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Abstract This paper investigates an adaptive trajec-
tory tracking control approach for a model-scaled heli-
copter with rotation matrix describing its attitude kine-
matics. The helicopter is decomposed into a cascaded
form with some unmodeled dynamics, so that a hierar-
chical strategy is applicable. First, in the outer posi-
tion loop, based on an integral-quadratic Lyapunov
function, a position control law with hyperbolic tan-
gent functions is designed to accomplish the position
tracking. Then, a command rotation matrix is extracted
with the minimum rotation principle. Finally, in the
inner attitude loop, based on a barrier-quadratic Lya-
punov function, a singularity-free attitude control law is
designed to realize the attitude tracking. In addition, the
bounds of the unmodeled dynamics are estimated and
compensated with adaptive algorithms. Simulations on
amodel-scaled helicopter confirm the proposed control
approach.
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1 Introduction

In the last decades, helicopters, especially model-
scaled ones, have attracted more and more attention.
With capacities of vertically taking off and landing,
hovering and low-speed flight, they have been widely
employed in reconnaissance, surveillance, agriculture
and other fields. However, due to their under-actuated
nature, complex aerodynamics and strong coupling,
there are still difficulties for researches to design high-
performance, robust control approaches for helicopters.

Up to now, there are numerous available nonlin-
ear trajectory tracking approaches for VTOL-UAVs,
such as backstepping [1,2], nonlinear dynamic inver-
sion [3,4], model predictive control (MPC) [5] and H∞
[6].Among them, hierarchical control approach ismore
commonly used, which is of a two-stage architecture
consisting of a “low-level” fast inner loop and a “high-
level” slow outer loop [7]. Zuo and Ru [8], Zuo and
Ding [9],Cabecinhas et al. [10] adopted thehierarchical
control approach to achieve the trajectory tracking for
quad-rotors under external disturbances. Abdessameud
and Sharifi [11], Abdessameud and Tayebi [12] accom-
plished the trajectory and target tracking for VTOL-
UAVs using the hierarchical control approach with-
out the linear velocity. However, the above control
approaches are based on the model with the Euler
angle or unit quaternion describing the attitude kine-
matics. Despite the fact that Euler angle is a minimal
representation, it is defined locally and exhibits singu-
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larity for aggressive maneuvers [13]. For the quater-
nion, unwinding phenomenon, where the sign ambigu-
ity leads to unnecessary large-angle rotation, may lead
to discontinuity [14]. Instead, the rotation matrix has
received much interest [15], in that it is available for
a wider scope and capable of avoiding ambiguity and
discontinuity.

Compared with other VTOL-UAVs, model-scaled
helicopters are of more model uncertainty, which may
affect the tracking performance seriously. In [1,2,16],
neural network, nonlinear damping and disturbance
observer were, respectively, employed to estimate and
compensate unmodeled dynamics; however, they have
their problems as well. Large number of nodes of the
neural network may increase the algorithm complexity
[8]; the nonlinear damping may result in a large control
input [17]; and the disturbance observer requires large
observer parameters [18].

In this paper, an adaptive hierarchical control
approach is proposed for the model-scaled helicopter
to achieve the trajectory tracking. The attitude kine-
matics of the helicopter is represented with the rota-
tion matrix proposed in [19]. The position and attitude
loop controls are designed separately. In the position
loop, based on an integral-quadratic Lyapunov func-
tion, a position loop control with hyperbolic tangent
functions is designed. As an intermediate step, a com-
mand rotation matrix is extracted. In the attitude loop,
to avoid singularity proposed in [19], an attitude loop
control is designed based on a barrier-quadratic Lya-
punov function [20]. The contributions of this paper
are as follows:

(i) the minimum rotation principle is used to extract
a command attitude, and criteria of control para-
meters are built to avoid singularity during the
extraction;

(ii) with the attitude represented by the rotation
matrix, a singularity-free attitude control is devel-
oped;

(iii) the upper bounds of the unmodeled dynamics are
estimated with adaptive algorithms.

The configuration of this paper is arranged as fol-
lows: Sect. 2 provides the problem statements, Sect. 3
presents the main control approach design, Sect. 4 car-
ries out some simulations on amodel-scaled helicopter,
and Sect. 5 draws conclusions.

2 Problem statements

2.1 Preliminaries

In the following, I3 ∈ R
3×3 denotes a 3 × 3 identity

matrix, ‖ · ‖ denotes the Euclidean norm of a vector,
tr(·) denotes the trace of a square matrix, λ̄(·) and λ(·)
denote the maximum and minimum eigenvalues of a
square matrix. For x = [x1, x2, x3]T ∈ R

3, superscript
× indicates the transformation from x to a 3× 3 skew-
symmetric matrix, namely

x× =
⎡
⎣

0 −x3 x2
x3 0 −x1

−x2 x1 0

⎤
⎦ ,

and superscript ∨ denotes the inverse operation of ×.
For x ∈ R, define the hyperbolic tangent function

tanh(x) = ex − e−x

ex + e−x
,

which is differential and satisfies −1 < tanh(x) < 1.
For x = [x1, . . . , xn]T ∈ R

n , define the hyperbolic
tangent function vector

tanh(x) = [tanh(x1), . . . , tanh(xn)]T ,

the hyperbolic tangent function matrix

Tanh(x) = diag(tanh(x1), . . . , tanh(xn)),

and the integral function∫ x

0
tanh(χ)dχ =

∫ x1

0
tanh(χ)dχ

+ · · · +
∫ xn

0
tanh(χ)dχ.

Property 1 ([21]) Given an interval {x ∈ R
n|‖x‖ <

x̄, x̄ > 0}, there always exists a constant χ(x̄) satisfy-
ing 0 < χ < 1, such that χ‖x‖ ≤ ‖tanh(x)‖ ≤ ‖x‖.
Lemma 1 ([22])Given a constant ε > 0, the following
inequality holds for all x ∈ R

0 ≤ |x | − x tanh
( x

ε

)
≤ kqε, (1)

where kq = 0.2758.

Lemma 2 ([23]) The following inequality holds for all
x ∈ {x ∈ R

n|‖x‖ < k, k > 0}

ln
k2

k2 − ‖x‖2 ≤ ‖x‖2
k2 − ‖x‖2 . (2)
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2.2 Helicopter model

The helicopter model is established in two frames:
the earth frame E = {oxyz} and the body frame
B = {obxb ybzb}, the definitions of which are in accor-
dancewith [1]. The frame E serves as the inertial frame,
and the helicopter is regarded as a 6-dof rigid body.
According to [1], the helicopter model is

ṗ = v, (3)

v̇ = −ge3 + 1

m
R f , (4)

Ṙ = Rω×, (5)

Jω̇ = −ω× Jω + τ , (6)

where p = [px , py, pz]T and v = [vx , vy, vz]T are
the position and velocity of the helicopter c.g. (center
of gravity) in the frame E, m is the mass, g is the grav-
itational acceleration, e3 = [0, 0, 1]T , R ∈ SO(3) =
{R ∈ R

3×3| det R = 1, RT R = RRT = I3} is
the rotation matrix from the frame B to the frame
E, ω = [ωx , ωy, ωz]T is the angular velocity of the
helicopter in the frame B, and J = diag(Jx , Jy, Jz) is
the inertial matrix.

During the low-speed flight, the applied force f and
torque τ are mainly generated by the main and tail
rotors, which, according to [24], are derived as

f =
⎡
⎣

Tmsas
−Tmsbs + Tt
Tmcbscas

⎤
⎦ ,

τ =
⎡
⎣

Tmhmsbs + Lbbs + Ttht + τmsas
Tmlm + Tmhmsas + Maas + τt − τmsbs

−Tmlmsbs − Ttlt + τmcascbs

⎤
⎦ ,

where c(·) = cos(·), s(·) = sin(·), subscripts m and t
denote the main and tail rotors, Ti and τi (i = m or t)
are the thrust and anti-torque generated by the main or
tail rotor, Lb and Ma are the stiffness coefficients of the
main rotor, hi and li (i = m or t) are the horizontal and
vertical positions of the main or tail rotor with respect
to the helicopter c.g., as and bs are the longitudinal
and lateral flapping angles of the main rotor. Further,
τi (i = m or t) can be determined by

τi = Ci |Ti |1.5 + Di , (7)

where Ci and Di are the aerodynamic constants.

2.3 Helicopter model for control approach design

In view of strong coupling, it is necessary to decom-
pose the applied force and torque for ease of the con-
trol approach design. Specifically, according to [25],
the flapping angles are fairly small, so that the small
angle approximation is feasible, namely cos(·) ≈ 1
and sin(·) ≈ (·); moveover, Tmas, Tmbs and Tt con-
tribute little to the applied force f and τt exerts little to
the applied torque τ . Thus, we can decompose f and
τ as

f = Tme3 + fΔ, (8)

τ = τc + Δτ = τAM + τB + Δτ , (9)

where

τA =
⎡
⎣

ht τm Tmhm + Lb

0 Tmhm + Ma −τm
−lt 0 −Tmlm

⎤
⎦ ,

M =
⎡
⎣
Tt
as
bs

⎤
⎦ , τB =

⎡
⎣

0
Tmlm
τm

⎤
⎦ ,

fΔ =
⎡
⎣

Tmsas
−Tmsbs + Tt
Tm(cascbs − 1)

⎤
⎦ ,

Δτ =
⎡
⎣

τm(sas − as) + Tmhm(sbs − bs)
τt − τm(sbs − bs) + Tmhm(sas − as)
τm(cascbs − 1) − Tmlm(sbs − bs)

⎤
⎦ .

Substituting (8) into (4) and (9) into (6) yields

v̇ = −ge3 + Tm
m

Re3 + Δ f , (10)

Jω̇ = −ω× Jω + τc + Δτ , (11)

where Δ f = 1
m RT fΔ.

Assumption 1 Δτ and Δ f are bounded and satisfy

|Δ f i | ≤ σi , |Δτ i | ≤ ςi , i = 1, 2, 3, (12)

where σ = [σ1, σ2, σ3]T and ς = [ς1, ς2, ς3]T are
two unknown upper bound vectors.

Remark 1 Assumption 1 is reasonable, since the
unmodeled dynamics Δ f and Δτ , usually restricted
by physical properties of a typical helicopter, are
extremely small [1]. In [26,27], they are disregarded
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Fig. 1 Block diagram of the proposed control approach

directly. In this paper, we will estimate and compen-
sate their upper bounds to improve the tracking perfor-
mance.

3 Control approach design

Given a smooth reference trajectory pc = [pcx ,
pcy, pcz]T with its derivatives ṗc and p̈c, the control
objective is to design control inputs Tm, Tt , as and bs
for the model-scaled helicopter, so that it can track pc.
Since the decomposed helicopter model is in a cas-
cade structure, a hierarchical strategy is adopted, so
that the position and attitude loop controls are designed
separately. The block diagram of the control scheme
is displayed in Fig. 1. First, in the position loop,
Tm
m Re3 is designed to achieve the position tracking
to pc. Then, the main rotor thrust Tm and the com-
mand rotation matrix Rc are derived from

Tm
m Re3; this

step is the common denominator of hierarchical nonlin-
ear controllers [7]. Finally, in the attitude loop, Tt , as
and bs are designed to realize the attitude tracking to
Rc.

3.1 Position loop control design

For ease of analysis, denote U = [Ux ,Uy,Uz]T = Tm
m Re3.

Define the position and velocity tracking errors as pe =
[pex , pey, pez]T = p− pc and ve = [vex , vey, vez]T =
v − ṗc. From (3) and (10), the position error dynamics
are derived as

ṗe = ve, (13a)

v̇e = −ge3 + U − p̈c + Δ f , (13b)

Further, define the estimation and estimation error of σ
as σ̂ and σ̃ = σ̂ − σ . Hyperbolic tangent functions are
introduced here to establish the position loop control:

U = g e3 + p̈c − αptanh(kp pe + l pve)

− βptanh(l pve) − Tanh
(

ϑ f

ε f

)
σ̂ ,

(14)

where αp, βp, kp, l p, ε f > 0, ϑ f =
αpl ptanh(kp pe + l pve)+βpl ptanh(l pve)+ kpve and
σ̂ = [σ̂x , σ̂y, σ̂z]T is obtained with the adaptive law:

˙̂σi =
{

γ f tan h
(

ϑ f i
ε f

)
ϑ f i , |σ̂i |<κ f i ,

0, |σ̂i | = κ f i

, i= x, y, z,

(15)

with γ f > 0, and κ f = [κ f x , κ f y, κ f z]T as an estima-
tion upper bound.

Based on an integral-quadratic Lyapunov function,
the stability of the position loop is acquired:

Theorem 1 Consider the position error dynamics (13)
withΔ f satisfying Assumption 1. The control (14)with
the adaptive law (15) can guarantee that

(i) pe and ve are bounded and ultimately converge to
a neighborhood of the origin;

(ii) |σ̂i | ≤ κ f i (i = x, y, z) holds if |σ̂i (0)| ≤ κ f i .

Proof (i) Denote μ1 = kp pe + l pve, μ2 = l pve and
μ = [μ1

T ,μ2
T ]T . Designate a convergent set Zμ1 =

{μ ∈ R
6|‖μ‖ < μ̄, μ̄ > 0}. From Property 1, there

exists a constant χ(μ̄) ∈ (0, 1) such that χ‖μ‖ ≤
‖tanh(μ)‖.

Substituting the control (14) into (13) yields

ṗe = ve, (16a)

v̇e = −αptanh(μ1) − βptanh(μ2)

−Tanh
(

ϑ f

ε f

)
σ̂ + Δ f . (16b)
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Assign the following integral-quadratic Lyapunov
function candidate

L p = αp

∫ μ1

0
tanh(ξ)dξ + βp

∫ μ2

0
tanh(ξ)dξ

+kp
2

vTe ve + 1

2γ f
σ̃ T

f σ̃ f > 0, (17)

and its derivative along (16) satisfies

L̇ p = αpkptanhT (μ1) ṗe + ϑT
f v̇e + 1

γ f
σ̃ T

f
˙̂σ f

= αpkptanhT (μ1)ve + ϑT
f

[−αptanh(μ1)

−βptanh(μ2) − Tanh
(

ϑ f

ε f

)
σ̂ + Δ f

]

+ 1

γ f
σ̃ T

f
˙̂σ f .

According to Assumption 1 and Lemma 1,

ϑT
f Δ f ≤

∑
i=x,y,z

|ϑ f i |σi

≤
∑

i=x,y,z

[
ϑ f i tanh

(
ϑ f i

ε f

)
+ kqε f

]
σi

= ϑT
fTanh

(
ϑ f

ε f

)
σ + kqε f

∑
i=x,y,z

σi .

Then, L̇ p satisfies

L̇ p ≤ −l p[αptanh(μ1) + βptanh(μ2)]T [αptanh(μ1)

+βptanh(μ2)] − kpβpv
T
e tanh(μ2)

+ σ̃ T
[
1

γ f

˙̂σ − Tanh
(

ϑ f

ε f

)
ϑ f

]
+ d f

where d f = kqε f
∑

i=x,y,z σi . According to [21], (15)

can guarantee σ̃ T [ 1
γ f

˙̂σ − Tanh(
ϑ f
ε f

)ϑ f ] ≤ 0. Substi-
tuting (15) into the above inequality yields

L̇ p ≤ −l p[αptanh(μ1)+βptanh(μ2)]T [αptanh(μ1)

+ βptanh(μ2)]−kpβpv
T
e tanh(μ2)+d f

= − tanh(μ)TΘtanh(μ) + d f ,

where

Θ =
[

α2
pl p I3 αpβpl p I3

αpβpl p I3
(
β2
pl p + kpβp

l p

)
I3

]
.

Since there exists an invertible matrix

T =
[
I3 −βp

αp
I3

0 I3

]
,

such that

T TΘT =
[

α2
pl p I3 0

0 kpβp
l p

I3

]
,

L̇ p satisfies

L̇ p ≤ −χ2‖μ‖2 + d f (18)

where χ2 = min(α2
pl pχ

2,
kpβp
l p

χ2) > 0. Thus, μ is
bounded and ultimately converges to the set:

Zμ2 =
{

μ ∈ R
6|‖μ‖ <

√
d f

χ2

}
. (19)

Moreover, in order for μ ∈ Zμ1, it is required that
sup(d f ) ≤ χ2μ̄

2. With a sufficiently small ε f , d f

can be made arbitrarily small, which implies that an
appropriate ε f can guarantee μ ultimately converging
to Zμ2 ⊆ Zμ1. Finally, it follows the definition of μ

that pe and ve are bounded and ultimately converge

to the sets Zp = { pe ∈ R
3|‖ pe‖ < 1

kp

√
d f
χ2

} and

Zv = {ve ∈ R
3|‖ve‖ < 1

l p

√
d f
χ2

}, respectively.
(ii) In terms of |σ̂i (0)| ≤ κ f i (i = x, y, z), assign a

Lyapunov function candidate Lσ = 1
2 σ̂

2
i .

(a) If |σ̂i | < κ f i , the conclusion is obvious.
(b) If |σ̂i | = κ f i , then L̇σ = 0, so that σ̂i is invariant.

Thus, |σ̂i | ≤ κ f i (i = x, y, z) is warranted.

Due to ‖Re3‖ = 1, we derive the main rotor thrust:

Tm = m‖U‖. (20)

3.2 Attitude extraction

In terms of the hierarchical control strategy, extract-
ing the command attitude from Tm

m Re3 is inevitable,
whatever it is represented by the Euler angle [8] or unit
quaternion [11,12]. In this subsection, the minimum
rotation principle is employed to extract the command
rotation matrix. Define V = Tm

m e3 = [0, 0, Tm
m ]T ,

which satisfies RV = U and ‖U‖ = ‖V‖.
Lemma 3 Consider the position loop control (14). If
U /∈ L = {U ∈ R

3 | U = [0, 0,Uz]T ,Uz ≤ 0}, the
command rotation matrix Rc can be extracted as
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Rc = m

Tm

⎡
⎢⎢⎣
Uz + mU2

y
Tm+mUz

− mUxUy
Tm+mUz

Ux

− mUxUy
Tm+mUz

Uz + mU2
x

Tm+mUz
Uy

−Ux −Uy Uz

⎤
⎥⎥⎦ . (21)

Proof In view of the minimum rotation principle, the
principle rotation axis k̂c is orthogonal to the plane
composed by U and V . Thus, we have

{
UT V = ‖U‖‖V‖ cosφc,

U×V = ‖U‖‖V‖ sin φc k̂c,
(22)

where φc is the rotation angle. If U /∈ L, it follows
‖U‖ = ‖V‖ that

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

cosφc = UT V
‖U‖‖V‖ = mUz

Tm
,

sin φc = √
1 − cos2 φc =

√
T 2
m−m2U2

z
Tm

,

k̂c = U×V
‖U‖‖V‖ sin φc

= m√
T 2
m−m2U2

z

⎡
⎣

Uy

−Ux

0

⎤
⎦ .

(23)

Based on the Euler’s formula [28], we have

Rc = cosφc I3 + (1 − cosφc)k̂ck̂
T
c − sin φc k̂

×
c .

(24)

Substituting (23) into (24) and conducting some ana-
lytical computations, we can derive (21).

Remark 2 In order for U /∈ L, the reference accelera-
tion p̈c = [ p̈cx , p̈cy, p̈cz]T , the control parameters αp

and βp, and the upper bound κ f are supposed to satisfy
one of the following conditions:

(a) αp + βp + κ f x < | p̈cx (t)|, ∀t ≥ 0;
(b) αp + βp + κ f y < | p̈cy(t)|, ∀t ≥ 0;
(c) αp +βp +κ f z < g−δ and | p̈cz(t)| < δ, ∀t ≥ 0.

During the low-speedflight, p̈c is small, andConditions
(a) and (b) constrain the parameter choice greatly. Con-
dition (c) is the criterion for choosing the parameters.

3.3 Attitude loop control design

To proceed, the command angular velocity ωc and its
derivative ω̇c are required, which are derived in Appen-
dix A. Determining ωc and ω̇c needs the knowledge of
U̇ and Ü , which are intricate to be acquiredwith analyt-
ical calculations. Alternatively, a command filter [29]
is applied to approximate them.

Define the attitude and angular velocity tracking
errors as Re = RT

c R ∈ SO(3) and ωe = ω − RT
e ωc.

Re = I3 means R = Rc, namely the exact attitude
tracking. Due to dimensional inconsistency, it is hard to
design an attitude loop controlwith Re directly. Instead,
a new attitude error representation [19] is introduced:

eR = 1

2
√
1 + tr(Re)

(Re − RT
e )∨. (25)

With tr(Re) �= −1, eR = 0 is equivalent to Re = I3.
Then, the attitude error dynamics satisfy

ėR = Ωωe, (26a)

Jω̇e = −ω× Jω + τc + Δτ

+ Jωe
×RT

e ωc − J RT
e ω̇c, (26b)

where Ω = 1
2
√
1+tr(Re)

(tr(Re)I3 − RT
e + 2eReTR) is

nonsingular when tr(Re) �= −1 or Rc �= −R. Accord-
ing to [30], tr(Re) �= −1 is equivalent to ‖eR‖ < 1.

Let ω̃ = [ω̃x , ω̃y, ω̃z]T = ωe − αR, where αR is a
virtual control, determined by

αR = −kRΩ−1eR, kR > 0. (27)

Further, define the estimation and estimation error of ς
as ς̂ and ς̃ = ς̂ − ς . Design the attitude loop control:

τc = −kωω̃ + ω× Jω − Jωe
×RT

e ωc + J RT
e ω̇c

+J α̇R − ΩT eR
1 − ‖eR‖2 − Tanh

(
ω̃

ετ

)
ς̂ (28)

where kω, ετ > 0, and ς̂ = [ς̂x , ς̂y, ς̂z]T is obtained
with the adaptive law:

˙̂ςi = γτ1

[
tanh

(
ω̃i

ετ

)
ω̃i − γτ2ς̂i

]
, i = x, y, z,

(29)

with γτ1, γτ2 > 0.
Based on a barrier-quadratic Lyapunov function, the

stability of the attitude loop is acquired:

Theorem 2 Consider the attitude error dynamics (26)
with Δτ satisfying Assumption 1. If the initial rotation
matrix satisfies R(0) �= −Rc(0), then the control (28)
with the adaptive law (29) can guarantee that

(i) eR always remains in ZR1 = {eR ∈ R
3|‖eR‖ <

1};
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(ii) eR and ω̃ are bounded and ultimately converge to
a neighborhood of the origin.

Proof Assign the following barrier-quadratic Lya-
punov function candidate

La = 1

2
ln

1

1 − ‖eR‖2 + 1

2
ω̃T Jω̃ + 1

2γτ1
ς̃T ς̃ , (30)

which, according to Lemma 2, satisfies

La ≤ 1

2

‖eR‖2
1 − ‖eR‖2 + 1

2
ω̃T Jω̃ + 1

2γτ1
ς̃T ς̃ . (31)

Differentiating La along (26) yields

L̇a = eTRΩ

1 − ‖eR‖2 ėR + ω̃T J ˙̃ω + 1

γτ1
ς̃T ˙̂ς

= eTRΩ

1 − ‖eR‖2 (αR + ω̃) + ω̃T (−ω× Jω

+Jωe
×RT

e ωc − J RT
e ω̇c

+τc + Δτ − J α̇R) + 1

γτ1
ς̃T ˙̂ς . (32)

Substituting (27) into (32) yields

L̇a = −kR
eTReR

1 − ‖eR‖2 + ω̃T (−ω× Jω

+τc + Jωe
×RT

e ωc − J RT
e ω̇c

−J α̇R + Δτ + ΩT eR

1 − ‖eR‖2
)

+ 1

γτ1
ς̃T ˙̂ς .

According to Assumption 1 and Lemma 1,

ω̃TΔτ ≤
∑

i=x,y,z

|ω̃i |ςi

≤
∑

i=x,y,z

[
ω̃i tanh

(
ω̃i

ετ

)
+ kqετ

]
ςi

= ω̃TTanh
(

ω̃

ετ

)
ς + kqετ

∑
i=x,y,z

ςi .

Then, L̇a satisfies

L̇a ≤ −kR
eTReR

1 − ‖eR‖2 + ς̃T
[

1

γτ1

˙̂ς − Tanh
(

ω̃

ετ

)
ω̃

]

+ ω̃T
[
−ω× Jω + τc + Jωe

×RT
e ωc − J RT

e ω̇c

− J α̇R + ΩT eR
1−‖eR‖2 +Tanh

(
ω̃

ετ

)
ς̂

]
+ d̄τ ,

(33)

where d̄τ = kqετ

∑
i=x,y,z ςi . Substituting (28) and

(29) into (33) yields

L̇a ≤ −kR
eTReR

1 − ‖eR‖2 − kωω̃T ω̃ − γτ2ς̃
T ς̂ + d̄τ

≤ −kR
eTReR

1 − ‖eR‖2 − kωω̃T ω̃ − γτ2

2
ς̂
T
ς̂ + dτ

≤ −kτ La + dτ , (34)

where kτ = min(2kR, 2 kω

λ̄(J)
,

γτ1
γτ2

) and dτ = d̄τ +
γτ2
2 ςT ς .
(i) R(0) �= −Rc(0)means‖eR(0)‖ < 1. Integrating

both sides of (34) over [0, t] gives

0 ≤ La(t) ≤
(
La(0)− dτ

kτ

)
e−kτ t+dτ

kτ

≤ La(0) + dτ

kτ

,

(35)

which implies that La is bounded. From (30) and (35),

1

2
ln

1

1 − ‖eR‖2 ≤
(
La(0) − dτ

kτ

)
e−kτ t + dτ

kτ

. (36)

Take exponentials on both sides of (36) and conduct
some computations, then

‖eR(t)‖ ≤
√
1 − e

−2
[
dτ
kτ

+
(
La(0)− dτ

kτ

)
exp(− dτ

kτ
t)
]

< 1,

(37)

which means that as long as ‖eR(0)‖ < 1 or R(0) �=
−Rc(0), eR(t) always remains in ZR1.

(ii) It follows (37) that eR is bounded and ultimately

converges toZR2 =
{
eR ∈ R

3|‖eR‖ ≤
√
1 − e−2 dτ

kτ

}
.

In addition, from (30) and (35), ω̃ is bounded and ulti-

mately converges to Zω = {ω̃ ∈ R
3|‖ω̃‖ ≤

√
2dτ

λ(J)kτ
}.

Remark 3 Given p̈c, ṗc, pc, p(0), v(0) and σ̂ (0),
initial U(0) can be determined by (14). Then initial
Rc(0) can be determined by (21). Thus, the initial rota-
tion matrix R(0) �= −Rc(0) can be chosen easily.

In addition, from (9), we derive M = [Tt , as, bs]T
as

M = τA
−1(τc − τB). (38)
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Fig. 2 3D trajectory tracking

4 Simulations

In order to verify the effectiveness of the proposed
adaptive control approach, some simulations are con-
ducted for a model-scaled helicopter with
MATLAB/Simulink. The parameters of the helicopter
are introduced from [31]. The reference trajectory con-
sists of two parts: First, the helicopter lifts vertically
for the first 10 s; then, it conducts an “8-shaped” curve
fight to the end. Specifically, the reference trajectory is
described as

pc(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

[0, 0, 10(1 − e−0.3t )]Tm if t ≤ 10 s⎡
⎢⎣
20(1 − cos 2π

23 (t − 10)),

10 sin
( 4π
23 (t − 10)

)
,

10(1 − e−0.3t )

⎤
⎥⎦m otherwise

The helicopter is initially still at p(0) = [5, 5, 0]T with
the initial rotation matrix R(0) = I3. Besides, a 40%
mass drop appears at 30 sec.

The attitude loop control parameters are required
to be tuned sufficiently large, so that the helicopter can
reach its command attitude rapidly. In terms of the posi-
tion loop control parameters, they are tuned based on
Condition (c) in Remark 2. In view of (15) and (29),
they are both increasing functions with respect to ϑ2

f i

and ω̃2
i (i = x, y, z), so that γ f and γτ1 are required not

too high. Specifically, the control and adaptive parame-
ters are as follows: l p = 0.5, kp = αp = 1, βp =
4, kR = kω = 8, γ f = γτ1 = 0.02, γτ2 = 2.5
and ε f = ετ = 0.02. Further, we choose κ f i = 2
(i = x, y, z) to constrain the increment of σ̂i .

3D tracking figure in Fig. 2 illustrates that the tra-
jectory tracking objective is accomplished with the
proposed control approach. Figure 3 illustrates the
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Fig. 3 Position tracking error
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Fig. 4 Attitude tracking error

bounded position tracking error in spite of the mass
drop, which demonstrates the robustness of the pro-
posed control approach to the parameter uncertainty.
Figure 4 illustrates the bounded attitude tracking error
in spite of a large tracking error that appears at 10 sec
due to a sudden turning. Then, Fig. 5 shows that ‖eR‖
remains in the set ZR1 all the time, which implies
that no singularity occurs during the tracking progress.
From Figs. 6 and 7, σ satisfies σi ≤ κ f i (i = x, y, z)
and ς is bounded.
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5 Conclusion

An adaptive trajectory tracking control approach is pro-
posed for a model-scaled helicopter with the rotation
matrix representing the attitude. Based on a decom-
posed model with the cascaded structure, the control
approach is designed with the hierarchical architec-
ture. The position and attitude loop control laws are
designed based on integral-quadratic Lyapunov func-
tion and barrier-quadratic Lyapunov function, respec-
tively. They respectively complete the position and
attitude tracking missions without the singularity. The
upper bounds of the unmodeled dynamics are estimated
and compensated. Simulations verify the performance
of the proposed control approach.

Acknowledgments The author sincerely appreciates his super-
visor Prof. Wei Huo of the Seventh Research Division, Beihang
University, for his suggestions and motivations.

Derivation of the desired angular velocity

The detailed derivation for the desired angular veloc-
ity ωc = [ωcx , ωcy, ωcz]T and its derivative ω̇c are as
follows.

From (20), we obtain

Rce3 = U√
UTU

. (39)

The first-order time derivatives of Rce3 are derived as

d

dt
(Rce3) = 1√

UTU

(
I3 − UUT

UTU

)
U̇

= 1

‖U‖
(
I3 − Rce3eT3 R

T
c

)
U̇

= 1

‖U‖ RcΠRT
c U̇, (40)

where Π = I3 − e3eT3 . Further, denote Rce3 =
[R1, R2, R3]T . From (21), we have

Rce2 =
[
− R1R2

1 + R3
, R3 + R2

1

1 + R3
,−R2

]T

. (41)

The first-order time derivative of Rce2 is derived as

d

dt
(Rce2) = Θ

d

dt
(Rce3), (42)
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where

Θ =
⎡
⎢⎣

− R2
1+R3

− R1
1+R3

R1R2
(1+R3)2

2R1
1+R3

0 1 − R2
1

(1+R3)2

0 −1 0

⎤
⎥⎦ , (43)

and its first-order time derivative is

Θ̇ =
⎡
⎢⎣

0 − 1
1+R3

R2
(1+R3)2

2
1+R3

0 − 2R1
(1+R3)2

0 0 0

⎤
⎥⎦ d

dt
(Rce3)eT1

+
⎡
⎢⎣

− 1
1+R3

0 R1
(1+R3)2

0 0 0
0 0 0

⎤
⎥⎦ d

dt
(Rce3)eT2

+
⎡
⎢⎣

R2
(1+R3)2

R1
(1+R3)2

− 2R1R2
(1+R3)3

− 2R1
(1+R3)2

0
2R2

1
(1+R3)3

0 0 0

⎤
⎥⎦

× d

dt
(Rce3)eT3 .

(44)

It follows (5) that d
dt (Rce3) = Rcωc

×e3 and d
dt (Rce2) =

Rcωc
×e2, so that

ωc
×e3 =

⎡
⎣

ωcy

−ωcx

0

⎤
⎦ = RT

c
d

dt
(Rce3)

= 1

‖U‖ΠRT
c U̇, (45)

ωc
×e2 =

⎡
⎣

−ωcz

0
ωcx

⎤
⎦ = RT

c
d

dt
(Rce2)

= 1

‖U‖ RT
c ΘΛU̇, (46)

where Λ = RcΠRT
c , and its first-order time derivative

is

Λ̇ = ṘcΠRT
c + RcΠ Ṙ

T
c

= Rcωc
×ΠRT

c − RcΠωc
×RT

c = 0.

In addition, differentiating (45) and (46) yields

ω̇c
×e3 = 1

‖U‖Π

[
Ṙ
T
c U̇ + RT

c

(
Ü − UT U̇

‖U‖2 U̇
)]

(47)

ω̇c
×e2 = 1

‖U‖
[(

Ṙ
T
c Θ + RT

c Θ̇
)

ΛU̇

+RT
c ΘΛ

(
Ü − UT U̇

‖U‖2 U̇
)]

(48)

where Ṙ
T
c = −ωc × RT

c .
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