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Abstract In the study of drilling dynamics, many
investigations are limited to laboratory systems and
simple mathematical models. Using field measurement
data and a new dynamical model in a rotary steer-
able drilling system, we demonstrate the existence of
low-dimensional chaos in drilling. The behaviors of
the mathematical model and actual measurement are
shown to be consistent. The revealing of chaos pro-
vides a new way to detect early fatigue cracks as weak
signals in a noisy environment to reduce engineering
cost and the possibility of disaster.
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1 Introduction

Oil spill disaster as in the Gulf of Mexico has caused
great impact on lost assets, health, safety, and envi-
ronment. The cement work has agreed to be the main
reason relating to the investigation of the disaster. But
what are the factors that affect the quality of cement-
ing? Drilling dynamics [1] is a crucial problem that
must be attached great importance to. Many dangerous
phenomena related to drilling are normally caused by
the dynamics of the drillstring and its interactions with
the surroundings. Such as deterioration of the borehole
quality caused by the drilling dynamics will directly
affect the cementing quality. At a minimum, we should
kill a well [2] if the oil spill has begun. The direc-
tional drilling technology can help us to reach its tar-
get, and drilling dynamics play an important role in
the directional drilling control. Most of all, the drilling
dynamics will accelerate fatigue damage to the down-
hole tools and drillstring, which is the most common
phenomenon in the drilling process. Drillstring failure
may occur frequently. Not only does it cost billions of
dollars per year, but it also puts the drilling engineering
at risk.

Around 73% of inspected drillstrings are defec-
tive because of fatigue cracks. In order to improve
the drilling efficiency and tools reliability, an effective
detection [3] of downhole drillstring dynamics should
be done in order to detect the early fatigue cracks.
Nowadays, the three-dimensional downhole measure-
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ments could provide us the vibration signals supporting
the study. However, it is a great challenge like financial
crisis forecasting because the potential signals are so
weak. Fortunately, the detection of the “drilling chaos”
in this paper may provide a new way to amplify the
detection of these weak signals.

Since Lorenz revealed that small uncertainties in
an initial state can indeed lead to large errors [4],
many ordered and disordered system behaviors have
been interpreted using chaos theory [5–8]. The but-
terfly effect [4] is discovered with regard to the aero-
dynamics, and chaotic dynamics are found in many
hydrodynamical phenomena [7,8] and even in granu-
lar materials [9]. A solid can move like liquids as well
when the world’s slowest-moving drop caught on cam-
era at last [10]. Drilling through the formation can also
be regarded as a solid flow, which is different from
above. In oil and gas drilling engineering, drillstring
torsional vibration is a very common phenomenon that
has attracted great interest of researchers. Because of its
great dangers and inevitability in the drilling process,
it caused widespread concern after it has been discov-
ered [11–14]. The possibility of deterministic chaos in
the drillstring vibration also became a topic of inter-
est. Yigit and Christoforou [15] employed an Euler–
Bernoulli beam coupling of axial and lateral vibrations
resulted in chaotic response. VanDerHeijden [16] used
a model of differential equations proposed to describe
lateral drillstring vibrations, and analysis the bifurca-
tion and chaos in the simulation signals. Divenyi [17]
paid a special attention to stick-slip and bit-bounce
behaviors that are normally treated as the non-smooth
dynamics. However, direct evidence that determinis-
tic chaos of drillstring torsional vibration in practice
is missing. Additionally, previous studies are based on
some simple models that cannot be verified in a real
drilling system. Therefore, further investigation of the
newbifurcations numerically found in thepresent paper
should be ofmuch interest from drilling dynamical sys-
tems point of view.

We develop a push-the-bit rotary steerable drilling
system [18] (RSS), which is the fastest method for
turning a borehole in a preferred direction, to inves-
tigate drilling dynamics. A rotary steerable system is
a new form of drilling technology used in directional
drilling. It employs the use of specialized downhole
equipment to replace conventional directional tools
such as mud motors. Specifically, the behavior of the
drillstring while operating under torsional vibrations

[19], the main cause of damages to the drillstring, is of
great importance. In this article, we report the obser-
vation of low-dimensional chaos in the drillstring tor-
sional vibration using measurement data from the field
test using the RSS. The results are in good match with
mathematical models. To our knowledge, this is the
first report of the finding of order–chaos transitions in
a real drillstring system. In addition,we observe that the
change of the largest Lyapunov exponent can predict
the fatigue damage of the drillstring. And we provide
an index Fr, which can quantify the drillstring integrity
failure risk, is shown to be more reliable than current
measure used in drilling engineering.

2 Data acquisition and processing

RSS is a new technology used in directional drilling,
and the whole drillstring is rotated from the surface by
a hydraulically driven top drive, as show in Fig. 1a.

We develop a strap-down measurement-while-dril-
ling (MWD) surveying system that incorporates three-
axis magnetometers and three-axis accelerometers
arranged in three mutually orthogonal directions [20].
The sensors are installed inside non-magnetic drill col-
lar that can avoid the external magnetic interferences
[21]. Performance characteristics of the accelerometers
and magnetometers are summarized in Table 1.

Figure 1b shows the installing structure of down-
hole measurement system. E1–E9 in Fig. 1a indicates
the field experiments in China between the years of
2011–2013. ax , ay, az are defined as survey signals of
triaxial accelerometers on the xyz axis, respectively.
mx ,my,mz are defined as survey signals of triax-
ial magnetometers on the xyz axis, respectively, the
sampling frequency fs is 100Hz. Assume that the
Earth’s magnetic field strength as M. Obviously, M =√
m2

x + m2
y + m2

z . Under certain sample frequency,

measuring signal is time series and can be expressed

as time function. We can use ah = ±
√
a2x + a2y define

the lateral vibration of the BHA and use az express the
longitudinal vibration.

Triaxial magnetometers are installed 90◦ phase dif-
ference betweenmx andmy , assumemh is the horizon-
tal projection of the Earth’smagnetic field, after�t , the
drillstring rotates an angle of αn .

tg(αn) = mh · sin(αn)

mh · cos(αn)
= mx

my
(1)
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Fig. 1 Data acquisition system. a Rotary steerable drilling sys-
tem, E1–E9, indicates the field experiments using the RSS in
China, and the map is created by the Microsoft PowerPoint;

b construction of the downhole measurement system, three-axis
magnetometers and three-axis accelerometers arranged in three
mutually orthogonal directions

Table 1 Characteristics of sensors

Parameter Accelerometers
(MS9010)

Magnetometers
(CTM-DT06)

Range ±10g ±100,000nT

Scale factor 200mV/g 5V/G±5%

Nonlinearity 0.8% of SF –

Bias calibration <50mg ±0.005G

Noise 0.140 mg/
√
Hz ≤0.1nT

Bandwidth 1000Hz 350Hz

Thus,αn = arctg(mx
my

), as show in Fig. 2a, b, drillstring
rotary from αn to αn+1 though time �t , it defines the
rotary angle as a time series α(α1, α2, . . . , αn−1, αn),
drillstring rotational speed (RPM) is then defined as
follows:

RPM = 60

2π
ω = 60

2π
· (|αn| − |αn+1|)

�t
(r/min) (2)

There is a more practical approach to quantitative
analysis the bottom drilling tool motion characteristics,
through themeasurement of the bottomdrilling bit rota-
tion speed, as well as some other downhole measure-
ment parameters. Field observations based on down-

hole and surface vibration measurements have indi-
cated that drillstrings exhibit severe vibrations. These
vibrations are observed to become more severe at the
bottom-hole assembly (BHA). As shown in the Fig. 3b,
the value of the angular speed fluctuates between 0 and
120 r/min, which indicates that the system is in the state
of stick-slip. The survey signals of triaxial accelerom-
eters on the xyz axes as show in the Fig. 3a. These mea-
sured signals are used to analyze the drilling dynamics.

Moreover, as shown in Fig. 3a, when the drillstring
rotates, we define the displacement of point A at the
x axis as a time series S(s1, s2, . . . , sn−1, sn), with the
circle radius of R. Obviously, si = R sin(ωt). Then
the velocity time series V (v1, v2, . . . , vn−1, vn), the
acceleration time series A(a1, a2, . . . , an−1, an) can be
obtained.

3 Torsional dynamics model of rotary steerable
system

We developed a rotary steerable drilling system (RSS)
that mainly included two parts: strap-down measure-
ment-while-drilling (MWD) surveying system (Fig. 1b)
and oriented actuator (Fig. 4b). Next, we try to develop
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Fig. 2 The rotation speed calculation schematics ofmagnetome-
ters, a the model of rotation speed calculation; b survey signals
of magnetometers and calculational speed. When the drillstring

rotates from αn to αn+1 though time �t , drillstring rotational
speed (RPM) will be obtained using the survey signals of triaxial
magnetometers on the xy axis

a new model of the RSS to analyse the drilling dynam-
ics. In the outside of bottom-hole assembly (BHA) of
the RSS, we use three pads (Fig. 4b, c) which press
against the well bore thereby causing the bit to press on
the opposite side causing a direction change. The pads
of the implementing agency constantly push against the
borehole wall, making bottom hole a cycle of nonlinear
damping force. The oriented actuator is used to push
the pads to steer the drilling trajectory. Power section
consists of turbo generator, which is basically driven
by drilling fluid. The servo section stabilizes the disk
valve at a certain tool face angle, and then drilling fluid
moves the pads out by flowing through valves (Fig. 4b).
Drilling fluid pushes one of the pads to the borehole and
produces the steering force (Fig. 4c) that can orient the
drilling.

3.1 Drillstring model of RSS

The RSS is assumed as a rigid body, and the drillstring
is homogenous along its entire length and simply con-
sidered as a single linear torsional spring [22] of tor-
sional stiffness Kt and torsional dampingCt . The num-
ber of drillstrings can bemodified depending on system
analysis requirements. The jth drillstring is connected
to the BHA by means of Kb and Cb. The simplified
drillstring torsional vibrationmodel is shown in Fig. 2a.
The top drive torque is supposed to be constant and pos-

itive. The drillstrings are considered to have the same
inertia, and the drilling fluid is simplified by a viscous-
type friction element at the hit. The drillstring torsional
model [22] takes the following form:

Js�̇ + Ct
(
φ̇r − φ̇ j

)+ Kt (φr − φ j ) = Tdrive (3)

J φ̈ j + Ct
(
2φ̇ j − φ̇ j+1 − φ̇ j−1

)

+Kt
(
2φ j − φ j+1 − φ j−1

) = 0 (4)

Jbω̇ + Cb
(
φ̇b − φ̇ j

)

+Kb
(
φb − φ j

) = TY + Tbit (5)

where φb is the angular displacement of BHA; ω is the
angular speed of BHA; φr is the angular displacement
of the top drive;� is the angular speed of the top drive;
φ j is the angular displacement of j th drillstring; Jb is
the moment of the inertia of BHA; Js is the moment of
the inertia of the rotary table; J is the moment of the
inertia of drillstring; Tdrive is top drive input torque and
Tbit is the torque on the bit.

From theEq. (4), angular acceleration of the jth drill-
string φ̈ j can be expressed as:

φ̈ j = −Ct

J

(
2φ̇ j − φ̇ j+1 − φ̇ j−1

)

−Kt

J

(
2φ j − φ j+1 − φ j−1

)
(6)

Assume that the drillstring number is p, except both
sides, j = 2, 3, . . . , p − 1. Obviously, φ̇r = �, φ̇b =
ω, we will obtain the following equations:
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Fig. 3 The time series of
measurement. a Survey
signals of triaxial
accelerometers on the xyz
axes; b the time series of the
drillstring rotary speed
calculated by Eq. (2), the
unstable angular speed
indicates that the system is
in the stick-slip state

φ̈r = −Ct

Js

(
φ̇r − φ̇1

)− Kt

Js
(φr − φ1) + Tdrive

Js
(7)

φ̈1 = −Ct

J

(
2φ̇1 − φ̇r − φ̇2

)− Kt

J
(2φ1 − φr − φ2)

(8)

φ̈p = −Ct

J

(
φ̇p − φ̇p−1

)− Kt

J
(φp − φp−1)

−Cb

J

(
φ̇p − φ̇b

)− Kb

J
(φp − φb) (9)

φ̈b = −Cb

Jb

(
φ̇b − φ̇p

)− Kb

Jb
(φb − φp) + TY + Tbit

Jb
(10)

From the Eqs. (5)–(9), define a vector X = (φr , φ̇r , . . .,
φ j , φ̇ j , . . . , φb, φ̇b)

T, then:

Ẋ(t) = AX (t) (11)

Assume p = 4 in our simulation, the matrix of coeffi-
cients can be expressed as:

A =

⎡
⎢⎢⎢⎣

0 1 0 0
− Kt

Js
−2Ct

Js
Kt
Js

Ct
Js

0 0 0 1
Kt
Jb

Ct
Jb

− Kt
Jb

−Ct+Cb
Jb

⎤
⎥⎥⎥⎦ (12)

The parameters in the simulation are show in the
Table 2.
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Fig. 4 Torsional dynamics
model. a Drillstring
torsional vibration model,
there are many drillstrings
not indicated in the figure; b
structure of the strap-down
rotary steerable drilling
system; c the cross-sectional
view of the pads coming
from (b), if has three pads,
and the outside is borehole
wall

(a) (c)

(b)

Table 2 System parameter values used to generate numerical results for comparison with experimental results

Variable Value Units Variable Value Units

Js 0.518 kgm2 Jb 0.0318 kgm2

J 0.025 kgm2 Cb 0.01 Nms/rad

Ct 0.0001 Nms/rad Kb 0.073 Nm/rad

Kt 0.073 Nm/rad Ks 1.2×10−4 Nm/rad

M1 1000 kg M2 12.5 kg

R, rh 0.1555 mm e1 1.57×10−5 –

e2 −0.658 – μd 0.3 –

μs 0.35 – ζ 0.01 –

3.2 Steering force

TY is themain difference between an ordinarily drilling
system and a RSS. As shown in Fig. 4c, TY is the cycle
torque force generated by the pads pushing the borehole
during the process of oriented drilling. The push-the-bit
RSS works at automatic control mode that three pads
push in turn when the drillstring rotates. The friction
torque generated by pads can be expressed as:

TY = Fsteering · sin
(

1

2π fF
t

)
· μ(ω) · R (13)

where R is the borehole radius, 0.0841m. The function
μ(ω) represents the dry friction, and it uses the sign
of the angular velocity. We use the harmonic vibration
model (Fig. 5) to define the drilling fluid dynamics [23,
24] of hydraulic drive, and the hydraulic actuator is
modeled as a combination of an ideal velocity source
and a spring for modeling the compressibility affects of
the fluid medium. A schematic of this model is shown
in Fig. 5 (up), and the flow rate to/from the actuator is
related to the ideal velocity as,

Ẋi = Q1

A1
= −Q2

A2
(14)
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Mp

MpMa

Fig. 5 Schematic and model of hydraulic actuator adopted in
this paper illustrating the drilling fluid dynamics

where Ẋi is the ideal velocity, and Qi and Ai cor-
respond to the flow rate and piston area in chamber
i ∈ (1, 2), respectively. The modeling paradigm of the
actuator is as shown in Fig. 5 (down), and the dynam-
ics of a hydraulic actuator is more aptly captured by
a nonlinear spring. The dynamics of master and slave
inertias is given by,

Ma Ẍa = Fa − Fv (15)

Mp Ẍ p = Fa + Fs (16)

and the vibration frequency of the Mp is expressed as,

fF = 1

2π

Ma + Mp

MaMp
Ks (17)

wherein Ks is the equivalent stiffness.
Fsteering is defined as the maximum of the steering

force (Fig. 4c) that associates with the drilling fluid

pressure.We conduct the ground tests to obtain the rela-
tionship between Fsteering and the drilling fluid pressure
(Δp, MPa), as show in Fig. 6a. Least-squares fitting of
the experimental data points can be obtained:

Fsteering = 5.4275�p + 0.1057 (18)

Wherein�p is the drilling fluid pressure, which can be
obtained fromexperimental data, as show in the Fig. 6b.

We use the equation proposed by Spanos et al. [25],
assuming that the friction is considered to be evenly
distributed on the front face of the bit.

Tbit = Fw

[
2

3
rhu(ω) + ζ

√
rhδc

]
(19)

where Fw is the weight on bit, rh is the drill bit radius,
δc is the average cutting depth, and ζ is a dimensionless
parameter that characterizes the force necessary to cut
the rock. The average cutting depth, δc, is obtained from
the following relation:

δc = 2πrp
�

(20)

where rp is the average rate of penetration, calculated
as a function of the applied weight on bit, Fw, and the
rotary table rotation, �, using the following empirical
relation:

rp = e1Fw

√
� + e2 (21)

where e1 and e2 are constants.

3.3 Friction model

We define the dry friction as a continuous function to
describe both the static and dynamic friction. Using the

Tank

Centrifugal Pump

Flowmeter
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Gauge

Speed sensor

Thrust force sensors

Drive
motor

RSS

y = 5.4275x + 0.1057 
R² = 0.99739

0

5

10

15

20

25

30

35

0 1 2 3 4 5 6

F s
te
er
in
g  

(k
N

)

Drilling fluid pressure (Mpa)

(b)(a) Computer

Fig. 6 Ground tests to obtain the relationship between Fsteering and the drilling fluid pressure. a The flowchart of the steering force test;
b least-squares fitting of the experimental data
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Fig. 7 The curve generated from a dry friction of model

coulomb friction model [26], as shown in Fig. 7, the
constantsμs andμd are the static and dynamic friction
coefficients, respectively. Assuming that v is the slip
velocity at the friction point, vs is stiction transition
velocity; vd is the friction transition velocity.

Set μ(−vs) = μs , μ(vs) = −μs , μ(0) = 0,
μ(−vd) = μd , μ(vd) = −μd . Then the function u(v)

can be defined as follows:

μ(v) = −sign(v) · μd |v| > vd (22)

μ(v) = −s(|v|, vd , μd , vs, μs) · sign(v) vs ≤|v|≤vd

(23)

μ(v) = s(v − vs, μs, vs − μs) |v| < vs (24)

The s(x, x0, h0, x1, h1) function can be defined as fol-
lows, assume that x is the independent variable, x0 is
a real variable that specifies the x value at which the s
function begins, x1 is a real variable that specifies the
x value at which the s function ends, h0 is the initial

value of the step, h1 is the final value of the step, and
assume a = h1 − h0, Δ = (x − x0)/(x1 − x0), then:

s(x, x0, h0, x1, h1)

=
⎧
⎨
⎩
h0 x ≤ x0
h0 + a · Δ2(3 − 2Δ) x0 < x < x1
h1 x ≥ x1

(25)

We do not allow vs = 0, the friction transition veloc-
ity vd is greater than the stiction transition velocity vs
by definition.

4 Chaos identification

In the simulation, the top drive input torque Tdrive,
drilling fluid pressure �p, and weight on bit Fw can
be used the experimental data, as show in the Fig. 8.

4.1 Phase-space reconstruction

Toperformdynamical analyses,weuse the phase-space
reconstruction method [27] (apply the mutual infor-
mation [28] to estimate embedding delay, and Cao’s
method [29] to determine the embedding dimension)
to reconstruct the attractor and estimate the correlation
dimension [30] and largest Lyapunov exponents (LLE)
[31].

We obtained the first minimum of the mutual infor-
mation calculated at τ = 10 and the embedding
dimension is 6. We then represent the system by a
phase-space trajectory X̄(t) = (A(t), V (t), S(t)), as
shown in Fig. 9.We compare the phase-space trajectory

Fig. 8 Time series of the
top drive input torque Tdrive,
drilling fluid pressure �p,
and weight on bit Fw are
measurement data of the
field test, with sample
frequency of 0.1Hz
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The chaotic dynamics of drilling 2011

Fig. 9 The 3D phase-space trajectory of real and simulated data;
Part a, c are produced by experimental data (E3), Part b, d are
produced by simulation data, and the simulation results and real
data results match well; the limit cycle has lost its stability. The

colored shades of Part c, d correspond to projections of the set on
the different coordinate planes of Part a, b, respectively. (Color
figure online)

X̄(t) using the experimental data of E3 and simulated
data. The phase-space of our system is at least three-
dimensional, and the oscillatory tends to give rise to a
strange attractor in both real and simulated data.

The main difference between the push-the-bit RSS
and ordinary drilling system is the friction torque (TY )

that generated in the process of pads pushed against
the borehole wall. The simulation results show that the
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Fig. 10 Phase-space of experimental data and simulation data.
The first row a.1–a.3 is produced by the system only has the
torque on the bit, the red dot of the a.1 is the experimental data
come from the ordinarily drilling system, we can see the phase-
space of our system has a limit cycle. The second row b.1–b.3
is produced when the RSS is worked, and pads pushed to the
bit generated the torque TY lead to the system to chaotic. The
third row c.1–c.3 is produced by the Tbit = 0, just the simulation

results which will not present to the real drilling process. In addi-
tion, the first column is the phase-space of torsional velocity and
acceleration, the second column is the phase-space of torsional
velocity and steering force, and the third column is the phase-
space of torsional velocity and the one of pads shift. Along with
the TY increased, we first found the sequence of order to chaos
transitions in the drillstring system. (Color figure online)

drilling bit torsional vibration phenomena perceptible
increased when the friction torque exist.

As show in the Fig. 10, we found that the TY
will change the kinetic properties of the system. Fig-
ure 10a1–a3 is the simulation results when we set as

F( fF ) = 0, like the ordinarily drilling system, shows
the dynamics of the system only have the torque on the
bit (Tbit), the stable limit cycle indicates that the sys-
tem incline to a period. When the F( fF ) increases, the
limit cycle loses its stability gradually, and we can see
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The chaotic dynamics of drilling 2013

from the Fig. 10b1–b3, which produced by Tbit + TY ,
the phase-space trajectory shows fractal. Figure 10c1–
c3 shows the dynamics of the system having only the
torque TY , which is more obvious that the chaos exists
in the system. We can found the vibration sequences
are transition from order to chaos along with the TY
increased.Generally, the drilling systemwillworkedon
the pattern of A and B, the red dot in the Fig. 10a.1, b.1
is generated from measurement data, which are good
matched to the simulation results. However, we have
not measured the steering force and the pads shift that
is why we cannot obtain the phase-space in the column
2 and 3 of Fig. 10.

4.2 Largest Lyapunov exponent and correlation
dimension

The LLE estimation is derived on the algorithm in
[32]. The positive value indicates exponential diver-
gence of trajectories and hence an evidence of chaos.
Furthermore, we use the Grassberger–Procaccia (GP)
[30] algorithm to estimate the correlation dimension
D2. We use 100,000 data points as one data set, and the
whole drilling experimental data are calculated. Data
from all nine fields in China are used in our studies. The
results are shown inTable 3. Bothmeasures indicate the
existence of low-dimensional chaos in drillstring tor-
sional vibration. The results are carried out with Tisean
package [33], version 3.01.

As show in the Fig. 11a, b, the largest Lyapunov
exponent is estimated through least-squares line fit for
the time series and is found to be 0.011 of the experi-
mental data ofE3field test and 0.013of simulation data.
This positive value indicates exponential divergence of

Table 3 Chaos identification of test data

LLE D2

E1 0.013 ± 0.003 1.8 ± 0.2

E2 0.015 ± 0.004 2.1 ± 0.15

E3 0.011 ± 0.002 1.6 ± 0.2

E4 0.011 ± 0.0014 1.8 ± 0.2

E5 0.018 ± 0.003 2.3 ± 0.3

E6 0.013 ± 0.0018 1.8 ± 0.2

E7 0.021 ± 0.0024 2.2 ± 0.3

E8 0.012 ± 0.004 1.7 ± 0.24

E9 0.022 ± 0.005 2.3 ± 0.4

trajectories and hence an evidence of chaos. Further-
more, as show in Fig. 11c, d, the slope of log(CD(r))
gives us an estimation of the correlation dimension D2.
We present the estimated slope as a function of logr for
embedding dimensionsm = 1 up to 10. In all cases we
obtain a convergence toward a correlation dimension of
D2 ≈ 1.6 with the experimental data and a correlation
dimension of D2 ≈ 1.8 with the simulation data.

4.3 Stationarity and determinism tests

Since linear statistics, such as themean or standard data
deviation, usually do not possess enough discrimina-
tion power when analyzing irregular signals, nonlinear
statistics have to be applied. We apply the stationar-
ity test [34] program stationarity.exe provided by Perc
[35,36]. They split the time series into several short
non-overlapping segments and then use a particular
data segment to make predictions in another data seg-
ment. By calculating the cross-prediction error (δgh)

when considering points in segment g to make pre-
dictions in segment h, the cross-prediction error as a
function of g and h then reveals which segments dif-
fer in their dynamics. They obtained a very sensitive
statistic capable of detecting changes in dynamics and
thus a very powerful probe for stationarity.

The average cross-prediction errors for all possi-
ble combinations of g and h are presented in Fig. 12.
The whole time series was partitioned into 56 non-
overlapping segments eachoccupying1000data points.
The average value of all δgh is 0.17, while the mini-
mum and maximum values are 0.03 and 0.3, respec-
tively. Since the maximal cross-prediction error is not
one time larger than the average, we can determine that
the studied time series is stationarity. We just consider
only 1000s of the torsional vibration time series. Other-
wise, longer data sets of the vibration time series almost
yield non-stationary.

Additionally, the results of the surrogate data analy-
sis could be further confirmed by applying the deter-
minism test [37],which enables us to verifywhether the
time series we have obtained originated from a deter-
ministic process. In this paper,weuse themethoddevel-
oped by Kaplan and Glass [38] in order to examine the
possible deterministic nature of the underlying process,
if the system is deterministic, the average length of all
directional vectors k will be 1, while for a completely
random system k ≈ 0.
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Fig. 11 Chaos identification, Part a, b estimating the maximal
Lyapunov exponent of torsional vibration time series. The part a
shows the result for the experimental data, the straight line indi-
cates λ = 0.011. For comparison, part b shows the result for the
simulation data, the straight line indicates λ = 0.013. Part c, d
give us an estimation of the correlation dimension D2. In all two

cases the GP algorithm converges, creating a plateau on the slope
of the correlation integral. The red-dashed curves give estimates
of the correlation dimension in all two cases: experimental time
series D2 = 1.6 and simulation time series D2 = 1.8. The all
results in these figureswere carried out with Tisean package [33],
version 3.01. (Color figure online)

As shown in Fig. 13, the value of the determinism
factor k is in the range 0.5–0.9, indicating the possible
stochastic nature of the underlying process.

5 Quantification of drillstring integrity failure risk

The drillstrings are mechanical systems which undergo
complex dynamical phenomena, often involving non-
desired oscillations. Three main types of oscillations
are distinguished: torsional, axial and lateral vibration
[12,39–41]. These oscillations are a source of failures
that reduce penetration rates and increase drilling oper-
ation costs. Stick-slip phenomenon appearing at the

bottom-hole assembly (BHA) is particularly harmful
for the drillstring, and it is a major cause of drill pipes
and bit failures, in addition towell bore instability prob-
lems [41].

The risk of a vibration-related integrity failure of
drillstring can be predicted by using vibration mea-
surement to calculate some severity index [42], defined
as Ic = a1.5rmst

0.5
d . It relates to the average root-mean-

square (RMS) acceleration (arms) and duration of the
run time (td), where the RMS acceleration is defined
as,

arms =
√

1

td

∫ td

0
a(t)2dt (26)
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Fig. 12 Stationarity test. The color map displays average cross-
prediction errors δgh in dependence on different segment combi-
nations. (Color figure online)

Fig. 13 Deterministic test for measurement time series. The val-
ues of determinism factor k are given for embedding dimensions
in the range m = 2−10. It is evident that k � 0.95, indicating
the possible random (stochastic) behavior

RMS increases with the presence of increasing
vibration level. The number of vibration samples used
to calculate each feature sample is set to be N =
50,000, which means that the time interval between
two successive feature samples is�t = N/ fs = 500 s.
The authors and field engineers have found that this
time frame is acceptable for the requirement of time
accuracy. Additionally, Field data indicates that higher
rotary speeds generally lead to increased levels of lat-
eral vibration, as shown in the Fig. 14.

This failure detection is a very important issue in
drilling. It is difficult to extract the weak signals in
such a drilling system. The measured data from such
a system contain detailed dynamic characteristics of
the measured structure, but the amount of data is often
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Fig. 14 Statistical analyses indicated there is direct relationship
between RPM and lateral vibration levels (RMS lateral acceler-
ation)

huge. How to efficiently and accurately extract concise,
clear, and unique system dynamic characteristics and
health information from such a large set of data is very
difficult. Moreover, dynamics-based system identifica-
tion is a very challenging reverse engineering task. It
is even more important to have a signal processing and
data mining method that can extract from each set of
experimental data as many system parameters as pos-
sible. A damaged structure shows nonlinearities and
intermittent transient response in its time traces ofmea-
sured points. The acquisition and analysis of this data
provided new insights into the dynamic behavior of
drillstring.

Nonlinear dynamical systems sometimes exhibit
chaotic behavior, and theLyapunov exponent is a useful
tool to distinguish andmeasure the extent of chaos. Pre-
vious studies on chaos and on the Lyapunov exponents
have found applications to several fields such as turbu-
lence, communication, and heartbeats. However, little
research has been done on the relationship between
the behavior of Lyapunov exponents and fault detec-
tion. In the history of the field of fault detection, many
methods have been proposed to extract and analyze
experimental data in order to detect faults and assist
in diagnosis [43–45]. Difficult to detect faults early on
due to certain weakly developing faults is usually cov-
ered by background noise and other chaotic elements.
If the signal to noise ratio (SNR) is low, weak fault sig-
nals may not be extracted from background noise using
only the above-mentioned methods. In recent years, as
chaos theory has developed, some new technologies
(especially phase-space reconstruction) have begun to
be applied to extract information hidden beneath exper-
imental data [46,47]. The largest Lyapunov exponent
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is usually used to distinguish and to measure chaos
of dynamical systems. The exponent or its change can
have some relationships with system faults. Usually,
the equations of the dynamical systems are difficult to
obtain directly; only time series data sets are observ-
able. There are varieties of faults which are hard to
detect directly from the data itself. The LLE is the indi-
cator of divergence or convergence of two trajectories
with nearby initial conditions, and it could be sensitive
to small changes of the systems. However, the relation-
ship between the LLE and the system damage level is
not clear and rarely studied up to now.Basedon theLLE
calculation method and considering the conditions of a
real system and the measured data, the changes of the
LLE are applied to fault detection of the RSS in this
paper.

The severity index of vibration measurement is lack
of sensitivity.Assume that Ln is theLLEof nth data set;
we define the drillstring integrity failure risk parameter
Fr as,

Fr =
∑

n→N

(
Ln − Ln+1

Ln
+ 1

)
· a1.5rms · t0.5d (27)

We got the results of the risk parameter Fr and com-
pare it with the Ic as shown in Fig. 15.

We chose six field test data sets as shown in Fig. 1a.
Three of them are from drillstring failure, and three of
them are in good condition. We calculate both indices
at the beginning and the end of the drilling process. By

Fig. 15 Vibration index charts. We use 1e6 data points as one
data set to calculate the vibration index. In the six field tests as
shown in Fig. 1a, E3, E5 and E7 are failure cases. Both indices Ic
and Fr are less than one at the beginning of the drilling process,
and the indices increase at the end of the drilling process. This
is different from the normal cases E1, E6 and E9, in which the
drillstrings are in good condition for the entire drilling process. It
is noted that Ic cannot identify the failure in sample 2, while the
ruptured dynamical approach can detect the weak failure signal

comparing the variation of coefficients, we observe that
the proposedmeasure provides amore reliable solution
to support risk management processes with regard to
drillstring failures. The chaos detected is related to the
inner dynamic characteristics of drillstring.

6 Discussion

Torsional dynamics can be extremely damaging to
downhole drilling tools and can significantly affect
drilling efficiency. The effort to prevent this phenom-
enon has led to the development of various down-
hole mitigation tools, improved bit technologies and
bottom-hole assembly (BHA) designs, and better man-
agement of drilling parameters. This article proposes
a theoretical model of push-the-bit RSS that lesser-
known types of torsional dynamics observed while
drilling. In addition, a real drilling system is devel-
oped to validate the theoretical dynamical behavior. It
is observed here that drilling can lead to drilling chaos
and the observation can be used to detect weak failure
signal in a complicated and noisy drilling environment
for early warning detection. Since most researches in
universities are limited to laboratory or theoretical stud-
ies due to the high cost of drilling, our findings reduce
this gap by calculating physical nonlinear dynamical
model with real drilling experiments. The existence of
chaos in drilling may open a new concept of drilling
chaos in the solid flow mechanics that will benefit to
both the physicists and the drilling engineers.

7 Methods

7.1 Phase-space reconstruction

The dynamics of the time series x0, x1, . . . , xn−1 are
fully captured or embedded in them-dimensional phase
space, m ≥ d where d is the dimension of the original
attractor. A vector 	xi in the reconstructed phase space
[27] is constructed from the time series as follows:

	xi = [
xi , xi−τ , . . . , xi−(m−1)τ

]
(28)

where τ is the delay time.
Cao’s method [29] computes E1 and E2 for the data

set of dimension 1 up to a dimension of D, which is the
largest embedding dimension, used for calculation. E1

and E2 are defined as follows:
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E1(d) = 1

N − dτ

∣∣∣∣
N−dτ∑

i=1

∣∣xi+dτ − xn(i,d)+dτ
∣∣
∣∣∣∣ (29)

E2(d) = E1(d + 1)/E1(d) (30)

whereind is the embeddingdimension, N is the number
of data points, τ is the embedding delay, xi+dτ and
xn(i,d)+dτ is the i-th vector in the data sets and its nearest
neighbors of d-dimensional phase space.

7.2 Largest Lyapunov exponent (LLE)

The basic characteristics of chaotic motion are that the
movement is extremely sensitive to initial conditions,
two very close initial values resulting in orbit over time
by separating exponentially, Lyapunov exponent [31,
32] that describes the amount of this phenomenon.

We use the algorithm of Rosenstein et al. [32] to
calculate the LLE. The results were carried out with
Tisean package [33], version 3.01. Consider the rep-
resentation of the time series data as a trajectory in
the embedding space and assume that observe a very
close return sn′ to a previously visited point sn . Then
consider the distance�0 = sn−sn′ as a small perturba-
tion,�l = sn+l −sn′+l . If one finds that

∣∣�l
∣∣ ≈ �0eλl ,

then λ is the largest Lyapunov exponent.
Assuming S(ε,m, t) exhibits a linear increase with

identical slope for all m larger than some m0 and for a
reasonable range of ε, and then this slope can be taken
as an estimate of the largest exponent.

S(ε,m, t) =
⎧
⎨
⎩ln

⎛
⎝ 1

un

∑
sn′ ∈un

∣∣sn+t − sn′+t
∣∣
⎞
⎠
⎫
⎬
⎭

n

(31)

7.3 Correlation dimension

The correlation dimensionmethod is used for detecting
the presence possibility of chaos. An algorithm pro-
posed by Grassberger and Procaccia [30] is the most
commonly applied method. According to this method,
the correlation sum, C(r), is expressed as:

C(r) = 2

N (N − 1)

N∑

i=1

N∑

j=i+1

H
(
r − ‖xi − x j‖

)

(32)

where H is Heaviside step function defined as:

H(x) =
{
0 when x ≤ 0
1 when x ≥ 0

(33)

N is the number of points in time series; r is the radius
of a sphere with its center at either of current points.
Then the correlation dimension is:

D2 = lim
D→∞
r→0

d ln(C(r))

d ln r
(34)

When the system is chaotic, the slope of logC(r)
versus log r converges to D2 over an appropriate inter-
val as m increases. The results were carried out with
Tisean package [33], version 3.01.
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