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Abstract In this paper, the problem of distributed
adaptive neural control is addressed for a class of uncer-
tain non-affine nonlinear multi-agent systems with
unknown control directions under switching directed
topologies. Via mean-value theorem, non-affine fol-
lower agents’ dynamics are transformed to the struc-
tures so that control design becomes feasible. Then,
radial basis function neural networks are used to
approximate the unknown nonlinear functions. Due
to the utilization of a Nussbaum gain function tech-
nique, the singularity problem and requirement to prior
knowledge about signs of derivative of control gains
are removed. On the base of dynamic surface control
design and minimal learning parameter approach, a
simplified approach to design distributed controller for
uncertain nonlinear multi-agent systems is developed.
As a result, the problems of explosion of complex-
ity and dimensionality curse are counteracted, simul-
taneously. By the theoretical analysis, it is proved that
the closed-loop network system is cooperatively semi-
globally uniformly ultimately bounded. Meanwhile,
convergence of distributed tracking errors to adjustable
neighborhood of the origin is also proved. Finally, sim-
ulation examples and a comparative example are shown
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1 Introduction

Investigations on the distributed control design for
multi-agent systems (MASs) have become one of the
most important topics in the control theory due to
various applications of multi-agent systems in numer-
ous fields, such as sensor networks, formation con-
trol, unmanned air vehicles (UAVs), and flocking mod-
els. During the past few years, two viewpoints con-
cerning distributed control of MASs have been con-
sidered. Some researchers have employed distributed
tracking approach (leader–follower consensus or syn-
chronization to leader) to achieve prescribed common
value, for instance, see [1–4]. On the other hand, some
other researchers have applied distributed regulation
control (leaderless consensus or synchronization) to
achieve unprescribed common value, for instance, see
[5–8].However, comparedwith leaderless case, leader–
follower configuration is an energy saving mechanism,
which was found in many biology systems. Addition-
ally, it can also enhance the communication and ori-
entation of the flock [9]. As the development of dis-
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tributed control approaches, many advanced control
methods have been proposed for multi-agent systems
such as robust control, adaptive control, and backstep-
ping method. Moreover, by combining some of these
advanced control methods, control performance for
some kind of multi-agent systems has been improved.
Hence, many significant results have been obtained for
multi-agent systemswith known dynamics or unknown
dynamics with linearly parametric uncertainties [10–
16].

On the other hand, fuzzy logic systems (FLSs) [17]
and neural networks (NNs) [18] have been proved as
powerful methods to approximate any smooth uncer-
tain function over a compact set. Recently, many
remarkable results have been achieved for a class
of nonlinear multi-agent systems with low triangu-
lar structures and arbitrary uncertainties by combining
adaptive backstepping method with FLSs or NNs. In
[19] and [20], leaderless and leader–follower adaptive
neural backstepping control approaches were proposed
for nonlinear uncertain second-order multi-agent sys-
tems with arbitrary uncertainties. In [21] and [22], two
backstepping consensus control approaches were pro-
posed for high-orderMASs. In [23], a distributed back-
stepping controller was developed for nonlinear sto-
chasticmulti-agent systems.However, controlmethods
in [10–12] and [19–23] suffer from explosion of com-
plexity, especiallywhen the order of the follower agents
increases, i.e., for high-order MASs or when the num-
ber of follower agents increases, i.e., large population
MASs. To avoid this problem, DSC was firstly estab-
lished in [24]. More recently, two distributed adaptive
neural DSC control schemes were proposed for non-
linear strict-feedback multi-agent systems in [25] and
[26].

In [19–22,25] and [26], NNs are employed to
approximate unknown nonlinear functions. However,
in these control approaches the number of adaptive
laws depends on the number of NN nodes. As a result,
when the number of NN nodes to improve approx-
imation accuracy is increased, corresponding adap-
tive parameters is also significantly increased. Hence,
online learning time becomes unacceptably large. This
problem is called dimensionally curse. Moreover, to
achieve a close approximation of the nonlinear func-
tions, it is important to choose the center vector and
the width properly. This means that before distributed
adaptive NN controller is designed, the basis function
vector must be defined by choosing appropriate centers

and widths for the Gaussian functions. If the nonlin-
ear function is unknown, these parameters have to be
selected by trial and error and it is difficult to select
these parameters for the basis functions. These prob-
lems were removed in [27] by considering the norm of
ideal weighting vector in NN as the estimation para-
meter instead of the elements of weighting vector for
individual strict-feedback systems without considering
communication on network. Motivated by [27], in this
paper a novel distributed adaptiveNNminimal learning
parameter control approach is developed for uncertain
nonlinear multi-agent systems. Via Young’s inequality
only one adaptive parameter needs to be tuned regard-
less order of follower agent and number of NN nodes.
Moreover, the proposed approach is independent of any
prior knowledge of NNs.

One of the main features of the mentioned distrib-
uted control methods is that they require control inputs
ofMASs being in affine forms. However, control inputs
can be appeared in non-affine forms inmany real-world
systems. Thus, these distributed control approaches
cannot be directly applied for non-affine nonlinear
multi-agent systems. To the best of authors’ knowl-
edge, there are very few research results in the litera-
ture for controlling non-affine multi-agent systems and
it remains as an open and challenging topic.

On the other hand, prior knowledge about signs of
control gainsmay be unavailable in practice. This prob-
lem is so-called unknown control direction. It makes
the control design to become much more difficult,
since we cannot decide the direction along which the
control operates [28]. Unfortunately, mentioned dis-
tributed control solutions are inadequate for multi-
agent systems with unknown control directions. Luck-
ily, [28] proved that Nussbaum gain function tech-
nique is a useful method to deal with unknown control
direction problem. Then, in-depth study on unknown
control direction was proposed in [29–32]. However,
these controllers were designed to force the output
of a single uncertain nonlinear system to follow a
desired signalwithout exploiting of the communication
graph theory. Recently, distributed controller design for
multi-agent systems with unknown control directions
becomes an attractive topic. As a first result, [33] pro-
posed an adaptive consensus of nonlinear multi-agent
systems with unknown identical control directions.
Cooperative control of linear multi-agent systems with
unknown nonidentical high-frequency-gain signs was
developed in [34]. However, the results in [33] and [34]
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are presented for multi-agent systems for double- and
single-integrator models, respectively. More recently,
Ding [35] studied an adaptive consensus of high-order
nonlinear multi-agent systems with unknown noniden-
tical control directions. However, consensus control
methods in [33–35] require follower agents’ dynamics
satisfy matching condition; the system functions are
either known or parameterized, that is, the unknown
parameters appear linearly with respect to the known
nonlinear functions.

To the best of authors’ knowledge, a distributed
adaptive neural control has not been reported for non-
affine uncertain nonlinear multi-agent systems with
unknown control directions. Toward this end, this paper
proposed a distributed controller for this class of non-
linear multi-agent systems. At first via mean-value the-
orem, the original non-affine follower agents are con-
verted to the structures that control design becomes
feasible. RBFNNs are used to identify unknown non-
linear functions. Nussbaum gain function technique
is employed to deal with unknown control directions.
Additionally, the problems of “explosion of complex-
ity” and “dimensionally curse” are removed via DSC
andMLP approaches, respectively. Boundedness of all
the signals in the closed-loop network is guaranteed by
Lyapunov theory. Meanwhile, convergence of the dis-
tributed tracking errors to an adjustable neighborhood
of the origin is also proved.

Comparedwith the cited references, themain contri-
butions of the proposed method are as follows: (1) It is
the first trial to design distributed adaptive neural con-
troller for a class of nonlinear multi-agent systems in
triangular structurewith both of nonlinearly parameter-
ized uncertainties and unknown control directions. In
comparison, [25] and [26] presented distributed adap-
tive neural approaches for triangular form with known
control directions.On the other hand, the proposed con-
trol approaches in [33–35] are only valuable for multi-
agent systems with both of matching condition and
linearly parameterized uncertainties; (2) via Young’s
inequality the number of adaptive parameters in the
proposed distributed controller is dramatically reduced,
so that only one adaptive parameter is tuned for each
follower agent. Also, the proposed controller is inde-
pendent of prior knowledge of NNs. As a result, the
computational burden is significantly alleviated and
simpler adaptive NN is obtained than [25] and [26]; (3)
the proposed adaptive control method can remove the
problem of “explosion of complexity” in the conven-

tional backstepping design and thus it becomes much
simpler than the existing distributed adaptive backstep-
ping controllers in [19–23]; and (4) unlike [29–32],
[37], and [38], in this paperwe considermultiple uncer-
tain nonlinear systems, which can be regarded as fol-
lower agents and a leader agent under switching graph
topology.

The remainder of this paper is organized as follows.
In Sect. 2, problem statement, assumptions, and pre-
liminaries are given. Section 3 is devoted to controller
design and its stability analysis. In Sects. 4 and 5, sim-
ulation results and conclusions are reported, respec-
tively.

2 Preliminaries and problem formulation

2.1 Preliminaries

2.1.1 Graph theory

To solve the coordination problem andmodel the infor-
mation exchange between agents, according to [40] a
brief introduction of graph theory is presented here.

Let G = {v, E} be a directed weighted graph of
order N ,v = {v1, . . . , vN } denotes the set of agents,
E ⊆ v×v denotes the set of edges and ei j = (vi , v j ) ∈
E if and only if there exists an information exchange
from agent i to agent j . The adjacency matrix repre-
sents topology of directed graph as A = [ai j ] ∈ RN×N

and ai j > 0 if (vi , v j ) ∈ E ; otherwise ai j = 0.
The value ai j in adjacency matrix A associated with
the edges ei j denotes the communication quality from
the i th agent to j th agent. Throughout this paper, it is
assumed that aii = 0 and graph topology associated
with communication among agents may change over
time. In other words, the adjacency matrix is time-
variant. Furthermore, G = {G1, . . . ,Gl} denotes a
set including all possible communication topologies
between agents. Laplacian matrix is defined as

L = D − A,

where L ∈ RN×N · D = diag(d1, . . . , dN ) is the
weighted degree of node i , where di = ∑N

j=1 ai j . A
directed graph has directed spanning tree if there exists
agent called root such that a directed path from this
agent to every other agents. Finally, define the leader
adjutancy matrix as B0 = diag(bi ) ∈ RN×N where
bi > 0 if only if i th agent has access to leader infor-
mation; otherwise bi = 0. Also, H denotes L + B0.
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2.1.2 NN approximation property

Owing to universal approximation property, learning,
and fault tolerance, NNs have been widely used for the
identification and control of uncertain nonlinear sys-
tems. In this paper, RBFNNs will be applied to approx-
imate smooth uncertain nonlinear functions. RBFNNs
can approximate any unknown continuous function
f (Z) : �q → � as

fnn(Z) := �TΦ(Z), (1)

where Z ∈ ΩZ ⊂ �q is the input vector and q
denotes the neural network input dimension. � =
[θ1, . . . , θl ]T ∈ �l is the weight vector and l > 1
denotes the neural network nodes number. Φ(Z) =
[φ1(Z), . . . , φl(Z)]T ∈ �l is the basis function vector
where activity functionφi (Z) is defined as follows:

φi (Z) = exp

[
‖Z − μi‖2

ηi

]

, i = 1, 2, . . . , l, (2)

where μi ∈ ΩZ and ηi > 0 are the center and the
width of the Gaussian function, respectively [18]. For
any unknown nonlinear function f (Z) defined over a
compact set ΩZ ⊂ �q , there exists the neural network
�∗T Φ(Z) and arbitrary constant δ(Z) such that

f (Z) := �∗TΦ(Z) + δ(Z), ∀Z ∈ ΩZ ∈ �q , (3)

where �∗ is the ideal constant weight vector defined
by

�∗ := arg min
�∈Rl

{

sup
Z∈ΩZ

∣
∣
∣ f (Z) − �TΦ(Z)

∣
∣
∣

}

,

and δ(Z) denotes the approximation error and it satis-
fies |δ(Z)| ≤ ε.

2.2 Problem formulation

Consider a network of uncertain non-affine nonlinear
strict-feedback systems consistingof N follower agents
and one leader agent. The dynamics of i th follower
agent is described by
⎧
⎨

⎩

ẋi,k = xi,k+1 + fi,k(xi,k),
ẋi,ni = fi,ni (ui , xi,ni ),
yi = xi,1, i = 1, . . . , N , k = 1, . . . , ni − 1,

(4)

where xi,ni = [xi,1, xi,2, . . . , xi,ni ]T ∈ �ni , (xi =
xi,ni ) is the state vector of i th agent, ui ∈ � and
yi ∈ � are the control input and the output of i th agent,

respectively. xi,k = [xi,1, xi,2, . . . , xi,k]T ∈ �k(i =
1, . . . , N , k = 1, . . . , ni − 1) · fi,k(xi,k) : �k → �
and fi,ni (ui , xi,ni ) : �ni+1 → � are unknown nonlin-
ear affine and non-affine functions, respectively.

The leader agent, labeled as i = 0, is described by
the following dynamics

ẋL = f (xL , t), (5)

where xL ∈ � is a time-varying state of the leader agent
and f (xL , t) is a bounded unknown function.

Control objective: The control objective is to design a
distributed adaptive NN controller for a group of uncer-
tain nonlinear systems consisting follower agents (4)
and leader agent (5) such that all the signals in the
closed-loop network remain CSGUUB and distributed
tracking errors converge to an adjustable neighborhood
of the origin.

To achieve the mentioned control objectives, we
require some definitions and assumptions as follows:

Assumption 1 The state xi,1 of the i th follower agent
is only known and available for the j th follower agent
satisfying i ∈ N j , i = 1, . . . , N , j = 1, . . . , N and
i �= j .

Remark 1 In contrast to the related literatures [10–
13,19–23,25] and [26], only followers’ own states and
outputs information between followers and their neigh-
borhoods are required in the proposed design procedure
due to the employment of the MLP approach. Hence,
when the agents group has a large number of members,
the proposed approach becomes more practical than
existing results in the design of distributed controllers
for MASs in block-triangular structures.

Assumption 2 The graph G consists of N follower
agents and a leader, which contains a spanning tree
rooted at the leader at all times.

Assumption 3 The leader output signal xL ∈ R is
bounded, known, and available for the i th follower
agent if bi �= 0. Also, its derivative ẋL ∈ R is bounded.

Definition 1 The trajectory {xi (t), t ≥ 0} of nonlinear
follower agent (1) with initial conditions xi (t0) ∈ Ωi0

(where Ωi0 is some compact set including the origin)
under the communication graph is said to be coop-
eratively semi-globally uniformly ultimately bounded
if there exist a constant εi > 0 and a time constant
Ti (xi (t0), εi ) > 0, such that ‖xi (t)‖ ≤ εi , for all
t ≥ t0 + Ti .
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Definition 2 [30] An even function N (ζ ) : � → �
is called a Nussbaum gain function, if the following
properties hold
⎧
⎨

⎩

lim
s→+∞ sup 1

s

∫ s
0 N (ζ )dζ = +∞,

lim
s→+∞ inf 1

s

∫ s
0 N (ζ )dζ = −∞.

(6)

There are many functions satisfying the above condi-
tions such as ζ 2 cos(ζ ) and ζ 2 cos((π/2)ζ ).

Lemma 1 [30] Let V (t) and ζ(t) be smooth functions
which are defined on [0, t f ), if there exist positive con-
stants C1 and C2 satisfying the following inequality:

V̇ (t) ≤
N∑

i=1

κi (gμi (t)N (ζi ) + 1)ζ̇i − C1V (t) + C2,(7)

where gμi (t) is a time-varying parameter that takes
values in the unknown closed interval I = [l+, l−]
with 0 /∈ I. Then, e−C1t

∫ t
0

∑N
i=1 κi (gμi (τ )N (ζi (τ ))+

1)ζ̇i (τ )eC1τdτ, ζi (t) and V (t) must be bounded on
[0, t f ).
Lemma 2 [36] For ∀(x, y) ∈ �2, the following
inequality holds:

xy ≤ ε p

p
|x |p + 1

qεq
|y|q ,

where ε > 0, p > 1, q > 1 and (p − 1)(q − 1) = 1.

3 Main results

In this section, a DSC design procedure is employed
to construct the distributed adaptive neural controller.
The main idea is that the RBFNNs are employed to
identify the uncertain nonlinear functions and the con-
ventional adaptive methodology is used to estimate
the upper bound of the norms of NNs weight vectors.
Finally, a distributed adaptive neural DSC is designed
via appropriate control Lyapunov functions. Further-
more, the Nussbaum function technique is utilized to
remove requirement of the prior knowledge of the con-
trol gain sign.

For simplicity, we first introduce the unknown con-
stant W ∗

i , which is specified as follows:

W ∗
i =max

{
Ni,k

∥
∥θ∗

i,k

∥
∥2 ; i=1, 2, . . . , N , k=1, 2, . . . , ni } ,

(8)

where Ni,k ≥ φT
i,k(·)φi,k(·), andW ∗

i denotes the norm
of the ideal weight vector of the neural network.

3.1 Distributed controller development

Similar to the traditional backstepping design method,
our design procedure contains ni step. The ni step
of distributed adaptive neural DSC design is based
on the following change of coordinates for i =
1, . . . , N , k = 2, . . . , ni as follows:

zi,1 = bi (t)(xi,1 − xL) +
N∑

j=1

ai j (t)(xi,1 − x j,1), (9)

zi,k = xi,k − πi,k, (10)

vi,k = πi,k − αi,k−1, (11)

where zi,1 is the distributed error surface, zi,k is the
error surface and πi,k is the state variable which is
obtained through a first-order filter on an intermediate
function αi,k−1. Also, vi,k is the filter error.

Note that the directed communication graph has
infinite sequence of uniformly bounded nonoverlap-
ping time intervals [tl , tl+1), l = 0, 1, . . . , n with
t0 = 0, tl+1 − tl > 0 across which the communication
graph is time invariant. The time sequence t1, t2, . . . is
named the switching sequence, at which the communi-
cation graph changes but the graph is fixed during each
interval t ∈ [tl , tl+1), in other words ai j (t) = ai j and
bi (t) = bi for t ∈ [tl , tl+1). In the following design,
we study the case t ∈ [tl , tl+1).

Step 1: By differentiating (9) along (4), one gets

żi,1 = (di + bi )(xi,2 + fi,1(xi,1)) −
N∑

j=1

ai j (x j,2

+ f j,1(x j,1)) − bi ẋL . (12)

Design the intermediate control function as follows:

αi,1 = − ci,1
di + bi

zi,1 − 1

2ri,1
Ŵi zi,1, (13)

where ci,1 > 0 and ri,1 > 0 are design parameters and
Ŵi is the estimation of W ∗

i .
Choose the Lyapunov function candidate as

Vi,1 = 1

2
z2i,1. (14)

By (10), (11), and (12), one has

V̇i,1 = zi,1(di + bi )
(
zi,2 + vi,2 + αi,1

+ f i,1(Zi,1) − 1

2
zi,1

)

, (15)
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in which

f i,1(Zi,1)= fi,1(xi,1)−
N∑

j=1

ai j
(di +bi )

(x j,2+ f j,1(x j,1))

− bi
(di + bi )

ẋL + 1

2
zi,1, (16)

is an unknown nonlinear function. According to (3),
for any given constant δi,1(Zi,1) > 0, there exists the
RBFNN θ∗T

i,1 ϕi,1(Zi,1) such that

f i,1(Zi,1) = θ∗T
i,1 ϕi,1(Zi,1) + δi,1(Zi,1), (17)

where Zi,1 = [xi,1, x j,2, zi,1, ẋL ]T , j ∈ Ni , δi,1(Zi,1)

is defined as minimum approximation error and it sat-
isfies

∣
∣δi,1(Zi,1)

∣
∣ ≤ εi,1.

To reduce the number of tuned parameters for
RBFNN, Young’s inequality is used such that only one
learning parameter needs to be tuned for each follower
agent as

zi,1 f i,1(Zi,1) = zi,1θ
∗T
i,1 ϕi,1(Zi,1) + zi,1δi,1(Zi,1)

≤ 1

2
z2i,1 + 1

2ri,1
z2i,1W

∗
i + 1

2
ri,1

+ 1

2
ε2i,1. (18)

Substituting (13) and (18) into (15) results in

V̇i,1 ≤ −ci,1z
2
i,k + zi,1(di + bi )(zi,2 + vi,2)

+ 1

2ri,1
(di + bi )z

2
i,1W̃i

+ 1

2
(di + bi )ri,1 + 1

2
(di + bi )ε

2
i,1. (19)

where W̃i = W ∗
i − Ŵi is the parameter error.

Introduce a new state variable πi,2, let αi,1 pass
through a first-order filter with time constant �i,2 > 0
as

�i,2π̇ j,2 + πi,2 = αi,1, πi,2(0) = αi,1(0). (20)

By defining the filter error νi,2 = πi,2 − αi,1 and using
(20), one gets

ν̇i,2=−νi,2

�i,2
+ Bi,2(xi,1, xi,2, x j,1, x j,2, xL , ẋL , Ŵi ),

(21)

where j ∈ Ni and Bi,2(·) is a continuous function with
the following expression

Bi,2(·) = −∂αi,1

∂xi,1
ẋi,1 −

∑N

j=1

∂αi,1

∂x j,1
ẋ j,1

− ∂αi,1

∂Ŵi

˙̂Wi − ∂αi,1

∂xL
ẋL .

Step k (2 ≤ k ≤ ni − 1) : From (10), time derivative
of kth error surface is defined as follows:

żi,k = xi,k+1 + fi,k(xi,k) − π̇i,k . (22)

Design the intermediate control function as follows:

αi,k = −ci,k zi,k − 1

2ri,k
Ŵi zi,k + π̇i,k, (23)

where ci,k > 0 and ri,k > 0 are design parameters.
Consider the Lyapunov function candidate as

Vi,k = 1

2
z2i,k + 1

2
v2i,k . (24)

Applying (10), (11), (21), and (22), one has

V̇i,k = zi,k(zi,k+1 + vi,k+1 + αi,k + f i,k(Zi,k)

− 1

2
zi,k − π̇i,k) + vi,k

(

−vi,k

�i,k
+ Bi,k(·)

)

,

(25)

in which

f i,k(Zi,k) = fi,k(xi,k) + 1

2
zi,k, (26)

is an unknown nonlinear function. Now, we utilize the
RBFNN θ∗T

i,k ϕi,k(Zi,k) to approximate unknown con-

tinuous function f i,k(Zi,k) as

f i,k(Zi,k) = θ∗T
i,k ϕi,k(Zi,k) + δi,k(Zi,k), (27)

where Zi,k = [xi,k, zi,k]T , δi,k(Zi,k) is defined as min-
imumapproximation error and it satisfies

∣
∣δi,k(Zi,k)

∣
∣ ≤

εi,k .
According to (18), one obtains

zi,k f i,k(Zi,k) ≤ 1

2
z2i,k + 1

2ri,k
z2i,kW

∗
i + 1

2
ri,k

+ 1

2
ε2i,k . (28)

Substituting (23) and (28) into (25) yields

V̇i,k ≤ −ci,k z
2
i,k + zi,k(zi,k+1 + vi,k+1) + 1

2ri,k
z2i,k W̃i

+ vi,k

(

−νi,k

�i,k
+ Bi,k(·)

)

+ 1

2
ri,k + 1

2
ε2i,k .

(29)

Similar to the previous step, the first-order filter is
defined as follows:

�i,k+1π̇i,k+1 + πi,k+1 = αi,k, πi,k+1(0) = αi,k(0).

(30)
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By defining the filter error νi,k+1 = πi,k+1 − αi,k and
using (30), one gets

ν̇i,k+1 = −νi,k+1

�i,k+1
+ Bi,k+1(xi,1, xi,2, . . . , xi,k+1,

x j,1, x j,2, vi,2, . . . , vi,k+1, Ŵi , xL , ẋL), (31)

where Bi,k+1(·) is a continuous function with the fol-
lowing expression

Bi,k+1(·) = −
k∑

l=1

∂αi,k

∂xi,l
ẋi,l −

N∑

j=1

∂αi,k

∂x j,1
ẋ j,1

−
k∑

l=2

∂αi,k

∂πi,l
π̇i,l − ∂αi,k

∂xL
ẋL − ∂αi,k

∂Ŵi

˙̂Wi .

Step ni: From (10), time derivative of the ni th error
surface is defined as follows:

żi,ni = fi,ni (xi,ni , ui ) − π̇i,ni . (32)

Now, to simplify the distributed controller design, the
mean-value theorem [36] is used to convert unknown
non-affine functions into a structure, which is similar
to affine form as follows:

fi,ni (xi,ni , ui ) = fi,ni (xi,ni , u
0
i ) + gμi (ui − u0i ), (33)

where gμi := gi (xi,ni , uμi ) = ∂ fi,ni (xi,ni ,ui )
∂ui

|ui = uμi ,

i = 1, . . . , N , and uμi := μi ui + (1 − μi )u0i is some
unknown point between ui and u0i in which μi is 0 <

μi < 1.

Assumption 4 The sign of gμi ∈ � is unknown, and
there exist unknown positive constants like g

i
and gi

such that g
i
≤ ∣

∣gμi

∣
∣ ≤ gi < ∞.

By substituting (33) into (32) and choosing u0i = 0,
we have

żi,ni = gμi ui + fi,ni (xi,ni ) − π̇i,ni . (34)

Take the Lyapunov function candidate as

Vi,ni = 1

2
z2i,ni + 1

2
v2i,ni . (35)

Using similar procedure as step k, it follows

V̇i,ni = zi,ni

(

gμi ui + f i,ni (Zi,ni ) − π̇i,ni − 1

2
zi,ni

)

+ vi,ni

(

−vi,ni

�i,ni
+ Bi,ni (·)

)

, (36)

in which

f i,ni (Zi,ni ) = fi,ni (xi,ni ) + 1

2
zi,ni , (37)

Similarly, for any δi,ni (Zi,ni ) > 0, the RBFNN
θ∗T
i,ni

ϕi,ni (Zi,ni ) is used to approximate the unknown

function f i,ni . According to (3), f i,ni is defined as

f i,ni (Zi,ni ) = θ∗T
i,ni ϕi,ni (Zi,ni ) + δi,ni (Zi,ni ), (38)

where Zi,k = [xi,ni , zi,ni ]T , δi,ni (Zi,ni ) is defined as
minimum approximation error and satisfies∣
∣δi,ni (Zi,ni )

∣
∣ ≤ εi,ni .

By exploiting the method utilized in (18), one
obtains

zi,ni f i,ni (Zi,ni ) ≤ 1

2
z2i,ni + 1

2ri,ni
z2i,ni W

∗
i

+ 1

2
ri,ni + 1

2
ε2i,ni . (39)

Then, design the actual control function andNussbaum
function signal as follows:

ui = N (ζi )

(

ci,ni zi,ni + 1

2ri,ni
Ŵi zi,ni − π̇i,ni

)

,

(40)

ζ̇i = 1

κi
zi,ni

(

ci,ni zi,ni + 1

2ri,ni
Ŵi zi,ni − π̇i,ni

)

,

(41)

where κi > 0, ci,ni > 0 and ri,ni > 0 are design
parameters.

Using (39), (40) and (41), (36) becomes

V̇i,ni ≤ κi (gμi N (ζi )+1)ζ̇i − ci,ni z
2
i,ni +

1

2ri,ni
z2i,ni W̃i

+ vi,ni

(

−vi,ni

�i,ni
+ Bi,ni (·)

)

+ 1

2
ri,ni + 1

2
ε2i,ni .

(42)

3.2 Stability analysis

In this subsection, the semi-global boundedness of all
signals in the closed-loop network system is proved via
Lyapunov’s direct method. Furthermore, it is shown
that all error signals in the closed-loop network con-
verge to an adjustable neighborhood of the origin by
choosing appropriate design parameters.

Theorem 1 Consider the closed-loop network sys-
tem consisting of non-affine nonlinear follower agents
(4) and a dynamic leader agent (5) under switching
directed topologies and Assumptions 1–4. Via control
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laws (13), (23) and (40), adaptive law as

˙̂Wi = γi

2ri,1
(di + bi )z

2
i,1 +

ni∑

k=2

γi

2ri,k
z2i,k − γiσi Ŵi ,

(43)

and first-order filters (20) and (30), for any bounded
initial conditions the following expressions are guar-
anteed

(1) all signals in the closed-loop network remain
CSGUUB;

(2) distributed tracking errors converge to an adju-
stable compact set as follows:

Ωzi,1 =
{

N∑

i=1

∣
∣zi,1

∣
∣2 ≤ 2c0

}

, (44)

(3) the other error signals in the closed-loop network
converge to an adjustable compact set as follows:

Ωerrors =
{

N∑

i=1

ni∑

k=2

∣
∣zi,k

∣
∣2 ≤ 2c0,

N∑

i=1

ni∑

k=2

∣
∣vi,k

∣
∣2 ≤ 2c0,

N∑

i=1

∣
∣
∣W̃i

∣
∣
∣
2 ≤

N∑

i=1

2γi c0

}

,

(45)

where c0 > 0 is given in the proof.

Proof To prove the stability of closed-loop network
system consisting of all the follower agents and a leader
agent, the whole Lyapunov function candidate is given
as

V =
N∑

i=1

ni∑

k=1

Vi,k +
N∑

i=1

1

2γi
W̃ 2

i . (46)

where γi > 0 is a design parameter.
Bydifferentiating (46) andusing (19), (29), and (42),

one obtains

V̇ ≤
N∑

i=1

{

κi (gμi N (ζi ) + 1)ζ̇i −
ni∑

k=1

ci,k z
2
i,k

+ (di + bi )zi,1(zi,2 + vi,2) +
ni−1∑

k=2

zi,k zi,k+1

+ 1

2
(di + bi )ri,1 + 1

2
(di + bi )ε

2
i,1

+ 1

2

ni∑

k=2

ε2i,k + 1

2

ni∑

k=2

ri,k +
ni−1∑

k=2

zi,kvi,k+1

+
ni∑

k=2

vi,k

(

−νi,k

�i,k
+ Bi,k(·)

)

+ 1

2ri,1
W̃i (di + bi )z

2
i,1

+
ni∑

k=2

1

2ri,k
W̃i z

2
i,k − 1

γi
W̃i

˙̂Wi

}

. (47)

Applying (43) and choosing

di + bi + ci ≤ ci,1, 1 + 0.5(di + bi ) + ci ≤ ci,2,

1.5 + ci ≤ ci,k k = 3, . . . , ni−1, 0.5 + ci ≤ ci,ni ,

(48)

(47) becomes

V̇ ≤
N∑

i=1

{
κi (gμi N (ζi ) + 1)ζ̇i

− ci

ni∑

k=1

z2i,k + 1

2
(di + bi )v

2
i,2

+ 1

2

ni−1∑

k=2

v2i,k+1 +
ni∑

k=2

vi,k

(

−νi,k

�i,k
+ Bi,k(·)

)

+ 1

2
(di + bi )ri,1 + 1

2
(di + bi )ε

2
i,1 + 1

2

ni∑

k=2

ε2i,k

+ 1

2

ni∑

k=2

ri,k + σi W̃i Ŵi

}

, (49)

where ci > 0 is a design parameter.
Based on the Young’s inequality, we have

2σi W̃i Ŵi ≤ −σi W̃
2
i + σiW

∗2
i . (50)

Let Ai, j = {Vi,k ≤ 2υi,k} where (i = 1, . . . , N , j =
1, . . . , k) and υi, j is a positive constant. Since Ai, j ⊂
Rdim(Ai, j ) and ΩL ⊂ R are compact sets, thus, Ai, j ×
ΩL also is a compact set in Rdim(Ai, j )+1.Hence, Bi,k(·)
have maximums on Ai, j × ΩL such that

∣
∣Bi,k(·)

∣
∣ ≤

Mi,k . Therefore, one gets

2vi,k Bi,k(·) ≤ � 2
i,kν

2
i,kM

2
i,k + �−2

i,k , (51)

where �i,k is a design parameter. Now, by choosing

−1

2
(di + bi ) − 1

2
� 2

i,kM
2
i,k + 1

�i,k
> c′

i

i = 1, . . . , N , k = 2, (52)

− 1

2
− 1

2
� 2

i,kM
2
i,k + 1

�i,k
> c′

i

i = 1, . . . , N , k = 3, . . . , ni , (53)
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and according to the (50), (49) becomes

V̇ ≤
N∑

i=1

{

κi (gμi N (ζi ) + 1)ζ̇i − ci

ni∑

k=1

z2i,k

− c′
i

ni∑

k=2

v2i,k

− 1

2
σi W̃

2
i + 1

2
(di + bi )ri,1 + (di + bi )

1

2
ε2i,1

+ 1

2

ni∑

k=2

ε2i,k + 1

2

ni∑

k=2

ri,k+1

2

ni∑

k=2

�−2
i,k

+ 1

2
σiW

∗2
i

}

, (54)

where c′
i > 0 is a design parameter.

Now, by defining constants as

C1 := min
1≤i≤N

{
2ci , 2c

′
i , γiσi

}
, (55)

C2 :=
N∑

i=1

{
1

2
(di + bi )ε

2
i,1 + 1

2

ni∑

k=2

ε2i,k

+ 1

2
(di + bi )ri,1

+ 1

2

ni∑

k=2

ri,k + 1

2

ni∑

k=2

�−2
i,k + 1

2
σiW

∗2
i

}

, (56)

(54) becomes

V̇ ≤
N∑

i=1

κi (gμi N (ζi ) + 1)ζ̇i − C1V + C2, (57)

It implies that during each interval [tl , tl+1), V (t)
is bounded. As the time increases, from (57) and
Lemma 1, one infers that all the error signals in the
closed-loop network systemare bounded. Furthermore,
ultimate bounds of error signals in the closed-loop net-
work by evoking (46) and using Rayleigh-Ritz inequal-
ity [36] are obtained as follows:

1

2

N∑

i=1

∣
∣zi,1

∣
∣2 ≤ V (t) ≤ c0 →

N∑

i=1

∣
∣zi,1

∣
∣2

≤ 2c0. (58)

1

2

N∑

i=1

ni∑

k=2

∣
∣zi,k

∣
∣2 ≤ V (t) ≤ c0

→
N∑

i=1

ni∑

k=2

∣
∣zi,k

∣
∣2 ≤ 2c0, (59)

1

2

N∑

i=1

ni∑

k=2

∣
∣vi,k

∣
∣2 ≤ V (t) ≤ c0

→
N∑

i=1

ni∑

k=2

∣
∣vi,k

∣
∣2 ≤ 2c0, (60)

N∑

i=1

1

2γi

∣
∣
∣W̃i

∣
∣
∣
2 ≤ V (t) ≤c0 →

N∑

i=1

∣
∣
∣W̃i

∣
∣
∣
2

≤
N∑

i=1

2γi c0. (61)

Note the fact that

zN ,1 = H
(
y − 1xL

)
. (62)

Applying Assumption 2, we have

‖e‖ ≤
√
2c0

σ(H)
. (63)

Then, using Assumption 3, we have

‖y‖ ≤
√
2c0

σ(H)
+ ΩL , i = 1, . . . , N , (64)

where ei = yi − xL is the consensus error, e =
[e1, . . . , eN ]T , zN ,1 = [z1,1, . . . , zN ,1]T , 1 =
[1, . . . , 1]T ∈ �N , y = [y1, . . . , yN ]T and σ(H)

denotes minimum singular value of H .
The signals zi,k, vi,k and W̃i for i = 1, . . ., N , k =

1, . . ., ni , in the closed-loop system are bounded. Fur-
ther, Ŵi is bounded as W ∗

i is a constant. Accord-
ing to (64), we can infer that yi , i = 1, . . ., N is
bounded. Noting that zi,k, vi,k , and Ŵi are all bounded
for i = 1, . . ., N , k = 1, . . ., ni , we can conclude
that for i = 1, . . ., N , k = 1, . . ., ni − 1, αi,k is
bounded. Also, from (20) and (30), the boundedness
of πi,k is obtained for i = 1, . . ., N , k = 2, . . ., ni . For
i = 1, . . ., N , k = 2, . . ., ni by using xi ,k = zi,k +πi,k

and the boundedness of zi ,k and πi,k , the boundedness
of xi,k is obtained. Finally, according to (40) and (41),
we can infer that Nussbaum function signal and con-
trol input are also bounded. Hence, all the signals in
the closed-loop system are bounded.

Therefore, this proof is complete. ��
Remark 2 In the proposed control design, the achieve-
ment of asymptotic stability is impossible due to the
utilization of RBFNNs and DSC strategy. However, as
previously proved, all the error signals in the closed-
loop network converge to ultimate bounds. Two points
of view are suggested to reduce the sizes of ultimate
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bounds: (1) increasingC1 and (2) decreasingC2. How-
ever, the increase of C1 not only reduces the sizes of
ultimate bounds but also increases the convergence
rate of closed-loop error signals to ultimate bounds.
To attain these objectives, design parameters should be
adjusted suitably as follows:

(1) By increasing control gains, sizes of ultimate
bounds are reduced. However, it causes those
sizes of control inputs in the transient performance
become very large, which is not acceptable in prac-
tical applications.

(2) By decreasing sigma modification factors, sizes of
ultimate bounds are reduced. However, it may lead
to parameter drifts in adaptive laws.

Remark 3 In the adaptive control design methods for
MASs proposed in [19–21,25] and [26], neural net-
works (or fuzzy systems) are applied to approximate
the uncertain nonlinearities. Hence, to achieve smaller
approximation errors for the uncertain functions, it
is important to choose the center and the width vec-
tors. However, for uncertain functions, these parame-
ters have to be selected by trial and error and it is dif-
ficult to select these parameters for the basis functions
vector (or member ship function), properly. Moreover,
in thementioned approaches, the number of tuned para-
meters is directly depended on the order of each agent
and the number of the NN nodes (or fuzzy rules). How-
ever, in the proposed approach, a priori knowledge of
the centers of the receptive field and the width of the
Gaussian functions is not necessary. On the other hand,
only one adaptive parameter is needed to be updated for
each agent regardless of the agent’s order and number
of NN nodes, which makes the obtained results more
useful in practice.

Remark 4 If thefirst equation in themulti-agent system
(4) becomes ẋi,k = fi,k(xi,k+1), where fi,k(xi,k+1) �=
0 is an unknown nonlinear function and sign of its
derivative about xi,k+1 is unknown, the above distribted
adaptive control scheme can also be applicable if the
following slight modifications are made. That is, the
intermediate control functions (13) and (23) are modi-
fied as follows for i = 1, . . . , N , k = 1, . . . , ni − 1

αi,k = N (ζi,k)

(

ci,k zi,k + 1

2ri,k
Ŵi zi,k − π̇i,k

)

, (65)

ζ̇i,k = 1

κi,k
zi,k

(

ci,k zi,k + 1

2ri,k
Ŵi zi,k − π̇i,k

)

, (66)

where π̇i,1 denotes 0.

4 Simulation study

In this section, two simulation examples and one sim-
ulation comparison are provided to illustrate the effec-
tiveness andmerits of the proposed distributed adaptive
neural control approach.

4.1 Numerical example

Consider uncertain non-affine nonlinear follower
agents with unknown control directions as follows:
⎧
⎨

⎩

ẋi,1 = xi,2 + fi,1(xi,1),
ẋi,2 = fi,2(xi,2, ui ),
yi = xi,1,

(67)

where i = 1, 2, 3. Unknown nonlinear functions
in the dynamics’ follower agents are f1,1(x1,1) =
−0.9x1,1 + x21,1, f1,2(x1,2, u1) = −3u1 + sin(u1) +
x12 sin(x1,1), f2,1(x2,1) = −x2,1, f2,2(x2,2, u2) =
−7u2 − u32

3 + x21,2 + 0.5x2,1 cos(x22,1), f3,1(x3,1) =
x3,1 sin(x3,1), f3,2(x3,2, u3) = −9u3 − 0.4x3,2 sin
(x3,1).

To achieve the mentioned control objectives, design
parameters for intermediate control law (13), actual
control law (40), first-order filter (20), and adaptive
law (43) are chosen as c1,1 = 10, c1,2 = 6, c2,1 =
20, c2,2 = 3, c3,1 = 30, c3,2 = 2, �1,2 = �2,2 =
�3,2 = 100, κ1 = 100, κ2 = 2, κ3 = 100, γ1 = γ2 =
γ3 = 50, σ1 = σ2 = σ3 = 0.001.

The leader agent output is assumed to be xL =
sin(t). The initial states of the three follower agents
and the distributed controller are chosen as x1(0) =
[0.1, 0]T , x2(0) = [−0.3, 0]T x3(0) = [0, 1]T ζ1(0) =
0.9, ζ2(0) = 0.1, ζ3(0) = 0.35 and others are set to
zero.

Suppose that the possible communication graphs
among the agents G = {G1,G2}, which are visual-
ized by Fig. 1, where nodes F1, F2 and F3 represent
the follower agents and node L represents the leader
agent. The graphs switch at t = 30(s) according to
G1 → G2.

By applying the proposed adaptive neural con-
trol approach for nonlinear multi-agent system with
unknown control directions (67), the simulation results
are plotted in Figs. 2, 3, 4, 5, 6, and 7. Figure 2 shows the
trajectories of followers’ outputs and leader’s output.
An enlarged portion of tracking trajectories is given in
Fig. 3. Figure 4 indicates boundedness and convergence
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Fig. 1 Communications topologies
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Fig. 2 Trajectory tracking result
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Fig. 3 An enlarged position of tracking trajectories
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Fig. 4 Time evolution of consensus tracking errors

of the trajectories of consensus errors in both transient
and steady states. Figure 5 demonstrates that the tra-
jectories of adaptive parameters are bounded. Figure 6
shows Nussbaum function signals and Fig. 7 exhibits
the other states of the follower agents. From simulation
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Fig. 5 Time evolution of adaptive parameters
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Fig. 6 Time evolution of Nussbaum functions signals
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Fig. 7 Time evolution of other states of the follower agents

results which are shown in Figs. 2, 3, 4, 5, 6, and 7,
one concludes that the proposed distributed adaptive
neural control is able to guarantee that all of signals in
the closed-loop network system remain bounded and it
has a good tracking performance in spite of the unstruc-
tureduncertainties, non-affine follower agents, and lack
of prior knowledge of the control gain sign.

4.2 An application example

Consider nonlinear multi-agent systems consisting of
four followers and one leader. Each follower is a model
of ship steering with unknown control direction and its
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Fig. 8 Communication topology
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Fig. 9 Trajectory tracking result

dynamics is given by [39]:
⎧
⎨

⎩

ẋi,1 = xi,2 + fi,1(xi,1),
ẋi,2 = biui + fi,2(xi,2),
yi = xi,1,

(68)

where i = 1, 2, 3, 4. Hereafter, we assume that mod-
els of all ships steering are identical for the simplic-
ity. Unknown functions in the model of ships steering
are fi,1(xi,1) = 0, fi,2(xi,2) = − 1

21 xi,2 − 0.3
21 x

3
i,2 and

unknown control gains are bi = 0.23
21 .

In simulation, the design parameters are chosen as
c1,1 = 40, c1,2 = 10, c2,1 = 100, c2,2 = 40, c3,1 =
100, c3,2 = 30, c4,1 = 100, c4,2 = 10, �1,2 =
�2,2 = �3,2 = �4,2 = 100, κ1 = κ2 = κ3 = κ4 =
1000, r1,1 = r1,2 = r2,1 = r2,2 = r3,1 = r3,2 =
r4,1 = r4,2 = 5, γ1 = γ2 = γ3 = γ4 = 1, σ1 =
σ2 = σ3 = σ4 = 0.1.

The leader output is assumed to be xL = sin(t) +
0.5 sin(0.5t). The initial states of the four ships steer-
ing and distributed controller are adopted as x1(0) =
[1,−2]T , x2(0) = [2, 0]T , x3(0) = [2, 1]T , x3(0) =
[0, 3]T , ζ1(0)=0.9, ζ2(0) = 0.1, ζ3(0)=0.9, ζ4(0) =
0.4 and others are set to zero.

Let us consider the communication topology shown
in Fig. 8, where the leader information is only available
for ship steering 1. The simulation results are depicted
in Figs. 9, 10, 11, 12, and 13. The corresponding tra-
jectory tracking is plotted in Fig. 9. It can be seen that,
indeed, our control approach solves trajectory track-
ing problem. It follows from Figs. 10 and 11 that both
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Fig. 10 Time evolution of distributed tracking errors
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Fig. 11 Time evolution of consensus tracking errors
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Fig. 12 Time evolution of adaptive parameters

of the distributed and consensus tracking errors are
bounded, which illustrates the theoretical results. Fur-
thermore, the adaptive parameters shown in Fig. 12 are
also bounded. Figure 13 displays the other states of
ships steering during synchronized tracking.

Remark 5 It should be emphasized that the number
of adaptive parameters is dramatically reduced in the
proposed controller and it is equal to the number
of follower agents. However, by defining W ∗

i,k =
{∥
∥
∥θ∗

i,k

∥
∥
∥
2 ; i = 1, . . . , N , k = 1, . . . , ni

}

and choosing

Lyapunov function as

V = ∑N
i=1

∑ni
k=1

{
1
2 z

2
i,k + γi,k

2ri,k
W̃ 2

i,k

}
, the control
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Fig. 13 Time evolution of other states of the ships steering

inputs and adaptive laws can be obtained as follows
for i = 1, . . . , N

αi,k = −ci,k zi,k − 1

2ri,k
Ŵi,k

∥
∥ϕi,k

∥
∥2 zi,k + π̇i,k,

k = 1, . . . , ni − 1, (69)

ui = N (ζi )(ci,ni zi,ni

+ 1

2ri,ni
Ŵi,ni

∥
∥ϕi,k

∥
∥2 zi,ni − π̇i,ni ), (70)

˙̂Wi,1 = γi,1

2ri,1
(di + bi )z

2
i,1

∥
∥ϕi,1

∥
∥2 − γi,1σi,1Ŵi,1,

(71)
˙̂Wi,k = γi,k

2ri,k
z2i,k

∥
∥ϕi,k

∥
∥2

−γi,kσi,k Ŵi,k, k = 2, . . . , ni . (72)

where π̇i,1 denotes 0.

4.3 A quantitative comparison

In order to present a quantitative comparison of the
control performance among the proposed controller in
Theorem 1, the proposed controller in Remark 5 and
the modified controller [25], Integral of Absolute Con-
sensus Error (IACE), Integral of Absolute Distributed
Error (IADE), and Maximum Absolute Value of Con-
sensus Error (MAVCE) are employed as the perfor-
mance indexes. These control approaches are applied
to simulate uncertain nonlinear multi-agent systems
whose model is given in the numerical example. All
of design parameters and initial conditions are chosen
similar to the numerical example. Simulation results
are depicted in Figs. 14, 15, and 16. Furthermore, the
results of quantitative comparison of the mentioned
controllers are shown in Table 1.

From Figs. 14, 15 and 16 and Table 1, it can be con-
cluded that the proposed control method can achieve
a better tracking performance than the proposed con-
troller in Remark 5 and modified controller in [25].
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Fig. 14 Comparison of consensus tracking errors (e11)
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Fig. 15 Comparison of consensus tracking errors (e12)
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Fig. 16 Comparison of consensus tracking errors (e13)

In addition, our proposed control method is indepen-
dent of any prior knowledge of NNs and the number of
adaptive parameters is dramatically reduced.

Remark 6 Form (64), we have

|yi | ≤ ‖y‖ ≤
√
2c0

σ(H)
+ ΩL , i = 1, . . . , N , (73)

Furthermore, from (58)–(61) and Assumption 3, it can
be achieved that
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∣
∣zi,k

∣
∣ ≤ √

2c0, k = 1, . . . , ni ,∣
∣vi,k

∣
∣ ≤ √

2c0, k = 1, . . . , ni ,∣
∣
∣Ŵi

∣
∣
∣ ≤

√∑N
i=1 2γi c0 + ∣

∣W ∗
i

∣
∣ , i = 1, . . . , N ,

|ẋL | ≤ β.

(74)
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Table 1 Quantitative
comparative study of the
proposed controllers in
Remark 5, reference [25],
and controller in this paper

Performance index Proposed
controller

Proposed controller
in Remark 5

Modified
controller [25]

IACE11 0.56 1.27 2.95

IACE12 0.9 1.59 2.18

IACE13 1 2.01 2.96

IADE11 0.26 0.86 1.16

IADE12 0.31 0.37 0.96

IADE13 0.29 0.59 1.12

MAVCE11 0.021 0.078 0.127

MAVCE12 0.03 0.073 0.14

MAVCE13 0.037 0.1 0.134

Number of adaptive laws 3 6 60

Need for NN Knowledge No Yes Yes

Then, from (10), (11) and (13), we have
∣
∣xi,2

∣
∣ = ∣

∣zi,2 + πi,2
∣
∣ ≤ ∣

∣zi,2
∣
∣ + ∣

∣vi,2
∣
∣ + ∣

∣ai,1
∣
∣

≤ ∣
∣zi,2

∣
∣ + ∣

∣vi,2
∣
∣ +

∣
∣
∣
∣

ci,1
di + bi

zi,1

∣
∣
∣
∣ +

∣
∣
∣
∣

1

2ri,1
Ŵi zi,1

∣
∣
∣
∣

≤ √
2c0 + √

2c0 + ci,1
di + bi

√
2c0

+
√∑N

i=1 γi

ri,1
c0 + 1

2ri,1

∣
∣W ∗

i

∣
∣
√
2c0, (75)

and
∣
∣xi,k

∣
∣ = ∣

∣zi,k + πi,k
∣
∣ ≤ ∣

∣zi,k
∣
∣ + ∣

∣vi,k
∣
∣ + ∣

∣ai,k−1
∣
∣

≤ ∣
∣zi,k

∣
∣ + ∣

∣vi,k
∣
∣ + ∣

∣ci,k−1zi,k−1
∣
∣ + ∣

∣π̇i,k−1
∣
∣

+
∣
∣
∣
∣

1

2ri ·k−1
Ŵi zi,k−1

∣
∣
∣
∣ ,

≤ ∣
∣zi,k

∣
∣ + ∣

∣vi,k
∣
∣ + ∣

∣ci,k−1zi,k−1
∣
∣ +

∣
∣
∣
∣
vi,k−1

�i,k−1

∣
∣
∣
∣

+
∣
∣
∣
∣

1

2ri ·k−1
Ŵi zi,k−1

∣
∣
∣
∣ ,

≤ √
2c0 + √

2c0 + ci,k−1

√
2c0

+
√
2c0

�i,k−1
+

√∑N
i=1 γi

ri,k−1
c0

+ 1

2ri,k−1

∣
∣W ∗

i

∣
∣
√
2c0, (76)

for k = 3, . . . , ni .

Therefore, the compact approximation region Ωi Z
of the i th FBFNN inputs is described as follows:

Ωi Z =
{
[zi,1, . . . , zi,ni , xi,1, . . . , xi,ni , x j,1, x j,2, ẋL ]T

∣
∣
∣

∣
∣zi,k

∣
∣ ≤ √

2c0,

k = 1, . . . , ni ,
∣
∣x j,1

∣
∣ = ∣

∣xi,1
∣
∣ ≤

√
2c0

σ(H)
+ ΩL ,

∣
∣x j,2

∣
∣ = ∣

∣xi,2
∣
∣ ≤ √

2c0 + √
2c0 + ci,1

di + bi

√
2c0

+
√∑N

i=1 γi

ri,1
c0 + 1

2ri,1

∣
∣W ∗

i

∣
∣
√
2c0,

∣
∣xi,k

∣
∣ ≤ √

2c0 + √
2c0 + ci,k−1

√
2c0 +

√
2c0

�i,k−1

+
√

γi

ri,k−1
c0

+ 1

2ri,k−1

∣
∣W ∗

i

∣
∣
√
2c0, k=3, . . . , ni , |ẋL |≤β

}

.

(77)

where j ∈ Ni .

Remark 7 In [37] and [38], two adaptive neural con-
trol schemes were presented for SISO non-affine
nonlinear systems with unknown control direction.
In [29], an adaptive control approach was proposed
for MIMO non-affine nonlinear systems. However,
obtained results in [29,37] and [38] are only valu-
able for individual non-affine nonlinear systems.On the
other hand, [33] studied an adaptive consensus control
formulti-agent systemswith unknown identical control
directions, and [34] proposed a cooperative control for
multi-agent systems with unknown nonidentical high-
frequency-gain signs. Nevertheless, considered multi-
agent systems in [33] and [34] are described by double-
integrator and single-integrator models, respectively.
Recently, an adaptive consensus was developed for
high-order multi-agent systems with unknown non-
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identical control directions in [35]. However, control
approaches of [33–35] require follower agents’ dynam-
ics satisfying matching conditions, uncertain nonlin-
ear functions being linearly parameterized and con-
trol inputs being in affine form. Therefore, the con-
trol approaches in [29,33–35,37] and [38] cannot be
applied to multi-agent systems (4).

5 Conclusions

This paper has proposed a distributed adaptive neural
control for a class of uncertain non-affine nonlin-
ear multi-agent systems with unknown control direc-
tions. Via mean-value theorem, non-affine follower
agents have been transformed to the structures that
control design becomes feasible. Then, RBFNNs have
been applied to approximate uncertain nonlinear func-
tions. Nussbaum gain function technique has been
employed to handle the difficulty from unknown con-
trol directions. Besides, the explosion of complexity
and the dimensionality curse have been removed in
the designed controller by DSC and MLP approaches,
respectively. The proposed distributed controller is able
to guarantee that all of signals in the closed-loop net-
work system remain bounded.

It is worthwhile to mention that this paper aims to
make the first step for studying the distributed con-
trol design for strict-feedbackmulti-agent systemswith
unknown control direction. Owing to certain technical
obstacles, there are still a number of open problems for
future researches. Some of them are listed as follows
for example:

1. it isworthy to extend the distributed scheme to other
types of multi-agent systems, such as discrete-time
and stochastic systems;

2. the consideration of the containment control design
with unknown control direction problem is sug-
gested;

3. utilizing heuristic Nussbaum gain type functions is
of interest to deal with unknown control direction
problem;

4. some other interesting problems include investigat-
ing the effects of certain communication network
factors, such as stochastic noise, quantization, time
delay, and nonlinearity;

5. the distributed output-feedback control design and
distributed control with partial tracking errors con-

strained for multi-agent systems are also important
issues to be addressed.
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