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Abstract A general approach to study effects pro-
duced by oscillations applied to nonlinear dynamic sys-
tems is developed. It implies a transition from initial
governing equations of motion to much more simple
equations describing only the main slow component of
motions (the vibro-transformed dynamics equations).
The approach is named as the oscillatory strobodynam-
ics, sincemotions are perceived as under a stroboscopic
light. The vibro-transformed dynamics equations com-
prise terms that capture the averaged effect of oscil-
lations. The method of direct separation of motions
appears to be an efficient and simple tool to derive
these equations. A modification of the method applica-
ble to study problems that do not imply restrictions on
the spectrum of excitation frequencies is proposed. It
allows also to abandon other restrictions usually intro-
duced when employing the classical asymptotic meth-
ods, e.g., the requirement for the involved nonlineari-
ties to be weak. The approach is illustrated by several
relevant examples from various fields of science, e.g.,
mechanics, physics, chemistry and biophysics.
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1 Introduction

Oscillations applied to nonlinear dynamic systems give
rise to several unusual, seemingly paradoxical phenom-
ena [1,2]. Stabilization of pendulum upper position,
vibrational maintaining or braking of rotations, chang-
ing in materials rheological properties, excitation or
suppression of chaotic motions and many other effects
can be mentioned here (see, e.g., [1–4]). These phe-
nomena in some cases can be employed to improve
existing technological processes and machines and in
others, in contrary, lead to accidents and even catastro-
phes. Such phenomena arising in the field of mechan-
ics are relatively well studied, in particular by means
of the general approach, named vibrational mechanics
(VM) [1], and the corresponding analytical method,
the method of direct separation of motions (MDSM).
Analysis of effects produced by oscillations applied to
physical, chemical, biological systems and production
processes is, however, just getting started. Only sev-
eral studies conducted by different, mostly numerical,
methods are published (see, e.g., [5,6]). On the other
hand, it is hard to indicate a phenomenon or a process
for which such effects are of no practical or scientific
interest.
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The first aim of the present work is to extend the VM
approach and theMDSMfor studyingdynamic systems
from various fields of science, e.g., physics, chemistry,
biology and others. The basic idea of such extension
has been discussed in the papers [7,8]. The section of
nonlinear dynamics studying effects produced by oscil-
lations applied to dynamic systems was proposed to
be named as the oscillatory strobodynamics (OS). The
name is motivated by the fact that the corresponding
solution approach implies system behavior to be per-
ceived as under a stroboscopic light, so that only the
main, slow component of motions is captured.

Most of the problems considered by the MDSM
can be solved also by the other methods of nonlinear
dynamics, e.g., the multiple scales method [9] or the
methodof averaging [10,11].However, theMDSMfea-
tures several significant advantages over thesemethods,
e.g., the simplicity in application, and the transparency
of the physical interpretation. A detailed comparison
of the MDSM with the other methods is given in the
monographs [1,2].

The conventional MDSM implies frequency of
oscillating excitation to be high, i.e., much larger than
the system characteristic (natural) frequency. The clas-
sical asymptotic methods, e.g., the multiple scales
method [9] and the method of averaging [10,11],
also imply restrictions on the excitation frequency
spectrum: Only near-resonant, low-frequency or high-
frequency excitations can be captured. The second aim
of the present work is to develop a modification of
the MDSM for solving a broader range of problems,
namely problems that do not imply restrictions on the
spectrum of excitation frequencies. Such a modifica-
tion is especially relevant for continuous systems hav-
ingmultitude of natural frequencies. This version of the
MDSM allows also to abandon other restrictions usu-
ally introduced when employing the classical asymp-
totic methods, e.g., the requirement for the involved
nonlinearities to be weak. So that problems without an
explicit small parameter can be considered by means
of the method. The idea of such modification of the
MDSM has been discussed in the papers [12,13]. It is
closely related to the main aim of the paper discussed
above, since such modification of the method is partic-
ularly relevant for problems arising in electrical engi-
neering, physics, chemistry, biology, etc.

In the present paper, the proposed extension of the
VM approach and the modification of the MDSM are
illustrated by several relevant examples. The paper

is structured as follows. In Sect. 2, the basics of
the OS approach for treating nonlinear systems under
high-frequency excitations are explained. Section 3 is
devoted to describing the corresponding method, the
MDSM and its application for the OS problems. In
Sect. 4, the validity of the method is briefly discussed.
Section 5 describes the modification of the MDSM for
solving problems without restrictions on the spectrum
of excitation frequencies. In Sect. 6, several relevant
examples are studied: Sects. 6.1–6.5 consider dynamics
of systems from various fields of science under high-
frequency excitation, and Sects. 6.6–6.8 are concerned
with the problems that do not imply the excitation fre-
quency to be high. In Sect. 7, the main conclusions of
the paper are outlined.

2 Slow and fast motions of nonlinear systems
under high-frequency excitation: the main idea
of the OS approach

First, we consider high-frequency excitations. Motion
x(t) of a dynamic system arising due to such exci-
tation can be usually separated into two components:
slow X(t) and fast ψ(t) (notions “high-frequency,”
“fast” and “slow” can be formalized [1]). Figure 1 illus-
trates this for the simple one-dimensional case. Note
that exactly the same figure illustrates the well-known
definition of oscillations as a process described by the
coordinate x(t) which from time to time intersects a
certain constant or slowly varying level [14]. Thus the
above statement is rather general: It merely means that
the system under oscillating excitation exhibits oscil-
lations.

The main idea of the proposed approach lies in the
transition from initial governing equations of motions
to equations describing only the slow component X(t).

Fig. 1 Fast and slow motions of an oscillating dynamic system;
definition of oscillations
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This component is usually of primary interest; and
equations describing it can be much simpler than the
initial equations for vector x(t).

Let dynamics of a process be described by the rela-
tion:

Z (x, a, t) = 0, (1)

where x is state vector of the considered system, a vec-
tor of parameters and t time. Operator Z can represent
finite, differential, integral and other equations with the
corresponding initial and boundary conditions.

In the presence of high-frequency excitation, this
relation takes the form:

Z[x + ψ x(ωt), a + ψ a(ωt), t] = F(ωt) (2)

whereψ x ,ψ a and F are functions periodic in the “fast
time” τ = ωt , and ω � 1. It is assumed therefore that
the high-frequency excitation can be applied directly
through the state vector x, or the vector of parameters
a; external excitation F is also possible.

Practically in all cases the change in the vector x due
to high-frequency excitations can be represented as

x(t) = X(t) + ψ(t, ωt) (3)

where X is slow, and ψ is fast 2π -periodic in time
τ = ωt variable, with average zero:

〈ψ〉 = 1

2π

2π∫

0

ψ(t, τ )dτ = 0 (4)

angular brackets designate averaging in the period 2π
on time τ . Variable X(t), as it was noted above, is
of primary interest; and relations (3)–(4) represent the
assumption that periodic oscillations arise in the system
due to high-frequency excitations.

By means of one mathematical method or another,
and with the averaging procedure being employed,
under certain assumptions regarding the operator Z,
it is possible to obtain equation that involves only the
slow component X :

Z∗(X, a∗, t) = 0 (5)

Note that operator Z∗ is much simpler than Z, e.g., it
can be of a lower dimension. The same applies to the
vectors of parameters a and a∗.

So, slow motions X of the system obey dynamic
laws that differ from those for motions x. In [8], this
dynamics was proposed to be named as the oscilla-
tory strobodynamics (OS). The OS is the dynamics

perceived by an observer with special glasses through
which fast motions cannot be seen. Note that the OS
may be considered also as a particular case of the
dynamics of systems with partially ignored motions
[1,2].

Equation (5) is proposed to be named as the equation
of oscillatory strobodynamics (EOS) [8] or the vibro-
transformed dynamics equation (VDE), in contrast to
Eq. (1) that describes “normal” dynamics.

3 The method of direct separation of motions
for problems of high-frequency oscillating
excitations on dynamical systems

The method of direct separation of motions [1] appears
to be a convenient and simple tool for obtaining Eq.
(5). Its application for solving mechanical problems is
discussed in [1,2]. Here, the basics of this method for
treating a broader range of problems, namely the OS
problems, are described.

Inserting expression (3) into (2), we get

Z[X(t) + ψ(t, ωt) + ψ x(ωt), a + ψ a(ωt), t]
= F(ωt) (6)

Due to the fact that we have introduced two unknown
variables X and ψ instead of the initial one x, we are
allowed to impose additional constraint on these vari-
ables. As this constraint, we require variables X and
ψ to satisfy the averaged Eq. (6), so that the following
relation holds true:〈
Z[X(t) + ψ(t, ωt) + ψ x(ωt), a + ψ a(ωt), t]

〉
= 〈F(ωt)〉 (7)

Consequently, for the initial Eq. (6) to be satisfied we
also get:

Z[X(t) + ψ(t, ωt) + ψ x(ωt), a + ψ a(ωt), t]
− 〈

Z[X(t) + ψ(t, ωt) + ψ x(ωt), a + ψ a(ωt), t]
〉

= F(ωt) − 〈F(ωt)〉 (8)

In a more compact form, Eqs. (7) and (8) can be written
as:

〈Z〉 = 〈F〉 (9)

Z − 〈Z〉 = F − 〈F〉 (10)

Combining Eqs. (7) and (8) or (9) and (10), and taking
(3) into account, allows to obtain initial Eq. (2). Note
that Eqs. (7)–(8) are not simpler than the initial equa-
tion; in particular, if operator Z represents a system
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of differential equations, then (7)–(8) represent a sys-
tem of integro-differential equations. However, (7)–(8)
aremuchmore convenient for the approximate solving.
Equations (7) and (8) are proposed to be named as the
equations of slow and fast motions, respectively.

The following statements form the basis of the
MDSM:

(1) Slow motion X is of primary interest.
(2) It is sufficient to determine variable ψ approxi-

mately, since it is present in Eqs. (7) and (9) only
under the averaging operator, and thus this approx-
imation will not lead to any considerable errors in
the resulting equation for the variable X .

(3) As one of the approximations, slow variables X
and t are considered as constants (“frozen”) when
solving fast motions Eqs. (8) and (10).

Having determined the component ψ = ψ(X, t, ωt)
from (8) or (10) and performing the averaging opera-
tion, Eq. (7) or (9) takes the form:

Z∗(X, a∗, t) ≡ 〈
Z[X(t) + ψ(t, ωt) + ψ x(ωt), a

+ψ a(ωt), t]
〉 = 0 (11)

As it was noted, operator Z∗ can be considerably sim-
pler than Z.

The approximate approach described above implies
that the velocity of component ψ variations is much
larger than the velocity of X variations, i.e., component
X is indeed slow, and component ψ fast. This require-
ment is the main assumption of the OS. Its rigorous
mathematical description for mechanical problems is
given in [1]; this description can be extended also for
problems considered within the OS. The most impor-
tant conditions under which themain assumption of the
OS holds true are the following:

(1) Frequency ω should be much larger than the char-
acteristic frequency of the slow component X
variations (for applied problems three–five times
larger).

(2) Periodic solutions ψ of the fast motions equations
should be asymptotically stable with respect to all
fast components of the vector x in the whole con-
sidered range of parameters.

The last condition may be explained as follows. If
some components of the state vector x are fast, i.e.,
for them X = 0, x = ψ , then these components will
not be present in Eq. (11). Consequently, dimension of
the system will be reduced by the number of the fast

components, so that the requirement for the solution to
be asymptotically stable with respect to all fast com-
ponents becomes necessary [1].

The approximate method described above is based
on the paper [3] by P.L. Kapitsa in which motions of
a pendulum with vibrating suspension axis were con-
sidered. This method was generalized by the author
and employed by him and other scientists for solving
various problems of action of vibration on mechanical
systems [1,2,4,15].

4 On the validity of the MDSM

Application of the MDSM for most of the consid-
ered problems, described by differential equations, is
justified by the theorems of V.M. Volosov and B.I.
Morgunov [16,17]. Generalization for cases beyond
these theorems is discussed in Sect. 5.

However, as is known (see, e.g., [18]), even a theo-
retically justified approximate solution requires a pos-
teriori validation. Comparison with numerical solution
can be also useful. It becomes especially important for
cases when strict mathematical justification is not pre-
sented or omitted. In such cases, frommathematicians’
point of view, the method employedmay be considered
as a heuristic approach for determining solutions. If the
obtained solution has been validated a posteriori, then
it is considered as correct [18].

Similarly to the other approximatemethods, e.g., the
method of harmonic balance [14,19] and Hill’s method
of infinite determinants [19], the MDSM provides an
explicit condition under which the obtained results are
valid for every particular problem considered. Also an
explicit expression which estimates the error in the
obtained solution is provided.

5 Modification of the MDSM: problems without
an explicit small parameter

For many practically important problems, external
excitation of the system cannot be considered as high
frequency, but, instead, is low frequency, or near reso-
nant, or non-resonant, etc. Often, response of the sys-
tem to excitation from the widest possible frequency
range is of interest. Themodification of theMDSMdis-
cussed in the present section of the paper is for studying
such cases (see also [12,13]).
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Effects produced by oscillations 2129

The modified MDSM implies considering dimen-
sionless equations; in particular, the shift from the orig-
inal dimensional time t to the non-dimensional one
τ = ωt is implemented. Solution is proposed to be
sought in the form, similar to (3):

x = X(T1) + ψ(T1, T0), (12)

where the new timescales T0 = τ and T1 = εT0 are
introduced, and ε � 1 is a formal small parameter, and
variables X and ψ have the same meaning as above.
Variableψ is 2π -periodic in time T0,with average zero:

〈ψ(T1, T0)〉 = 1

2π

2π∫

0

ψ(T1, T0)dT0 = 0

Similarly to the multiple scales method [9], the mod-
ified MDSM implies timescales T1 and T0 to be con-

sidered independent, so that d2
dt20

= ∂2

∂T 2
0

+ 2ε ∂2

∂T1∂T0
+

ε2 ∂2

∂T 2
1
.

As appears the requirement for the excitation fre-
quency ω to be much larger than the characteristic fre-
quency of the system’s oscillations, implied in the con-
ventional MDSM, is abandoned, ω�����1. Instead of this,
the restriction on the sought solutions is imposed: Only
solutions that are close to periodic and describe oscil-
lations with slowly varying amplitudes can be deter-
mined. These solutions feature two distinct timescales
and are similar to those obtainedby the classical asymp-
toticmethods, e.g., themultiple scalesmethod [9]. Such
solutions are usually of interest for applications.

Note, however, that the introduced small parameter
ε is not a feature of the considered problem or the cor-
responding governing equations. It is the feature of the
sought solution. This constitutes the main difference of
the modifiedMDSM from the conventional asymptotic
methods.

Introducing the small parameter ε in the way
described above enables to employ the modified
MDSM for problems in which it is impossible to assign
a small parameter in the governing equations. In partic-
ular, strongly nonlinear problems can be studied (see
Sects. 6.7 and 6.8). The introduced small parameter ε

defines proximity of the solution to pure periodic one,
i.e., how slow the amplitudes are varying. This small
parameter differs from the one implied in the classical
bifurcation theory [20], since it is not present explicitly
in the considered governing equations.

It should be noted, however, that the modified
MDSM implies the conventional simplifications of the

method to be abandoned. In particular, when solving
fast motions equations (for variable ψ), slow variables
X and T1 cannot be considered as constants.

The discussed modification of the MDSM may be
considered as a development of the ideas proposed in
[1] for solving equationswithout an explicit small para-
meter: A certain restriction on the sought solutions is
imposed to resolve the problem. However, the prob-
lems considered in [1] implied the sought motion x to
be close tomotion x0 of a prescribed type, e.g., describ-
ing harmonic oscillations or uniform rotation. Conse-
quently, the formal small parameter was introduced in
front of the residual Z(x) − Z(x0).

For every particular problem considered, the modi-
fiedMDSMprovides an explicit condition under which
the obtained results are valid and estimates the error in
the solution (see Sects. 6.6–6.8).

6 Examples

In this section, the approach described above will be
illustrated by several relevant examples from various
fields of science: Sects. 6.1–6.5 consider dynamics of
systems under high-frequency excitations, and Sects.
6.6–6.8 are concerned with the problems that do not
imply restrictions on the spectrum of excitation fre-
quencies.

Problems in Sects. 6.1–6.4 were briefly discussed in
the monograph [2] (in Russian); also some results are
given in the paper [8]. Examples considered in Sects.
6.5 and 6.8 are novel, while those in Sects. 6.6 and 6.7
were partially studied in the papers [12,13].

6.1 String with pulsating tension: “transformation”
into a beam

As amechanical example, we consider a string with the
harmonically varying tension (Fig. 2a). The governing
equation of motions of the string is the following:

∂2u

∂t2
− P0 + P1 cosωt

m

∂2u

∂x2
= 0, (13)

and the boundary conditions are:

u
∣∣
x=0 = 0, u

∣∣
x=l = 0, (14)

where u is the transverse deflection of the string, m its
mass per unit length, P0 constant and P1 cosωt varying
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Fig. 2 String with pulsating
tension transforming into a
simply supported beam

components of tension, ω pulsations frequency and l
length of the string.

Employing the MDSM, we search a solution to (13)
in the form:

u = U (x, t) + ψ(x, t, ωt), (15)

where U is slow and ψ fast component of the string
deflection, so that

〈ψ(x, t, ωt)〉 = 0. (16)

Composing (7) and (8), one obtains the following equa-
tions of slow and fast motions, respectively:

∂2U

∂t2
− P0

m

∂2U

∂x2
− P1

m

〈
∂2ψ

∂x2
cosωt

〉
= 0, (17)

∂2ψ

∂t2
− P0

m

∂2ψ

∂x2
− P1

m

[
∂2U

∂x2
cosωt + ∂2ψ

∂x2
cosωt

−
〈
∂2ψ

∂x2
cosωt

〉]
= 0, (18)

and the boundary conditions take the form:

U
∣∣
x=0 = 0, U

∣∣
x=l = 0, (19)

ψ
∣∣
x=0 = 0, ψ

∣∣
x=l = 0. (20)

The fast motions Eq. (18) is then solved approximately,

assuming that ∂2U
∂x2

� ∂2ψ

∂x2
and terms U , ∂2U

∂x2
are

“frozen.” Consequently, the following equation for ψ

is obtained:

∂2ψ

∂t2
= P1

m

∂2U

∂x2
cosωt, (21)

which allows for periodic solution of the form:

ψ = − P1
mω2

∂2U

∂x2
cosωt. (22)

Inserting this expression into (17), and performing the
averaging operation, we get the following equation of
slow motions, the VDE:

P2
1

2m2ω2

∂4U

∂x4
+ ∂2U

∂t2
− P0

m

∂2U

∂x2
= 0 (23)

As is seen, this equation describes transverse oscilla-
tions of a beam with the effective stiffness

(E I )υ = P2
1

2mω2 , (24)

which is subjected to action of the longitudinal force
P0. So, with respect to slow motions, the string “trans-
forms” into the beam (Fig. 2b).

Requiring the following boundary conditions to be
fulfilled

U
∣∣
x=0 = 0, U

∣∣
x=l = 0,

∂2U

∂x2
∣∣
x=0

= ∂2U

∂x2
∣∣
x=l = 0, (25)

according to (22) we satisfy the boundary conditions
(20) and (14).

According to the main assumption of the OS, the
obtained result is correct for frequencies ω � λn ,
where λn is one of the beam natural frequencies; in
practice, it is sufficient to require ω > (3÷ 5)λn . Note
that this condition is checked a posteriori, basing on
the obtained Eq. (23) of slow motions. If bending stiff-
ness of the string is taken into account, then the cor-
responding initial governing equation is of the fourth
order. In this case, term P2

1 /(2mω2) represents addi-
tional bending stiffness (E I )υ . This corresponds to the
well-knownproblemof the so-called Indianmagic rope
considered by means of the MDSM in [21] (cf. also
monograph [15]). The phenomenon of increased bend-
ing stiffness of a ropedue to high-frequency actionswas
observed experimentally by V.B. Vasilkov [22]. Papers
by V.N. Chelomey [23] and S.V. Chelomey [24], where
similar effects were studied by means of various ana-
lytical and other methods, should be also mentioned
here. An overview of the subsequent papers concerned
with the problem of Indian magic rope is given in the
monograph [15] and also in the paper [21].

Note that the phenomenon of increased bending
stiffness occurs also in the case of a pipe conveying
pulsating fluid [25,26]. In paper [26], this result was
obtained by the MDSM, whereas in the pioneering
work [25] a much more elaborate solution procedure
has been employed.
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6.2 Lorenz oscillator: suppression and excitation of
chaotic motions by an oscillating action

The following system of equations is considered:

ξ̈ + (η − 1)ξ + ξ3 = −μξ̇, (26)

η̇ = − μ

σ + 1

[
bη − (2σ − b)ξ2

]
+ A cosωt, (27)

where μ, σ and b are positive constants and μ can be
considered as small,μ � 1. These equations for A = 0
represent the well-known Lorenz system [6]. It approx-
imately describes the thermo-convection process and is
thoroughly studied; the “deterministic chaos” arises in
the system at certain values of the parameters.

For μ = 0, i.e., in the zeroth approximation, Eq.
(27) has periodic solution η0 = A

ω
sinωt . Inserting it

into (26), we get:

ξ̈0 +
(
A

ω
sinωt − 1

)
ξ0 + ξ30 = 0. (28)

Assuming, as before,

ξ0 = B(t) + ψ(t, ωt), (29)

where B is slow and ψ is fast 2π -periodic in time τ =
ωt variable with average zero, we get the following
equations of slow and fast motions, respectively:

B̈ − B + A

ω
〈ψ sinωt〉 + B3 + 3B

〈
ψ2

〉

+
〈
ψ3

〉
= 0 (30)

ψ̈ + AB

ω
sinωt − ψ + A

ω
(ψ sinωt − 〈ψ sinωt〉)

+
(
ψ3 −

〈
ψ3

〉)
+ 3B2ψ + 3B

(
ψ2 −

〈
ψ2

〉)
= 0

(31)

Assuming ω � 1, and the first two terms in (31) to
be much larger than others, one obtains approximate
periodic solution of (31) as:

ψ = AB

ω3 sinωt, (32)

Consequently, Eq. (30), the VDE, takes the form of the
Duffing equation:

B̈ +
(
1

2

A2

ω4 − 1

)
B +

(
1 + 3

2

A2

ω6

)
B3 = 0. (33)

And if

A >
√
2ω2, (34)

the trivial solution of this equation is stable, otherwise
its solutions oscillate near the points

B = ±
√
1 − 1

2

A2

ω4

/√
1 + 3

2

A2

ω6 (35)

As is seen, under the made assumptions chaotic
motions will not arise in the considered system. Note
that the other ways of chaos suppression in the sys-
tem are also possible, with high-frequency action being
introduced in variousmanners, e.g., by parametric exci-
tation.

Considering Eq. (28), one can also conclude that the
system will exhibit rather complex motions in certain
ranges of the parameters. For example, for A/ω � 1
and relatively smallω, the coefficient of ξ0 in this equa-
tion varies slowly from negative to positive values and
vice versa. This leads to a repeated change in the sys-
tem behavior. If variable η is changing in a similar way,
described by Eq. (27), then complex (chaotic) motions
arise in the system. In this case, the phase diagram ξ0,
ξ̇0 of the system shows the well-known “Lorenz butter-
fly.” These results may be useful for understanding the
mechanism of complex motions arising in the Lorenz
system.

Note also that the problem of chaos controlling by
means of periodic excitations has been considered by
several authors, mostly with the numerical methods
being employed (see, e.g., [6,27]).

6.3 Periodic excitations of Lotka–Volterra oscillator:
predator–prey system and chemical reactions

Next we consider the following system of equations:

ṅ1 = n1 (ε1 − γ1n2) + A sinωt,
ṅ2 = −n2 (ε2 − γ2n1) + B sin (ωt + δ) ,

(36)

where ε1, ε2, γ1 and γ2 are positive constants and A, B,
ω and δ amplitudes, frequency and phase of periodic
excitations, respectively.

For A = B = 0, these equations represent
Lotka–Volterra oscillator that describes oscillations in
the predator–prey system and also several oscillating
chemical reactions [6,28]. The behavior of this system
under external periodic excitations has been studied
in several papers, discussed in the monograph [6]; in
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particular, it was revealed that regular or chaotic oscil-
lations can arise in the system due to such excitation.

Here, the system (36) is studied with the aim to
reveal the effect of periodic excitations on its regular
(oscillating) motions. Such excitations may be due to
periodically changing properties of the environment or
media in which the corresponding process is taking
place. Also, for generality, we allow oscillating actions
on different populations or chemical elements to have
different amplitudes and phases.

In the absence of external excitation, system (36)
performs free oscillations near points n10 = ε2/γ2
and n20 = ε1/γ1, with the linearized natural frequency
defined by the expression:

λ = √
ε1ε2. (37)

Assuming frequency ω to be much larger than λ, we
search solution in the form:

n1 = N1(t) + ψ1(t, ωt), n2 = N2(t) + ψ2(t, ωt),

(38)

where N1 and N2 are slow and ψ1 and ψ2 fast 2π -
periodic in time ωt variables with average zero.

Equations of slow and fast motions take the form:

Ṅ1 = N1 (ε1 − γ1N2) − γ1 〈ψ1ψ2〉
Ṅ2 = −N2 (ε2 − γ2N1) + γ2 〈ψ1ψ2〉 (39)

ψ̇1 = ψ1ε1 − γ1N1ψ2 − γ1N2ψ1

− γ1 (ψ1ψ2 − 〈ψ1ψ2〉) + A sinωt

ψ̇2 = −ψ2ε2 + γ2N1ψ2 + γ2N2ψ1

+ γ2 (ψ1ψ2 − 〈ψ1ψ2〉) + B sin (ωt + δ) (40)

Assuming external periodic excitation to be strong, we
get approximate solution of (40) in the form:

ψ1 = − A

ω
cosωt, ψ2 = − B

ω
cos(ωt + δ). (41)

Note that a more accurate solution of Eq. (40) is possi-
ble, as well as the analysis of the other ways of periodic
excitations of Lotka–Volterra system [6].

Equations of slow motions (39), the VDE, can be
written as:

Ṅ1 = N1 (ε1 − γ 1N2) − γ1a,

Ṅ2 = −N2 (ε2 − γ2N1) + γ2a,
(42)

here a = AB cos δ
2ω2 .

Without the periodic excitation, a = 0, the equi-
librium positions of the system are N (1)

10 = ε2/γ2,

N (1)
20 = ε1/γ1 and N (2)

10 = N (2)
20 = 0. For a 	= 0,

such positions appear to be defined by the relations:

N 2
10 − ε2

γ2
N10 + a

q
= 0, N20 = qN10, there

q = ε1γ2

ε2γ1
. (43)

So that:

N10 = 1

2

ε2

γ2
±

√
ε22

4γ 2
2

− a

q
(44)

As follows from (44), at the presence of the periodic
excitation, equilibrium positions will exist only if con-
dition

a
γ1γ2

ε1ε2
= AB cos δ

2ω2

γ1γ2

ε1ε2
<

1

4
(45)

is satisfied. Introducing new variables M1 = N1−N10,
M2 = N2 − N20, Eq. (42) can be reformulated as

Ṁ1 = M1 (ε1 − γ1qN10) − γ1M2N10 − γ1M1M2

Ṁ2 = −M2 (ε2 − γ2N10) + γ2M1qN10 + γ2M1M2
,

(46)

Stability of the equilibrium positions is determined by
the roots of the equation:∣∣∣∣∣
b1 − λ, −γ1N10

γ2qN10, −b2 − λ

∣∣∣∣∣ = 0,

where b1 = ε1 − γ1qN10, and b2 = ε2 − γ2N10. Then
we rewrite this equation in the form:

λ2 +
(
1 − γ2N10

ε2

)
(ε2 − ε1) λ

+ ε1(2γ2N10 − ε2) = 0, (47)

which, with expression (44) for N10 being taken into
account, gives:

λ2 +
(
1

2
∓

√
1

4
− a

γ1γ2

ε1ε2

)
(ε2 − ε1) λ

± 2ε2ε1

√
1

4
− a

γ1γ2

ε1ε2
= 0. (48)

As is seen, the equilibrium position corresponding to
the negative sign in (44) is always unstable. The second
equilibrium position is stable if the following condition
fulfills:(
1

2
−

√
1

4
− a

γ1γ2

ε1ε2

)
(ε2 − ε1) > 0, (49)

123



Effects produced by oscillations 2133

Fig. 3 Phase trajectories of
the system (42) for a a = 0,
ε1 = ε2 = γ1 = γ2 = 1
(conservative
Lotka–Volterra system); b
a = 0.15, ε1 = ε2 = γ1 =
γ2 = 1; c a = 0.15, ε1 =
γ1 = γ2 = 1, ε2 = 0.5; d
a = 0.15, ε1 = γ1 = γ2 =
1, ε2 = 1.5

which, with the expression for a taken into account,
can be reduced to:

(ε2 − ε1) cos δ > 0. (50)

Expressions (48) and (50) show that the considered
periodic excitation considerably affects motion of the
system, making it non-conservative. As is known,
Lotka–Volterra system is a “rigid,” structurally unsta-
ble model. At the presence of the excitation, periodic
motions for ε2 	= ε1 vanish, and the system trajec-
tories either approach or move away from the equilib-
rium positions, so that these positions become stable or
unstable, respectively. Trajectories ending on axis N2

emerge that corresponds to extinction of the popula-
tion. The averaged “populations sizes” either decrease
or increase. This is illustrated by the dependences pre-
sented in Fig. 3, obtained by numerical integration of
(42).

Note that the case of periodically pulsating coeffi-
cient ε1 in Lotka–Volterra equations has been studied
numerically in themonograph [29]. Some of the results
obtained are outlined briefly in [8].

6.4 Brusselator under high-frequency actions

The discovery of the oscillating chemical reaction byB.
Belousov and A. Zhabotinsky gave rise to many papers
devoted to the analysis of such reactions. One of the
simplest models of an oscillating chemical reaction is
described by the following equations [28]:

ẋ = a − (b + 1)x + x2y, ẏ = bx − x2y. (51)

Here x and y are non-dimensional concentrations of
reactants; a and b positive constants; and dots denote
derivatives with respect to the non-dimensional time t .
Equation (51) describes the so-called Brusselator con-
sidered by I. Prigogine and R. Lefever [28,30]. If

b > a2 + 1, (52)

then the equilibrium state, x0 = a, y0 = b/a, becomes
unstable, and the system performs self-excited oscilla-
tions [28].

We consider a system

ẋ = a − (b + 1)x + x2y + A sinωt,

ẏ = bx − x2y + B sin(ωt + δ), (53)
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in which variations of concentrations of reactants x and
y are subjected to periodic actions with amplitudes A
and B, phase shift δ and frequencyω, which is assumed
to be much larger than the frequency λ ≈ a of the self-
excited oscillations.

Employing the MDSM, a solution to (53) is sought
in the form

x = X + ψx , y = Y + ψy, (54)

where X andY are slowandψx andψy fast 2π -periodic
in time τ = ωt variables with average zero. Equations
of slow and fast motions are, respectively:

Ẋ = a − (b + 1)X + X2Y + 2X
〈
ψxψy

〉 + Y
〈
ψ2
x

〉

+
〈
ψ2
xψy

〉

Ẏ = bX − X2Y − 2X
〈
ψxψy

〉 − Y
〈
ψ2
x

〉

−
〈
ψ2
xψy

〉
(55)

ψ̇x = A sinωt + · · · , ψ̇y = B sin(ωt + δ) + · · ·
(56)

Terms that are not presented in the fast motions Eq.
(56) are assumed to be relatively small.

Substituting the obtained periodic solutions of Eq.
(56) into (55), we compose the following system of the
slow motions equations, the VDE:

Ẋ = a − (b + 1)X + X2Y + cX + dY

Ẏ = bX − X2Y − cX − dY, (57)

where

c = AB cos δ/ω2, d = 1

2
A2/ω2. (58)

Equation (57) differ from (51) by the presence of two
additional linear terms in the right-hand sides. This
leads to the shift of the equilibrium position to the point
X0 = a, Y0 = a(b − c)/(d + a2), so that self-excited
oscillations occurwhen the following condition fulfills:

b(a2 − d) > (a2 − d)c + (a2 + d)(a2 + d + 1). (59)

As appears this condition differs considerably from
(52), though reducing to (52) at c = d = 0.

6.5 Processes of flame and nerve impulse propagation
under high-frequency actions,
Zel’dovich–Frank–Kamenetskii model

The following partial differential equation is consid-
ered:
∂2u

∂x2
− ∂u

∂t
= f (u) + A sinωt, (60)

where

f (u) = u(u − a)(u − 1), a < 1, ω � 1. (61)

Equation of nonlinear diffusion (60) without the term
A sinωt in the right-hand side was proposed by Y.B.
Zel’dovich andD.A.Frank-Kamenetskii to describe the
process of flame propagation, cf. [30,31]. The same
equation models propagation of a nerve impulse in
nerve fibers [30,32].

Searching a solution to (60) in the form:

u = U (x, t) + ψ(x, t, ωt), (62)

we obtain equations of slow and fast motions:

∂2U

∂x2
− ∂U

∂t
= 〈 f (U + ψ)〉 (63)

− ∂ψ

∂t
= −∂2ψ

∂x2
+ f (U + ψ)

−〈 f (U + ψ)〉 + A sinωt (64)

Assuming the amplitude of the high-frequency excita-
tion to be large, so that all other terms in the right-hand
side of (64) can be neglected, we get the following sim-
ple equation for the variable ψ :

− ∂ψ

∂t
= A sinωt. (65)

The periodic solution of (65) is:

ψ = A

ω
cosωt (66)

Employing this expression, we obtain:

F(U ) = 〈 f (U + ψ)〉
= 〈(U + ψ)(U + ψ − a)(U + ψ − 1)〉
= f (U ) + 3

2

A2

ω2U − 1

2
(a + 1)

A2

ω2 (67)

Consequently, the equation of slow motions, the VDE,
takes the form:

∂2U

∂x2
− ∂U

∂t
= F(U ) (68)

This equation differs from Zel’dovich–Frank–Kame-
netskii equation by the presence of two additional terms
in F(U ); these considerably affect solutions of the
equation, since polynomials f (u) and F(U ) have dif-
ferent roots. Polynomial f (u) has three roots, u = 0,
u = 1 and u = a, while F(U ) can have no roots in the
interval (0,1). This illustrates the capability to control
processes of flame and nerve impulse propagation by
means of the oscillating actions.
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6.6 Mathieu equation without an explicit small
parameter: mechanical and electrical oscillators

As the first example of application of the modified
MDSM, we consider the classical Mathieu equation
that describes oscillations arising in various mechani-
cal, electrical and other systems, cf. [33]:

d2ϕ

dt20
− δ(1 + χ cos t0)ϕ = 0. (69)

The case of negative stiffness is studied, δ > 0, so that
the problem of motion stabilization by means of the
oscillating action is considered. Note that the equation
does not involve a small parameter, δ ∼ 1, χ ∼ 1,
and the classical asymptotic methods [9–11] cannot be
used.

Employing the modified MDSM, we search a solu-
tion to (69) in the form:

ϕ = α(T1) + ψ(T1, T0), (70)

describing oscillationswith slowly varying amplitudes.
Here the new timescales T1 and T0 are defined as T0 =
t0, T1 = εT0; ε � 1 is a formal small parameter,
α “slow,” and ψ “fast,” 2π -periodic in dimensionless
time T0 variable, with average zero:

〈ψ(T1, T0)〉 = 0

Thus the small parameter ε, which is a feature of the
sought solution, not of the considered governing Eq.
(69), is introduced. In what follows, this parameter will
be employed to resolve the problem considered.

Equations of slow and fast motions take the form:

ε2
d2α

dT 2
1

− δ(α + χ 〈ψ cos T0〉) = 0, (71)

∂2ψ

∂T 2
0

+ 2ε
∂2ψ

∂T1∂T0
+ ε2

∂2ψ

∂T 2
1

− δψ

= δχ ((α + ψ) cos T0 − 〈ψ cos T0〉) (72)

As appears in the present case, the conventional sim-
plifications of theMDSM should be abandoned. In par-
ticular, it is not valid to consider slowvariables involved

in (72) as constants. Indeed, term ε2 d
2
α

dT 2
1

is retained

in Eq. (71) of slow motions, and relations δ ∼ 1,
χ ∼ 1 hold true, so solution of the fast motions’ equa-
tion should be determined with the accuracy of order
of ε2. Thus terms of this and lower order, particularly

2ε ∂2ψ
∂T1∂T0

and ε2
∂2ψ

∂T 2
1
, should be retained in Eq. (72).

Taking into account thatψ(T1, T0) is a time T0 peri-
odic function, solution of the fast motions Eq. (72) is
sought in the form of a series

ψ = B11(T1) cos T0 + B12(T1) sin T0

+ B21(T1) cos 2T0 + B22(T1) sin 2T0

+ · · · + Bn1(T1) cos nT0 + Bn2(T1) sin nT0

(73)

Inserting (73) into (72), and gathering the coefficients
of the involved harmonics cos T0, sin T0, cos 2T0,…,
we compose equations for the amplitudes B11(T1), …,
Bn2(T1). Solving these equations by means of the clas-
sical procedure of expansion in the small parameter ε

[9] gives:

B11(T1) = −F0α(T1) + ε2F2
d2α

dT 2
1

+ O(ε3),

B12(T1) = εF1
dα

dT1
+ O(ε3). (74)

Expressions for the amplitudes B21(T1), . . ., Bn2(T1)
are not given here for brevity. Here, Fj = Fj (δ, χ),
j = 0, 1, 2; and asymptotic expansions (74) are uni-
form and valid, since F0(δ, χ) ∼ F2(δ, χ), and α(T1)
is a slowly varying function, so that α(T1) ∼ d2α/dT 2

1 .
Functions Fj , j = 0, 1, 2, depend on the number of

retained harmonics in the series (73). Discarding the
nth harmonic leads to the error of order of

μ = 1

4

δχ

δ + n2
δχ

δ + (n − 1)2
. (75)

Thus the modified MDSM estimates the error in the
obtained solution of the fast motion equation. For
example, for δ < 0.5, χ ∼ 1, and n = 4 we get
μ ∼ 10−3. In this case, i.e., with only three harmonics
taken into account in (73), expressions for the functions
F0(δ, χ) and F2(δ, χ) take the form

F0(δ, χ)

= δχ(144 + 52δ − δ2(−4 + χ2))

2(72 + 98δ + δ3(2 − χ2) + δ2(28 − 5χ2))
;

F2(δ, χ) = δχ

2

F21(δ, χ)

F22(δ, χ)
, (76)

where F22(δ, χ) = (72+ 98δ + δ3(2−χ2)+ δ2(28−
5χ2))3,

F21(δ, χ)

= 2239488 + 1679616δ + 1296δ2(196 + 171χ2)
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+ 60δ3(−1900 + 2889χ2)

+ 8δ5(−996 + 763χ2 + 85χ4)

+ δ4(−50560 + 46512χ2 + 594χ4)

+ δ6(−576 + 416χ2 + 50χ4 − 11χ6)

+ δ7(−16 + 12χ2 − 4χ4 + χ6).

Employing the obtained solution of the fast motions
equation, the equation of slow motions (71) is written
in the form:

ε2
(
1 − δ

χ

2
F2(δ, χ)

) d2α

dT 2
1

− δ
(
1 − χ

2
F0(δ, χ)

)
α = 0. (77)

Returning to the “initial” time variable t0, this equation
can be rewritten as:
(
1 − δ

χ

2
F2(δ, χ)

) d2α

dt20

− δ
(
1 − χ

2
F0(δ, χ)

)
α = 0. (78)

From (78), it follows that motions of the oscillator will
become stable due to the oscillating excitation if the
following condition holds true:

λ2 = δ

χ
2 F0 (δ, χ) − 1

1 − δ
χ
2 F2 (δ, χ)

> 0, (79)

Here, λ is natural frequency of the oscillator slow
motions near the equilibrium position.

The modified MDSM implies that the solutions
obtained are close to periodic and describe oscillations
with slowly varying amplitudes. That gives the require-
ment for the frequencyλ of the system slowoscillations
to be much smaller than the frequency of its fast oscil-
lations, i.e., unity:

λ ∼ ε � 1. (80)

This condition defines the applicability range of the
modified MDSM for the problem considered, with
the small parameter ε (or λ) being the feature of the
obtained solution.

As follows from (75), functions F0(δ, χ) and
F2(δ, χ),which are present in the resulting slowmotion
Eq. (78), are determined with the error of order of μ.
Consequently, the effective natural frequencyλ is deter-
mined with the error of the same order. Thus, for the
approximation of the method to be valid the following
condition should hold true:

μ � λ. (81)

So, in fact we have two small parameters μ and λ:
One is associated with the specific type of the solutions
sought and another with the truncation of the harmonic
series employed. However, both of them are not present
explicitly in the considered governing Eq. (69), which
constitutes the main difference of the modified MDSM
from the conventional asymptotic methods.

Figure 4 shows analytical and numerical solutions
of Eq. (69) for various values of the parameters. The
numerical solution was obtained by direct integration
of (69) by means of the WolframMathematica 7. Solid
lines represent the numerical solution, dotted lines rep-
resent the solution α(t0) of the obtained equation of
slow motions (78), and dashed lines represent the ana-
lytical solution, i.e., the sum of α and ψ .

As appears fromFig. 4, dashed and solid lines almost
coincide with each other, so the obtained analytical
solution is in good agreementwith the results of numer-
ical experiments.

The analytical solution has been validated also by
the classical theory of Mathieu functions and Floquet
theory [34]. Particularly, the obtained stabilization con-
dition (79) was compared with the classical Ince–Strutt
diagram [19,33,34]. Parameters of this diagram a and
q can be expressed via δ and χ as a = 4δ, q = 2δχ .
A part of the diagram is shown in Fig. 5 by solid lines;
curves which correspond to the stabilization condition
(79) (dotted line) and to the condition of the MDSM
applicability (80) (dashed lines) are also presented. In
the domain of parameters between twodashed lines, the
solution obtained by means of the modified MDSM is
valid; this domain is shaded in Fig. 5 and implies close
to periodic solutions. As is seen, the curve which cor-
responds to the stabilization condition (79) coincides
with the one of the Ince–Strutt diagram. Thus there is a
good agreement between the obtained analytical solu-
tion and the classical theory.

6.7 Nonlinear parametric amplifier: micro- and
nanoscale electromechanical systems

Many small-scale parametric amplifiers based on reso-
nant micro- and nanosystems exhibit a distinctly non-
linear behaviorwhen amplitude of their response is suf-
ficiently large [35]. So, it becomes necessary to con-
sider such systems dynamics in a nonlinear context,
and the Duffing-type nonlinearity can serve as the sim-
plest model. In paper [36], the near-resonant response
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Fig. 4 Dependencies of ϕ on time t0 for initial conditions ϕ(0) = 0.01, ϕ̇(0) = 0 and a δ = 0.4, χ = 2.59; b δ = 1, χ = 1.906; c
δ = 1.4, χ = 1.7395

Fig. 5 Ince–Strutt diagram (solid lines) and curves correspond-
ing to the stabilization condition (79) (dotted line) and the con-
dition of the MDSM applicability (80) (dashed lines); shaded
region: the domain of parameters in which the obtained analyti-
cal solution is valid

of such systemwas studied for small values of the para-
metric excitation amplitude and the nonlinearity coeffi-
cient. Here, these restrictions on the system parameters
are abandoned. The governing equation is:

z′′+γ z′+δz+χ z cos 2t0+kz3= A cos (t0+φ) , (82)

Here, z represents the amplifier response, γ is the coef-
ficient of dissipation, which is assumed to be linear, A
and χ are the amplitudes of the external and parametric
excitations, respectively, φ is the relative phase term, δ
is the squared natural frequency of the linearized sys-
tem, and t0 is the dimensionless time.

Noting that δ ∼ 1 and χ ∼ 1, so that the classical
asymptotic methods cannot be used, we employ the
modified MDSM and search a solution to (82) in the
form:

z = α (T1) + ψ (T1, T0) , (83)

describing oscillationswith slowly varying amplitudes.
Consequently, we obtain the following equations of
slow and fast motions, respectively:

ε2
d2α

dT 2
1

+ εγ
dα

dT1
+ δα + χ 〈ψ cos 2T0〉

+ k
(
α3 + 3α

〈
ψ2

〉
+

〈
ψ3

〉)
= 0, (84)
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∂2ψ

∂T 2
0

+ 2ε
∂2ψ

∂T1∂T0
+ ε2

∂2ψ

∂T 2
1

+ γ

(
∂ψ

∂T0
+ ε

∂ψ

∂T1

)

+ k
(
ψ3 + 3αψ2 + 3α2ψ − 3α

〈
ψ2

〉

−
〈
ψ3

〉)
+ δψ = −χ ((α + ψ) cos 2T0

−〈ψ cos 2T0〉) + A cos(T0 + φ) (85)

Taking into account thatψ(T1, T0) is a time T0 periodic
function, solution of the fast motions Eq. (85) is sought
in the form of a series

ψ = B1 (T1) cos (T0 + θ1 (T1)) + B2 (T1) cos (2T0

+ θ2 (T1)) + · · · (86)

Influence of the second, the third and all higher har-
monics on the system response for δ ∼ 1 and χ ∼ 1
turns out to be negligibly weak when either the nonlin-
earity coefficient k or the external excitation amplitude
A is small, k � 1 or A � 1. In particular, no super- or
sub-harmonic resonances can occur. So, in this range of
parameters it is valid to take into account only the first
harmonic to predict the system response. The account-
ing of the other harmonics is not difficult, but leads
only to a minor quantitative change in the results. So,
similarly to the problem considered in Sect. 6.6, the
modified MDSM provides the explicit condition under
which the results obtained by means of the method are
valid.

For amplitude B1 and phase θ1, the following equa-
tions are obtained:

ε2
d2B1

dT 2
1

+ εγ
dB1

dT1
− B1

(
1 + ε

dθ1
dT1

)2

+ δB1

+ 3

4
kB3

1 + 3kα2B1

= −1

2
χB1 cos 2θ1 + A cos(θ1 − φ) (87)

ε2B1
d2θ1
dT 2

1

+
(

γ B1 + 2ε
dB1

dT1

) (
1 + ε

dθ1
dT1

)

= 1

2
χB1 sin 2θ1 − A sin(θ1 − φ), (88)

The steady-state response of the amplifier is of pri-
mary interest. The following system of equations is
composed to describe it:

δα + k

(
α3 + 3α

B2
1

2

)
= 0, (89)

Fig. 6 Dependencies of the steady-state amplitude of the non-
linear parametric amplifier response on the parameter δ for
γ = 0.02, φ = −π/4, χ = 1.2, k = 0.5, and A = 0.01

−B1 + δB1 + 3

4
kB3

1 + 3kα2B1

= −1

2
χB1 cos 2θ1 + A cos (θ1 − φ) (90)

γ B1 = 1

2
χB1 sin 2θ1 − A sin (θ1 − φ) , (91)

Assuming relations δ > 0, k > 0 to be fulfilled,
one obtains that Eq. (89) allows for a single real solu-
tion, α = 0. From the equation of slow motions (84), it
follows that this solution is always stable. Solving Eqs.
(90)–(91), we obtain five expressions for the amplitude
B1 of the amplifier steady-state response. As an illus-
tration, Fig. 6 shows the dependency of the amplitude
B1 on the parameter δ; here solid lines correspond to
stable branches and dashed lines to unstable branches.

As shown in Fig. 6, the response features five dis-
tinct branches, three of which are stable. Similar struc-
ture of the nonlinear amplifier response was noticed,
apparently for the first time, in the paper [36] which
is devoted to the analysis of the near-resonant behav-
ior of the system (82). The present study significantly
broadens these results, since the amplifier response is
studied for the wider range of parameters, particularly
when δ is not close to unity.

As is seen, the modified MDSM is able to predict
stability of the obtained steady-state solutions, which
is an important advantage over the classical harmonic
balance method.

6.8 Van der Pol equation without an explicit small
parameter: oscillations in electrical circuits

Finally, to illustrate that the applicability range of the
modified MDSM is not restricted to problems with
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non-autonomous excitation, self-excited oscillations in
autonomous systems are considered for Van der Pol
equation with strong nonlinearity:

v̈ + v − μ(1 − v2)v̇ = 0, (92)

where parameter μ is not required to be small, μ�����1.
Employing the modified MDSM, we search a solution
to (92) in the form of oscillations with slowly varying
amplitudes:

v = B11 (T1) cos (λT0) + B12 (T1) sin (λT0)

+ B21 (T1) cos (3λT0) + B22 (T1) sin (3λT0)

+ · · · (93)

Here, T0 and T1 are new timescales implied in the
MDSM, T0 = t0, T1 = ελT0, and ε � 1 is a for-
mal small parameter; λ is unknown frequency of self-
excited oscillations to be determined. As appears the
form of the solution (93) differs from those employed
in Sects. 6.6–6.7: It involves the unknown frequency λ

and does not imply the explicit slow component X (T1)
(or α(T1)). This is due to the fact that here the self-
excited oscillations are considered, and frequency of
these oscillations is to be determined. The main prin-
ciple of the modified MDSM, however, is preserved:
The solution is sought in the form of oscillations with
slowly varying amplitudes.

Substituting (93) into (92) and equating the coeffi-
cients of cos(λT0), sin(λT0), cos(3λT0) and sin(3λT0)
to zero, one obtains equations for the amplitudes
B11(T1), B12(T1), B21(T1), B22(T1). Note that only
the written terms are taken into account in the series
(93). The neglecting of higher harmonics is jus-
tified for μ ∼ 1 (that comprises also the case
μ � 1). So, similarly to Sects. 6.6–6.7, the mod-
ified MDSM provides the explicit condition under
which the results obtained by means of the method are
valid.

The steady-state response with constant amplitudes
B11st , B12st , B21st and B22st describing stationary
oscillations is of primary interest. The following equa-
tions for these amplitudes are obtained:

λμ
(
B2
11st B22st + B12st (B

2
12st + B2

11st − B12st B22st

− 2B11st B21st + 2B2
21st + 2B2

22st − 4)
)

= 4(λ2 − 1)B11st , (94)

λμ
(
−B2

12st B21st + B11st (B
2
11st+B2

12st+B11st B21st

+ 2B12st B22st + 2B2
21st + 2B2

22st − 4)
)

= 4(1 − λ2)B12st , (95)

λμ
(
3B2

11st B12st − B3
12st + 3B22st (B

2
22st + 2B2

12st

+ 2B2
11st + B2

21st − 4)
)

= 4(9λ2 − 1)B21st , (96)

λμ
(
B3
11st − 3B11st B

2
12st + 3B21st (2B

2
11st

+ 2B2
12st + B2

21st + B2
22st − 4)

)

= 4(1 − 9λ2)B22st , (97)

Equations (94)–(97) are then solved to determine the
frequency λ of the system self-excited oscillations.
Consequently, we get two real values: λ1 and λ2, and
λ1 = −λ2. The expressions for λ1, λ2 are rather cum-
bersome and thus not given here. As an illustration in
Fig. 7, the dependency of λ1 on μ is shown.

Thus, the steady-state response of the considered
system has been determined. A series of numerical
experiments was conducted to validate the obtained
results in all cases showing good agreement (see
below).

To study the system non-stationary behavior, we
employ the virtue of the small parameter, ε � 1,
and neglect the third harmonic in the solution series,
since its influence is relatively weak for μ ∼ 1. Conse-
quently, we obtain the following equations that approx-
imately describe the system non-stationary behavior:

λμ
(
−4B12 − 4εB ′

11 + B12(B
2
12 + B2

11 + εB12B
′
11

+ 2εB11B
′
12) + 3εB2

11B
′
11

)

= 4B11(λ
2 − 1) − 8λ2εB ′

12, (98)

λμ
(
−4B11 + 4εB ′

12 + B11(B
2
11 + B2

12 − 2εB12B
′
11

− εB11B
′
12) − 3εB2

12B
′
12

)

= 4B12(1 − λ2) − 8λ2εB ′
11, (99)

Then, employing the shift of variables from B11(T1),
B12(T1) to B1(T1), ϕ(T1):

B11 = B1 cosϕ, B12 = B1 sin ϕ, (100)

we get:

8λεB ′
1 + μB1(1 − εϕ′)(B2

1 − 4) = 0, (101)
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Fig. 7 Dependency of the frequency of the system self-excited
oscillations on the parameter μ

Fig. 8 Dependency of the response amplitude B1 on time t0
(solid line) and the numerical solution v of the initial Eq. (92)
(dashed line) for μ = 1; λ = 0.943

(3B2
1 − 4)λεμB ′

1 + (4 − 4λ2 + 8λ2εφ′)B1 = 0.

(102)

Consequently obtain:

εB ′
1 = − 4μB1

(
B2
1 − 4

)
(1 + λ2)

λ
(
64λ2 + (16 − 16B2

1 + 3B4
1 )μ

2
) , (103)

εϕ′ = 32(λ2 − 1) + μ2
(
16 − 16B2

1 + 3B4
1

)
64λ2 + (

16 − 16B2
1 + 3B4

1

)
μ2

. (104)

So that the problem is reduced to solving Eq. (103). The
solution can be obtained by the classical separation of
variables technique. As an illustration, the dependency
of the amplitude B1 on time t0 is shown in Fig. 8 by
the solid line for μ = 1; the dashed line represents the
numerical solution obtained by direct integration of the
initial Eq. (92) using Wolfram Mathematica 7.

Note that in the conventional case μ � 1, when
λ = 1, one can rewrite Eqs. (103)–(104) as:

εB ′
1 = 1

2
μB1

(
1 − 1

4
B2
1

)
, (105)

εϕ′ = 0, (106)

which coincide with the known results (see, e.g., [9]).
The considered example clearly illustrates that the

modifiedMDSMcan be employed to study self-excited
oscillations in strongly nonlinear autonomous systems.

7 Conclusion

The present paper considers effects produced by oscil-
lations applied to nonlinear dynamic systems from var-
ious fields of science. It is noted that such effects can
be of significant applied and theoretical importance,
particularly, due to the fact that generic properties of
dynamic systems can be considerably affected by oscil-
lating excitations.

The general approach for treating problems of the
considered type is proposed. This approach implies
the transition from the initial governing equations of
motions to equations describing only the slow com-
ponent of motions which is usually of primary interest.
The approach is named as the oscillatory strobodynam-
ics.

The modification of the approach applicable for
problems that do not imply restrictions on the spec-
trum of excitation frequencies is proposed. In particu-
lar, it can be employed when frequency of oscillating
excitation is not high, i.e., not much larger than the
system characteristic (natural) frequency. The modi-
fied approach in certain cases allows also to abandon
other restrictions usually introduced when employing
the classical asymptotic methods, e.g., the requirement
for the involved nonlinearities to beweak. So, problems
without an explicit small parameter can be considered
by means of the method.

The efficiency of the OS approach is illustrated in
several relevant examples.
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