PLM for different N and μ. All of
them have almost the same result as the logistic map
when μ is 4. Moreover, the density probability of the
PLM is also not uniform, and the intervals correspond-
ing to the higher density probability are different when
μ is changed. Here, we only give the density probabil-
ity of the PLM with N = 64 and μ = 1, 2, 3, 4 as an
example, which is shown in Fig. 13.

4 The PLM with variable µ

Since the density distribution of the PLM is not uni-
form, the numbers directly generated by this chaotic
map is also uneven. It means that the sequences from
the PLM probably has no good enough random prop-
erties. To remedy this problem, we present a PLMVP,
whose parameter μ is changed when each iteration of
the piecewise logistic map is completed. The PLMVP
is defined as h(x0, μ0, s,m), where x0 ∈ (0, 1) and
μ0 ∈ (m, 4−m) are the initial state value and the initial
control parameter value, respectively; s is the step value
of changing control parameter μ; m is the parameter
used to control the scope ofμ. To get good chaotic prop-
erties,we suggestm ∈ (0.01, 0.1). The pseudo codes in
Fig. 14 illustrate the iteration process of the PLMVP.
By controlling the condition in the pseudocodes, we
can obtain as many chaotic state values from PLMVP
as we want.

The density probability of the PLMVP is got and
shown in Fig. 15. Here, x0 and μ0 are randomly set
and s,m are 0.001 and 0.01, respectively. By compar-
ing Fig. 15 with Figs. 5 and 13, it is obvious that the
PLMVP has much more uniform density probability
distribution than that of PLM and logistic map.
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Fig. 9 The distribution of
state value of piecewise
logistic map

5 The proposed pseudorandom number generator

5.1 Notations

A pseudorandom number generator (PRNG), also
known as a deterministic random number generator,

is an algorithm or a device for generating a sequence
of numbers whose properties approximate the proper-
ties of sequences of random numbers [8]. The PRNG is
very important in applications such as simulation elec-
tronic games and cryptography. We will present our
PRNG algorithm based on piecewise logistic map. To
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Fig. 10 Bifurcation
diagrams of the PLM

the convenience of description and understanding, the
notations in our algorithm are firstly listed in Table 1.

5.2 The algorithm

Cryptographic applications require the output not to
be predictable from earlier outputs. Thus, the sequence

generated by any PRNGmust have the following char-
acteristics: (1) The output of the PRNG has good sta-
tistical properties; (2) For any initial values, the PRNG
generated the sequence has no shorter periods; (3) The
correlation of successive values is poor in the sequence.
Base on the PLM, a novel pseudorandom number gen-
erator is proposed. The whole process of generating
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Fig. 11 Lyapunov
exponents with variable N

Fig. 12 Lyapunov
exponents with variable μ

pseudorandom numbers is described as follows and an
illustration is given in Fig. 16.

Step 1 Choose the PLM with N = 64 as the chaotic
map to generate pseudorandomnumbers. Then,
initialize the control parameter μ of the PLM

and set the initial values of parameters R and
m.

Step 2 Iterate the PLM once. Then, transform the cur-
rent status value of PLM to the corresponding
binary format and extract 8 bits (9th to 16th

123



2382 Y. Wang et al.

Fig. 13 Density probability
of the PLM

 (4 )

Initialization: x = x0, μ =μ0

While (condition) do
x←PLM(x) 
μ←μ+s 
If > 4 then

End If
If < then

End If
End While

Fig. 14 The pseudocode for implementing the PLMVP

bits after the decimal point) to obtain an integer
K .

Step 3 Generate an 8-bit output number according to
the following equation

P = K ⊕ S(R) (5)

where function S(x) returns the substitution
value of x according to the S-box of AES
[30], which is expressed in hexadecimal form
in Table 2.

Step 4 Update the value of register R, i.e., R = K .

Fig. 15 Density probability distribution of piecewise logistic
map

Step 5 By using P as a feedback, adjust the value of
μ according to the following steps

(i) μ = μ + P/256
(ii) if μ > (4 − m) then μ = μ − (4 − m)

(iii) if μ < m then μ = m

Step 6 To get rid of the transient effect of the chaotic
map, the first 1024 generated numbers is omit-
ted. If enough pseudorandom numbers have
already been generated, stop this pseudoran-
dom number generator; otherwise, go to Step 3
to generate the next 8-bit pseudorandom num-
ber.
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Table 1 Notations in the proposed algorithm

Symbols Meanings Symbols Meanings

PLM Piecewise logistic map in Eq. (3) μ μ ∈ (0, 4] is the control parameter of PLM

N The segment number of the PLM K 8-Bit integer value extracted from PLM

R 8-Bit integer value of register m A floating-point number used to adjust μ

S(R) The substitution value of R P 8-Bit output number after each iteration of PLM

Fig. 16 Scheme of the
proposed PRNG

Table 2 AES S-box: substitution values for byte xy (in hexadecimal format)

x Y

0 1 2 3 4 5 6 7 8 9 a b c d e f

0 63 7c 77 7b f2 6b 6f c5 30 01 67 2b fe d7 ab 76

1 ca 82 c9 7d fa 59 47 f0 ad d4 a2 af 9c a4 72 c0

2 b7 fd 93 26 36 3f f7 cc 34 a5 e5 fl 71 d8 31 15

3 04 c7 23 c3 18 96 05 9a 07 12 80 e2 eb 27 b2 75

4 09 83 2c la lb 6e 5a a0 52 3b d6 b3 29 e3 2f 84

5 53 dl 00 ed 20 fc bl 5b 6a cb be 39 4a 4c 58 cf

E d0 ef aa fb 43 4d 33 85 45 f9 02 7f 50 3c 9f a8

7 51 a3 40 8f 92 9d 38 f5 be b6 da 21 10 ff f3 d2

8 cd 0c 13 ec 5f 97 44 17 c4 a7 7e 3d 64 5d 19 73

9 60 81 4f dc 22 2a 90 88 46 ee b8 14 de 5e 0b db

a e0 32 3a 0a 49 06 24 5c c2 d3 ac 62 91 95 e4 79

b e7 c8 37 6d 3d d5 4e a9 6c 56 f4 ea 65 7a ae 08

c ba 78 25 2e lc a6 b4 c6 e8 dd 74 If 4b bd 8b 8a

d 70 3e b5 66 48 03 f6 0e 61 35 57 b9 86 cl Id 9e

e el f8 98 11 69 d9 8e 94 9b le 87 e9 ce 55 28 df

f 3c al 89 0d bf e6 42 68 41 99 2d 0f b0 54 bb 16

6 Performance analysis of the proposed PRNG

6.1 Advantages of the scheme

ThePLM is the core component in the proposedPRNG.
According to the analysis in Sects. 2 and 3,wemay con-
clude that using the PLM can bring more advantages
than using the logisticmap. Firstly, the Lyapunov expo-
nent of PLM is greater than that of logistic map when
μ is the same. It means that the separation rate of the
PLM trajectories is larger than that of logistic trajecto-
ries. Thus, compared with the logistic map, the PLM is

more sensitive to the status value and parameter. The
orbit of the PLM is more unstable and its sequence is
more complex. Obviously, these properties of the PLM
are very useful to designing PRNG.

In the second place, the PLM has wider interval of
μ corresponding to its chaotic status. As we know, the
control parameter is usually employed as the secrete
key in the chaos-based cipher. Therefore, the PLM
owns larger key space.

Finally, to overcome the problem of uneven density
probability, the operation of adjusting μ is specially
added in our scheme.The value ofμ is changed after the
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PLM finishes each iteration, which makes the PLM act
as the PLMVP. Thus, the PLM in the presented PRNG
scheme can generate the more uniform sequence.

6.2 Statistical testing

In order to gain the confidence that the proposed
PRNG is cryptographically secure, the statistical test-
ing should be performed to verify the randomness of
the sequences generated by our scheme. As we know,
NIST suite of statistical test is one of the most popu-
lar options available for analyzing the randomness of
PRNGs. In the following subsection, we briefly intro-
duce the tests of NIST suite and give our test strategy
[31].

6.2.1 The NIST tests suite

The US NIST statistical test suite provides 15 statisti-
cal tests to detect deviations of a binary sequence from
randomness. All the 15 statistical tests are briefly intro-
duced as follows. A more detailed description for them
could be found in [31].

Frequency test (FT): The purpose of this test is to
determine whether the number of ones and zeros in a
sequence are approximately the same.

Frequency test within a block (FBT): The purpose of
this test is to determine whether the frequency of ones
is an M-bit block is approximately M/2. The default
value for M is set to 128.

Cumulative sum test (CST): The purpose of the test
is to determine whether the cumulative sum of the par-
tial sequences occurring in the tested sequence is too
large or too small relative to the expected behavior of
that cumulative sum for random sequences.

Runs test (RT): The runs test is used to determine
whether the number of runs of ones and zeros of various
lengths is as expected for a random sequence, where a
run is an uninterrupted sequence of identical bits.

Test for the longest run of ones in a block (LROBT):
The purpose of this test is to determine whether the
length of the longest run of ones within the tested
sequence is as expected for a random sequence.

Binary matrix rank test (BMRT): The purpose of
this test is to check for linear dependence among fixed
length substrings of the original sequence.

Discrete Fourier transform test (DFTT): The pur-
pose of this test is to detect periodic features in the

tested sequence that would indicate a deviation from
the assumption of randomness.

Non-overlapping template matching test (NTMT):
The purpose of this test is to reject sequences that
exhibit too many occurrences of a given non-periodic
pattern.

Overlapping template matching test (OTMT): The
purpose of this test is to reject sequences that show
deviations from the expected number of runs of ones
of a given length.

Maurer’s universal statistical test (MUST): The pur-
pose of the test is to detect whether or not the sequence
can be significantly compressed without loss of infor-
mation.

Approximate entropy test (AET): The purpose of the
test is to compare the frequency of overlapping blocks
of two consecutive/adjacent lengths (l and l+1) against
the expected result for a random sequence. The default
length of each block is set to 10 bits.

Random excursions test (RET): The purpose of this
test is to determine if the number of visits to a state
within a random walk exceeds what one would expect
for a random sequence.

Random excursions variant test (REVT): The pur-
pose of this test is to detect deviations from the expected
number of occurrences of various states in the random
walk.

Serial test (ST): The purpose of this test is to deter-
mine whether the number of occurrences of the 2-mm
bit overlapping patterns is approximately the same as
would be expected for a random sequence. The default
length of each block is set to 16 bits.

Linear complexity test (LCT): The purpose of this
test is to determine whether or not the sequence is com-
plex enough to be considered random, where the linear
complexity is determined by the Berlekamp–Massey
algorithm.

6.2.2 Testing results analysis

The NIST test suite is a statistical package for testing
the randomness of bit sequences,which include 15 tests
in edition 2.2. The sequence is random if it passes the
15 tests index, whereas the sequence is insufficient.
For each test, a P_value is computed from the binary
sequence. If the P_value is greater than a predefined
threshold α, then the sequence would be considered to
be randomwith a confidence of 1−α and the sequence
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passes the test successfully. Otherwise, the sequence
fails this test.

In our experiment, α is set to 0.01, which means
a sequence passed the test is considered as random
with 99%confidence. 2000different sequences, each of
1,000,000 bits, are generated by the proposed PRNG.
Then, we calculate the P values corresponding to
each sequence for all the 15 tests of NIST suite. The
test results (i.e., the P_values) are listed in Table 3.
The proportion of the sequences passing this partic-
ular statistical test is also calculated and compared
with the range of acceptable proportion. According
to Ref. [8,29], the range of acceptable proportion is
[0.9833245, 0.9966745]. It can be seen from Table 3
that over 98.60% sequences pass all randomness test
and the average value is 99.08%. It is clear that propor-
tions for each test lies inside the confidence interval.
Thus, the sequence generated by the proposed scheme
has good random properties with respect to all the 15
tests of NIST suite.

Moreover, for each test, the distribution of P values
for the 2000pseudorandomnumber sequences has been
examined by the method in Ref. [8]. The interval (0, 1)
is divided into 10 equal subintervals and the count of
P values appearing in each subinterval is displayed in
Fig. 17. It is clear that the distribution of P values is
uniform.

6.3 Correlation evaluation

A correlation coefficient is generally used to measure
the dependence and meaning statistical relationships
between two or more random variables or observed
data values. For two data sequences, the correlation
coefficient is defined by

cov(x, y) = E{(x − E(x))(y − E(y))} (6)

rxy = cov(x, y)√
D(x)

√
D(y)

(7)

where x and y are the numbers in two data sequences

and E(x) = 1
M

M∑
i=1

xi , D(x) = 1
M

M∑
i=1

(xi − E(x))2.

To test the correlation performance of our scheme,
we generate some pseudorandom sequences with a size
of 2000 numbers according to the following conditions:

(1) Fix μ,m, R and randomly set 1000 initial values
of x0, then produce 1000 sequences.

(2) Fix x0,m, R and randomly set 1000 values of μ,
then produce 1000 sequences;

(3) Fix x0, μ, R and randomly set 1000 values of m,
then produce 1000 sequences;

(4) Fix x0, μ,m and set R from 0 to 255, then produce
256 sequences.

Finally, the correlation coefficients between each pair
of the 3256 produced sequences are computed and the
distributions of correlation coefficients are shown in
Fig. 18. The line graphs show that all the correlation
coefficients are very small and close to zero. It means
that the present PRNG has good correlation perfor-
mance.

6.4 Security analysis

6.4.1 Key space

A good PRNG should be sensitive to the key (or seed)
and the key space should be sufficiently large to make
brute-force attack infeasible. In the proposed scheme,
the key consists of the initial status value x0, the para-
meter μ,m and R, where we set x0 ∈ (0, 1), μ ∈
(0.01, 3.99),m ∈ (0.01, 0.1) and R ∈ [0, 255]. Sup-
pose the precision of a floating-point number is 10−13.
Then, x can be any one among those 1013 possible val-
ues. Similarly, μ and m can be any values in the range
of (3.99−0.01) × 1013 values and (0.1−0.01) × 1013

values, respectively.Meanwhile, R is arbitrarily chosen
from 255 possible values. Therefore, the key space is
about 9.17× 1040, which satisfies the general require-
ment of resisting brute-force attack. According to the
IEEE floating-point standard [32], the computational
precision of the 64-bit double-precision numbers is
about 10−15. Therefore, a sufficiently large key space is
guaranteed in the proposed PRNG for practical appli-
cations.

6.4.2 Key sensitivity

Key sensitivity refers that only a tiny difference in the
key causes a substantial changes in the output. The fol-
lowing key sensitivity tests have been performed:

Case 1 x0 is changed from 0.123456789 to x0 +�;
Case 2 μ is changed from 0.987654321 to μ + �;
Case 3 m is changed from 0.012345678 to m + �;
Case 4 R is changed from 4 to 5
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Table 3 The NIST tests results

No. Statistical test Count of sequences with
P value ≥0.01 (success)

Count of sequences with
P value <0.01 (failure)

P value corresponding to
the goodness of fit (P
value)

Proportion of sequences
passing the test

1 FT 1979 21 0.518106 0.9895

2 FBT 1973 27 0.203894 0.9865

3 CST (forward) 1979 21 0.473064 0.9895

CST (reverse) 1978 22 0.573875 0.9890

4 RT 1982 18 0.967382 0.9910

5 LROBT 1982 18 0.492436 0.9910

6 BMRT 1985 15 0.070737 0.9925

7 DFTT 1972 28 0.093157 0.9860

8 NTMT* 1980.277 19.723 0.473206 0.9901

9 OTMT 1981 19 0.245490 0.9905

10 MUST 1980 20 0.307077 0.9900

11 AET 1977 23 0.146152 0.9885

12 RET (the sample size = 1253)

(1) x = −4 1239 14 0.783019 0.9888

(2) x = −3 1241 12 0.063137 0.9904

(3) x = −2 1245 8 0.605501 0.9936

(4) x = −1 1241 12 0.037566 0.9904

(5) x = 1 1243 10 0.808515 0.9920

(6) x = 2 1237 16 0.247255 0.9872

(7) x = 3 1237 16 0.937919 0.9872

(8) x = 4 1244 9 0.216485 0.9928

13 REVT (the sample size = 1253)

(1) x = −9 1247 6 0.459717 0.9952

(2) x = −8 1247 6 0.675372 0.9952

(3) x = −7 1245 8 0.841226 0.9936

(4) x = −6 1242 11 0.574081 0.9912

(5) x = −5 1245 8 0.348546 0.9936

(6) x = −4 1244 9 0.849373 0.9928

(7) x = −3 1238 15 0.817260 0.9880

(8) x = −2 1241 12 0.775337 0.9904

(9) x = −1 1238 15 0.880145 0.9880

(10) x = 1 1242 11 0.022361 0.9912

(11) x = 2 1244 9 0.154109 0.9928

(12) x = 3 1242 11 0.686955 0.9912

(13) x = 4 1242 11 0.820143 0.9912

(14) x = 5 1242 11 0.887349 0.9912

(15) x = 6 1241 12 0.658765 0.9904

(16) x = 7 1240 13 0.802608 0.9896

(17) x = 8 1245 8 0.191273 0.9936

(18) x = 9 1246 7 0.721371 0.9944

14 ST 1 1984 16 0.522100 0.9920

ST 2 1983 17 0.487561 0.9915

15 LCT 1979 21 0.575932 0.9895

The result marked with an asterisk is the average value
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Fig. 17 Polygon of P values for the tests of NITST suite (Note the result marked with an asterisk is the average value)
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Fig. 18 Distribution of correlation coefficients on interval
[−0.08, 0.08]

where � = 2−44. Under these four different cases, the
sequences with 2000 pseudorandom numbers are gen-
erated and compared with those of the original cases.
The first 20 numbers of each case are plotted in Fig. 19.
It is clear fromFig. 19 that the sequences are completely
different.

Moreover, the correlation coefficients between the
origin sequences and their corresponding sequences
with a tiny difference in key are calculated according
to Eqs. (6) and (7). The results are shown in Table 4.
We can see that all the correlation coefficients are
very small, which implies that no detectable correla-
tion exists between the original sequence and the four
sequences. Therefore, the proposed scheme possesses
high key sensitivity.

6.4.3 Differential attack

The differential attack is generally applied to crypt-
analyze block ciphers, which studies the effect of tiny

Table 4 Correlation coefficients between the original sequence
and the four sequences

Case 1 Case 2 Case 3 Case 4

Correlation coefficient 0.026 0.025 0.023 0.025

changes in the plaintexts on their corresponding cipher-
texts. However, there is no input plaintext for PRNG.
We employ the method in Ref. [16] to test the resis-
tance of differential attack. The following analysis is
performed on the initial seeds which are the keys for
the pseudorandom number generator.

(1) Four sequences (S1, S2, S3 and S4)with 50,000,000
pseudorandom numbers are generated.

(2) The seeds of presented PRNG are changed accord-
ing to the operations in Sect. 6.4.2. Then, another
four sequences (S′

1, S
′
2, S

′
3 and S′

4) with same size
are obtained.

(3) The average absolute difference between sequence
pairs (S1, S′

1), (S2, S
′
2), (S3, S

′
3) and (S4, S′

4) are
calculated and shown in Table 5. The average
absolute difference between two sequences is
defined as [16,33]

d = 1

M

M∑

i=1

|t (ei ) − t (e′
i )| (8)

where ei and e′
i are the i th ASCII character of

the original and the new pseudorandom sequences,
respectively. Function t (x) converts the entries to
their equivalent decimal values. If ei and e′

i are
two independent variables and the correspond-
ing ASCII values have the uniform distribution,
it is can be proved that the ideal value of aver-

Fig. 19 The sequences of under different conditions
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Table 5 The average
absolute difference (d) in
different cases

Case 1 (S1, S′
1) Case 2 (S2, S′

2) Case 3 (S3, S′
3) Case 4 (S4, S′

4)

d 85.3363 85.3191 85.3314 85.3306

age absolute difference is two-third of their mean
value, which in this case is 85.333.

We can see fromTable 5 that all the average absolute
differences in the four cases are very close to the ideal
value 85.333, which means that the proposed PRNG
has high resistance against differential attack.

6.5 Efficiency analysis

In addition to security, the running speed becomes an
important factor for practical applications. In the pro-
posed PRNG, PLM is the core component. When iter-
ating the PLM, we firstly need to determine the subin-
tervalwhich the state value is in, then, calculate the next
state value of the PLM. Since determining the subinter-
val of the state value is not a time-consuming operation,
the computation of iterating the PLM is similar to that
of iterating logistic map. As we know, the logistic map
is usually used in chaos-based cipher for its high effi-
ciency and good cryptographic properties. Thus, like
the logistic map, the PLM also possesses the merit of
high efficiency.

In the proposed scheme, the 8-bit number is gen-
erated by each iteration of the PLM. There are five
addition/subtraction operations and seven multiplica-
tion/division operations in each iteration of the PLM.
Besides the iteration of PLM, substitution andXOR are

the other twomain operations in the process of generat-
ing 8-bit pseudorandom number. The basic operations
of generating 8-bit pseudorandom number are listed in
Table 6. It is clear that the proposed scheme needs only
18 simple computation operations to output each 8-bit
number, which guarantees its high efficiency.

6.6 Comparison analysis

Recently, some pseudorandom number generators
based on chaotic maps have been presented [8,16–
18,24]. Owing to make full use of cryptographic prop-
erty of chaotic system, all of these algorithms have
ideal statistical performance and satisfies the require-
ment of resisting statistical attacks. Due to some homo-
phyly between the proposed algorithm and them, the
efficiency of our algorithm is compared with these of
algorithms in Refs. [8,24]. In Ref. [8], the PRNG is
based on logistic map. After each iteration, only one
bit is generated. To get an 8-bit pseudorandom num-
ber, the logistic map must be iterated for eight times.
The numbers of performing each basic operation to
obtain an 8-bit number is counted and also listed in
Table 6. Three algorithms of generating pseudoran-
dom numbers are presented based on spatiotempo-
ral chaos in Ref. [24]. In the spatiotemporal chaos,
the local chaotic maps are first iterated. Then, the
new state values are calculated according to the cou-

Table 6 The numbers of basic operations to generate an 8-bit number

Our scheme Ref. [8] Ref. [24] (L = 64)

Method 1 Method 2 (P = 40) Method 3 (P = 8)

Number of addition/subtraction 5 16 24 0.6 24

Number of multiplication/division 7 32 32 8.8 96

Number of module 0 0 0 8 64

Number of substitution 1 0 0 0 0

Number of exclusive OR (XOR) 1 0 0 0 56

Number of compare 2 8 8 0 0

Converting floating-point to char 2 0 0 8 64

Total 18 56 64 25.4 304
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Table 7 The running speed of generating pseudorandom num-
bers

Running speed (MByte/s)

Our scheme 20.5383

Ref. [8] 9.5980

Ref. [24] (L = 64)

Scheme 1 8.5470

Scheme 2 (P = 40) 12.7408

Scheme 3 (P = 8) 1.3675

pling relationship between the local chaotic maps.
Although the spatiotemporal chaos has more complex
dynamic behavior, iterating the spatiotemporal chaos
requires much more computational effort than iterat-
ing a simple chaotic map. Similarly, the numbers of
each basic operation used to generating an 8-bit num-
ber is calculated and shown in Table 6. It is clear that
the total number of basic operation in our scheme is
smaller than those of the algorithms in Refs. [8,24],
which means that the proposed scheme has higher
efficiency.

To further verify the efficiency results, our scheme
and other algorithms in Refs. [8,24] are implemented
by using Visual C++ 6.0 and run on a computer with
330GH Intel Core i3-2120 CPU and 4G RAM. The
running speeds of these algorithms are listed in Table 7.
The results confirm that the proposed scheme not only
ownshigher efficiencybut also satisfies the requirement
of practical application.

7 Conclusion

In this paper, the piecewise logistic map (PLM) is pro-
posed, which enhances some properties related to cryp-
tography. The PLM has better ergodicity property and
greater Lyapunov exponent than the logistic map, and
extends the value range of μ corresponding to chaotic
status. In order to achieve more uniform density proba-
bility, we suggested that the variable control parameter
should be employed when iterating the PLM. A PRNG
is proposed based on PLM with N = 64. The oper-
ations, such as substitution and XOR, are used in the
process of generating numbers, which not only lower
the correlation of two adjacent chaotic state values
but also enhance the security of pseudorandom num-
ber sequence. The generated sequences based on our
scheme are rigorously tested by the NIST suite. The

tests results show that the proposed PRNG has per-
fect statistics performance. Moreover, the security and
efficiency analyses have confirmed that the proposed
algorithm satisfy all the performance requirements of
a PRNG. It is practical and reliable, with high potential
to be adopted in the design of stream cipher.
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