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Abstract This paper aims at investigating the semi-
passive dynamic walking of a torso-driven biped robot
under theOtt–Grebogi–Yorke (OGY) control approach
as it goes down inclined planes. For the control,we used
the desired torso angle as the accessible control para-
meter. Compared with our work in Gritli et al. (Non-
linear Dyn 79(2):1363–1384, 2015), a modified design
of the OGY-based controller is proposed in this paper.
Such controller is obtained by linearizing the impulsive
hybrid nonlinear dynamics of the biped robot around a
desired one-periodic hybrid limit cycle. Both the dif-
ferential equation and the algebraic equation are lin-
earized. As a result, we develop a simple mathemat-
ical expression of a controlled hybrid Poincaré map.
Determination of its fixed point and its Jacobian matrix
requires only the knowledge of the nominal impact
instant. We show efficiency of the designed OGY con-
troller for the control of chaos in the impulsive hybrid
nonlinear dynamics for some desired nominal values of
the slope, and the desired torso angle. Furthermore, we
analyzed via bifurcation diagrams the displayed behav-
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iors in the controlled semi-passive biped robot as the
slope parameter varies. We show the appearance of a
Neimark–Sacker bifurcation and a cyclic-fold bifur-
cation, and also the exhibition of chaos. Our analysis
of the controlled semi-passive gait is achieved also by
means of the spectrum of Lyapunov exponents. Such
study is realized via the controlled hybrid Poincarémap
where a reduction of its dimension is achieved.
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Controlled hybrid Poincaré map · OGY-based control ·
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1 Introduction

It is well known nowadays that passive dynamic walk-
ing of biped robots descending inclined planes exhibits
chaos and several types of bifurcations. Iqbal et al. pre-
sented in [14] a review on studies realized on analysis
of bifurcations and chaos in passive dynamic walking.
Such walking mode displays the conventional scenario
of period-doubling bifurcations as route to chaos, the
cyclic-fold bifurcation, the type-I intermittency and the
interior crisis as two novel routes to chaos, the bound-
ary crisis causing the sudden death of the bipedal chaos
[3,5,6,8–10,12,16–18,24,27,29].

It has been known that the spectrum of Lyapunov
exponents has been investigated as one of the most
important and precise dynamical diagnostics to quan-
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tify and provide characteristics of attractors of dynam-
ical systems [19–21]. Moreover, the sign of the largest
Lyapunov exponent can infer the stability of sys-
tems and can rigorously prove the stability of the
nonlinear system under control [26]. In [6], we ana-
lyzed order/chaos by means of the spectrum of Lya-
punov exponents and the fractal Lyapunov dimen-
sion in order to distinguish between different dis-
played periodic/chaotic attractors displayed in the pas-
sive dynamic walking of the compass-gait model and
the semi-passive dynamic walking of the torso-driven
biped model. The numerical procedure used for calcu-
lating the spectrumofLyapunov exponents is presented
in [6]. Such numerical calculation was based mainly
on the Gram–Schmit Reorthonormalization procedure
[21].

Furthermore, we showed recently in [4] that the
semi-passive dynamic walking of a torso-driven biped
robot exhibits a novel type of local bifurcation, namely
the torus (secondary-Hopf or Neimark–Sacker) bifur-
cation. It is known that theNeimark–Sacker (secondary-
Hopf) bifurcation and the torus bifurcation are the same
from dynamics point-of-view when dealing with the
Poincaré map of a limit cycle of the corresponding
ODE [15]. Furthermore, the Neimark–Sacker bifurca-
tion is characterized by the birth in the Poincaré sec-
tion of a closed invariant curve from a fixed point,
when the fixed point loses its stability via a pair
of complex-conjugate eigenvalues with unit modulus.
Thus, the Neimark–Sacker bifurcation generates an
invariant two-dimensional torus in the corresponding
ODE [15].

On the other hand, the issue of chaos control in pas-
sive dynamic walking was not much treated (see [7,
11,14] and references therein). Recently, we employed
the OGY-based control approach in order to control
chaos for the passive dynamic walking of the compass-
gait biped robot [11] and for the semi-passive dynamic
walking of the torso-driven biped robot [7]. In [11] we
used the hip torque as the controller input. However, in
[7],we used the desired torso angle as the available con-
trol parameter. Thewalkingmodel of such biped robots
is modeled by an impulsive hybrid nonlinear dynamics
composed of a nonlinear differential equation describ-
ing the dynamics during the swing phase and a non-
linear algebraic equation representing the impulsive
dynamics during the instantaneous impact phase. The
OGY control method is based mainly on the lineariza-
tion of the controlled Poincarémap [1]. Thus, the essen-

tial key in the design of the OGY control is the deter-
mination of an analytical expression of the controlled
Poincaré map. Then, in order to overcome such design
problem, ourmethodologywas based chiefly on the lin-
earization of the nonlinear differential equation around
a nominal one-periodic limit cycle (only the flow dur-
ing the swing phase). Thus, we obtained a linear differ-
ential equation. However, the algebraic equation was
kept nonlinear in [7,11]. Accordingly, we formulated
an impulsive hybrid linear dynamics, which generates
features fairly close to those of the original impulsive
nonlinear dynamics. Then, we developed an analytical
expression of a controlled hybrid (constrained) nonlin-
ear Poincaré map. Thus, we designed an OGY control
law (a state-feedback controller) to stabilize the one-
periodic fixed point of such Poincaré map.

We note that the design method of an OGY-based
control for a nonlinear dynamics using an accessible
control parameter offers two strategies for the lineariza-
tion process. The first strategy is to linearize the nonlin-
ear dynamics around a desired one-period limit cycle
without taking into account the accessible parameter
as the control input. Then, after linearization, we will
obtain an expression of the linear model and hence of
thePoincarémapwhere the control parameter (as a con-
trol input) is expressed within the different matrices of
the linear model. Such linearization method was real-
ized in [7]. In contrast, the second offered strategy is to
linearize the nonlinear system by considering from the
start that the available control parameter will be used
as the control input. Then, the linearized dynamics will
be expressed linearly in terms of the control parame-
ter as the control input similar to that obtained in [11].
Thus, one obtains a Poincaré map linearly defined with
respect to the control parameter. In this paper, in Sect. 2,
we use this linearization method in order to design a
controlled hybrid linear Poincaré map completely dif-
ferent to that developed by us in [7]. Moreover, the
algebraic equation of the impulsive hybrid nonlinear
dynamics is also linearized in this paper. We show that
such Poincaré map is simple enough to be amendable
to both theoretical and numerical analyses. We demon-
strate that the identification of the fixed point of the
hybrid linear Poincaré map requires the resolution of
only one scalar function contrary to our results in [7].

We demonstrated recently in [4], based on bifurca-
tion diagrams, Floquet multipliers and Poincaré sec-
tions, that the semi-passive dynamics of the torso-
driven biped robot under the OGY control exhibits the
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classical period-doubling route to chaos and also the
torus (Neimark–Sacker) bifurcation as the slope para-
meter varies. In this paper, in Sect. 3, we analyze chaos
and bifurcations exhibited in the impulsive hybrid non-
linear dynamics of the torso-driven biped robot under
the modified OGY control method by means of bifur-
cation diagrams. We show that the parameters of the
designed OGY control are almost identical to that cal-
culated in [4,7]. Nevertheless, this slight difference
will provoke an important and dramatic change in the
behavior of the controlled semi-passive gaits of the
biped robot as the slope parameter varies. Further-
more, we show that the Neimark–Sacker bifurcation
still exists. Moreover, an analysis of the attractors in
the 2D Poincaré section raised through the Neimark–
Sacker bifurcation is also presented.We show the trans-
formation of the closed invariant cycle born just after
the Neimark–Sacker bifurcation into the chaotic attrac-
tor as the bifurcation parameter varies.

In addition, in this paper and in [4], we encoun-
tered some problems and difficulties in the develop-
ment of the variational equation in order to provide
characteristics of the displayed attractors by means of
the spectrum of Lyapunov exponents using the impul-
sive hybrid nonlinear dynamics with the OGY control
law. These difficulties arise not because the nonlinear
dynamics is hybrid, but because of the presence of the
OGY controller. Then, in order to overcome such prob-
lems, which is the second objective of this paper, we
used the controlled hybrid linear Poincaré map (with
the OGY control) for the evaluation of the spectrum
of Lyapunov exponents in Sect. 4. This tool will be
employed to analyze and quantify chaos and order in
the semi-passive bipedal dynamic walking of the torso-
driven biped robot under the OGY control based on
the designed controlled hybrid linear Poincaré map. In
order to calculate adequately the spectrumof Lyapunov
exponents, a reduction of the dimension of such hybrid
map is realized also in this section. Section 5 provides
a discussion on the obtained results and the perfor-
mance/drawback of the OGY-based control approach.
The conclusion and some future works are presented
in Sect. 6.

Fig. 1 Semi-passive torso-driven biped robot on an inclined sur-
face of slope angle ϕ. Here, θs , θns and θt denote the stance (sup-
porting) angle, the swing (nonsupporting) angle and the torso
angle. Values of important simulation parameters for the semi-
passive walking dynamics of the biped robot are given in [7]

2 Modified OGY control method for the
semi-passive torso-driven biped robot

2.1 The semi-passive torso-driven biped robot

The torso-driven biped robot is illustrated in Fig. 1 [5–
7,9]. Such biped is composed of two identical legs: a
stance leg and a swing leg, a frictionless hip connect-
ing the two legs, and a torso as an upper-body. We
introduced only one torque u between the torso and
the stance leg, whereas the swing leg is non-actuated.
The controller u is employed in order to stabilize the
torso at some desired position (desired torso angle θd

t )
and hence in order to achieve a semi-passive dynamic
walking down an inclined plane. We designed such
controller in [6,7,9], which is named the semi-passive
control law. We reported in [9] that the torso can be
used as a mechanism for controlling chaos. In [7], the
desired torso angle θd

t was used as the accessible con-
trol parameter for chaos control subject based on the
OGY approach.
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2.2 Impulsive hybrid nonlinear dynamics
of the semi-passive torso-driven biped robot

Under some basic modeling hypotheses [7], the semi-
passive dynamic walking of the torso-driven biped
robot is composed of two alternating phases, namely
the swing phase and the impact phase. The swing
phase is modeled by a nonlinear differential equation,
whereas the impact phase is described by a nonlin-
ear algebraic equation. Under the semi-passive con-
trol law u, these equations define then the impulsive
hybrid nonlinear dynamics, which reveals the semi-
passive dynamic walking of the torso-driven biped
robot. According to [7], the impulsive hybrid nonlin-
ear dynamics is expressed in terms of the desired torso
angle θd

t as follows:

ẋ = f (x) + g(x)θd
t as long as x ∈ Ω, (1a)

x+ = h
(
x−) whenever x− ∈ Γ, (1b)

where

Ω =
{
x ∈ �6 : L1 (x) > 0

}
, (2a)

Γ =
{
x ∈ �6 : L1 (x) = 0, L2 (x) < 0,

L3 (x) > 0} , (2b)

and superscripts + and − denotes the value of the
state vector x just after and just before the impact
phase, respectively. “Appendix 1” describes, using the
Lagrangian formalism, the mathematical model of the
torso-driven biped robot and the corresponding state
representation where expressions of all terms f (x),
g(x) and h(x) in (1) are given. Moreover, the devel-
oped expression of the semi-passive control law u is
presented also in this Appendix. Readers can refer to
[9,13] for further details about the method for deter-
mining the algebraic equations (1b).

We note that the nonlinear differential equation (1a)
models the motion of the biped robot during the swing
phase, whereas the nonlinear algebraic equation (1b)
translates the impulsive dynamics during the impact
phase. The set Γ defines the unilateral rigid constraints
of the biped robot as it walks down the slope. However,
the set Ω describes the constraint on the movement of
the biped robot during the swing phase.

We stress that the two constrains L1 (x) = 0 and
L2 (x) < 0 in (2b) are expressed as follows:

L1 (x) = Cx + 2ϕ = 0, (3a)

L2 (x) = ∂L1 (x)

∂x
ẋ < 0. (3b)

where C = [
1 1 0 0 0 0

]
. In fact, according to

the expression of L1(θ) = 0 (or L1(x) = 0) in
(21b), it is easy to demonstrate that the condition
l (cos(θs + ϕ) − cos(θns + ϕ)) = 0 can be recast as
θns + θs + 2ϕ = 0. Then, we will obtain expression
(3a).

2.3 Modified OGY-based control of the semi-passive
bipedal dynamic walking

In this section, we describe the modified OGY-based
control method for the semi-passive dynamic walk-
ing of the torso-driven biped robot compared with that
developed in [7]. We recall that our methodology for
designing the OGY controller was realized according
to the following steps:

1. Linearization of only the nonlinear differential
equation (1a) around a desired one-period flow
revealing the motion of the biped only during the
swing phase. The algebraic equation (1b) was not
linearized.

2. Determination of a reduced impulsive hybrid lin-
ear dynamics with a nonlinear algebraic equation
different to (1b).

3. Determination of an explicit expression of a con-
trolled hybrid Poincaré map, which is nonlinear
with respect to the state vector and alsowith respect
to the control input (the desired torso angle).

4. Identification of the one-periodic fixed point of the
controlled hybrid nonlinear Poincaré map,

5. Linearization of the controlled hybrid nonlinear
Poincaré map around the identified one-periodic
fixed point by considering here the accessible con-
trol parameter θd

t as the control input for the stabi-
lization subject.

6. Stabilization of the linearized Poincaré map with a
classical state-feedback control law.

We stress that in [7], the accessible control parame-
ter θd

t was taken into account as the control input only
in the 5th step. In this paper, the OGY control approach
will be based also almost on these six steps. However,
some improvements on our design strategy will be per-
formed. Firstly, we will consider from the beginning
that the accessible control parameter θd

t is the control
input in the impulsive hybrid nonlinear dynamics (1).
Secondly, we will linearize the whole impulsive hybrid
nonlinear dynamics [the nonlinear differential equa-
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tion (1a) together with the nonlinear algebraic equa-
tion (1b)] around a desired one-periodic hybrid limit
cycle. Such linearization strategywill give us a reduced
impulsive hybrid linear dynamics with a linear alge-
braic equation. As a result, we will obtain an analytical
expression of a controlled hybrid linear Poincaré map,
which will be found to be simpler than that developed
in [7] and to be simple enough to be amendable for
analysis.

2.3.1 Linearization of the impulsive hybrid nonlinear
dynamics around a desired one-periodic hybrid
limit cycle

Consider first, for some desired nominal slope ϕn and
for some nominal desired torso angle θd

tn , the desired
one-periodic flow xd(t) = φd

(
t, x−

d , ϕn, θd
tn

)
describ-

ing a desired one-periodic hybrid limit cycle in the
state space of the impulsive hybrid nonlinear dynamics
defined by (1). Moreover, we consider x−

d the desired
one-periodic fixed point of the desired hybrid limit
cycle. For this desired fixed point, it corresponds a
desired step period (desired impact instant) τd .

The first step lies in the linearization of the non-
linear differential equation (1a) around n points χ i ,
for i = 1, 2, . . . , n, of the desired one-periodic flow,

such that χ i = xd

(
ti +t(i−1)

2

)
= xd

( 2i−1
2n τd

)
where

ti = i
n τd . Then, around each point χ i , we define a

linear submodel Mi valid during a well-defined time
interval:

[
t(i−1) ti

]
(see [7] for more details). Hence,

by considering the desired torso angle θd
t as the con-

trol input in the nonlinear differential equations (1a),
each linear submodel Mi , for i = 1, 2, . . . , n, around
the point defined by the pair

(
χ i , θd

tn

)
is formulated as

follows:

ẋ = Ai x + Di + Biθ
d
t for t(i−1) ≤ t ≤ ti , (4)

with Ai = f x

(
χ i
) + gx

(
χ i
)
θd

tn , Bi = g
(
χ i
)
, and

Di = f
(
χ i
) − Aiχ i , where f x = ∂ f (x)

∂x and gx =
∂ g(x)

∂x .
This expression of the differential equation of the

linear submodel (4) is different to that developed in [7]
and that not contains the term Biθ

d
t . Moreover, in [7],

the control input θd
t is expressed into the two matrices

Ai and Di (see “Appendix 2” for the linear submodel
derived in [7]).

The second step in the linearization process of the
impulsive hybrid nonlinear dynamics (1) is to lin-
earize the nonlinear algebraic equation (1b) around the

desired one-periodic fixed point x−
d of the hybrid limit

cycle. Thus, we obtain the following linear algebraic
equation:

x+ = Mx− + N for t = τd , (5)

withM = hx
(
x−

d

)
andN = h

(
x−

d

)−Mx−
d , where

hx = ∂h(x)
∂x .

2.3.2 Determination of a reduced impulsive hybrid
linear dynamics

According to [7], by solving the linear differential equa-
tions of only the first (n − 1) submodel Mi , the lin-
earization procedure around the desired one-periodic
hybrid limit cycle will give us the following formula-
tion of a reduced impulsive hybrid linear model:
{

ẋ = Anx + Dn + Bnθd
t , as long as x ∈ Ω

x+ = J 1x−+H1+G1θ
d
t whenever x− ∈ Γ

,

(6)

withJ 1 =
(∏n−1

i=1 e
τd
n Ai

)
M,G1 =∑n−1

i=1

(∏n−1
j=i+1

e
τd
n A j

) (
e

τd
n Ai − I

)
A−1

i Bi , and H1 =
(∏n−1

i=1

e
τd
n Ai

)
N + ∑n−1

i=1

(∏n−1
j=i+1 e

τd
n A j

) (
e

τd
n Ai − I

)

A−1
i Di . Here and in the sequel of this paper, I is the

identity matrix with appropriate dimension.
We stress that the linear differential equation in (6)

describes the last step in the swing phase of the biped
robot. Then, we emphasize that the two constrains
L2 (x) < 0 andL3 (x) > 0 describing the set Γ for the
impact conditions are always satisfied with the reduced
impulsive hybrid linear model (6). Then, for simplic-
ity, these two constraints will not be considered in the
sequel.

2.3.3 Development of the explicit expression
of the controlled hybrid Poincaré map

Let us define first the following notations:

– x−
k is the initial state just before the impact for the

kth cycle,
– τk is the impact instant for the kth cycle,
– θd

tk is the desired torso angle applied during the kth
cycle, and

– x−
k+1 is the initial state for the (k + 1)th cycle.

Relying on our work in [7], the resolution of the lin-
ear differential equation in (6) and the use of the linear
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algebraic equation will give us an analytical expression
of a controlled hybrid linear Poincaré map defined as
follows:
⎧
⎨

⎩

x−
k+1 = P (x−

k , τk, θ
d
tk

)

s.t.
Q (x−

k , τk, θ
d
tk

) = 0
, (7)

with

P
(
x−

k , τk, θ
d
tk

)
= J (τk) x

−
k

+H (τk) + G (τk) θd
tk, (8a)

Q
(
x−

k , τk, θ
d
tk

)
= J 0 (τk) x

−
k

+H0 (τk) + G0 (τk) θd
tk, (8b)

whereJ (τk) = J 2 (τk)J 1,H (τk) = J 2 (τk)H1+
H2 (τk), G (τk) = J 2 (τk)G1 + G2 (τk), J 0 (τk) =
CJ (τk), H0 (τk) = CH (τk) + 2ϕ, and G0 (τk) =
CG (τk), with J 2 (τk) = eτkAn , H2 (τk) = (J 2 (τk)

−I)A−1
n Dn , and G2 (τk) = (J 2 (τk) − I)A−1

n Bn .

It is obvious that the controlled hybrid Poincaré map
(7) is linear in terms of the state vector x−

k and also the
control parameter θd

tk contrary to that developed in [7]
where the Poincaré map is fully nonlinear.

2.3.4 Determination of the one-periodic fixed point
of the controlled hybrid Poincaré map

This section is dedicated for the determination of the
relations allowing us to calculate the one-periodic fixed
point of the controlled hybrid Poincaré map (7) for
the nominal desired torso angle θd

t∗ = θd
tn . Let x

−∗ be
the one-periodic fixed point of the controlled hybrid
Poincaré map. For this fixed point, it corresponds a
nominal impact instant τ∗. The fixed point can be
obtained by enforcing the periodicity x−

k+1 = x−
k =

x−∗ . Hence, the one-periodic fixed point x−∗ together
with θd

t∗ and τ∗ must verify the following expressions:

P
(
x−∗ , τ∗, θd

t∗
)

− x−∗ = 0, (9a)

Q
(
x−∗ , τ∗, θd

t∗
)

= 0. (9b)

Relying on expressions (8a) and (8b), we can show
that the nominal impact instant τ∗ is the solution of the
following scalar function:

C
(
J (τ∗) (I − J (τ∗))−1 + I

)

(
H (τ∗) + G (τ∗) θd

t∗
)

+ 2ϕ = 0. (10)

Using the following relation:

J (τ∗) (I − J (τ∗))−1 + I = (I − J (τ∗))−1 , (11)

then expression (10) will be simplified as follows:

C (I − J (τ∗))−1
(
H (τ∗) + G (τ∗) θd

t∗
)

+ 2ϕ = 0.

(12)

We stress that function (12) is nonlinear with respect
to the unknown variable τ∗. Hence, the only possible
way to solve it is numerically.

Once the impact time τ∗ is calculated numerically,
the fixed point x−∗ will be evaluated according to the
following expression:

x−∗ = (I − J (τ∗))−1
(
H (τ∗) + G (τ∗) θd

t∗
)

. (13)

It is obvious that the identification of the fixed point
x−∗ needs only the resolution of the scalar function (12)
contrary to our designed method in [7] where the fixed
point x−∗ and the impact time τ∗ must be computed
numerically together.

2.3.5 Linearization of the controlled hybrid Poincaré
map around its one-periodic fixed point

Let us consider first the following notations: �x−
k+1 =

x−
k+1 − x−∗ , �x−

k = x−
k − x−∗ , and Δθd

tk = θd
tk −

θd
t∗. Relying on the expression of the controlled hybrid
Poincaré map (7) and the relation (9a), the linearization
of the controlled hybrid Poincaré map around the one-
periodic fixed point x−∗ yields:

Δx−
k+1 = DP x−∗ Δx−

k + DPθd
t∗Δθd

tk, (14)

with DP x−∗ = DP x−
k

(
x−

k , τk, θ
d
tk

)
∣
∣(x−∗ ,τ∗,θd

t∗
) is

the Jacobianmatrix, andDPθd
t∗ = DPθd

tk

(
x−

k , τk, θ
d
tk

)

∣∣(x−∗ ,τ∗,θd
t∗
) is the derivative of the controlled hybrid

Poincaré map with respect to the control parameter
θd

tk . “Appendix 3” provides the method for establishing
expressions of the two matrices DP x−

k

(
x−

k , τk, θ
d
tk

)

and DPθd
tk

(
x−

k , τk, θ
d
tk

)
using expression of the con-

trolled hybrid Poincaré map (7) with relations in (8).

123



Bifurcations and chaos in the semi-passive dynamic walking under OGY control 1961

Based on expression (13) of the one-periodic fixed
point x−∗ and expressions in (27), the two matrices
DP x−∗ andDPθd

t∗ in the linearized controlled Poincaré
map (14) are expressed like so:

DP x−∗ =
[

I − An (I − J (τ∗))−1 (H (τ∗) + G (τ∗) θd
t∗
)C + (Dn + Bnθd

t∗
)C

CAn (I − J (τ∗))−1 (H (τ∗) + G (τ∗) θd
t∗
)+ C (Dn + Bnθd

t∗
)

]

J (τ∗) , (15a)

DPθd
t∗ =

[

I − An (I − J (τ∗))−1 (H (τ∗) + G (τ∗) θd
t∗
)C + (Dn + Bnθd

t∗
)C

CAn (I − J (τ∗))−1 (H (τ∗) + G (τ∗) θd
t∗
)+ C (Dn + Bnθd

t∗
)

]

G (τ∗) . (15b)

It is worth noting that the state matrix DP x−∗ and
the input matrix DPθd

t∗ depend only upon the nominal
impact instant τ∗. Expressions of these two matrices
are simpler than those presented in [7].

2.3.6 Stabilization of the one-periodic fixed point

According to [7], stabilization of the discrete linear
system (14) is achieved with a classical state-feedback
controller Δθd

tk = KΔx−
k . Hence, stabilization of the

one-periodic fixed point x−∗ of the controlled hybrid
Poincaré map (7) is realized with the following OGY-
based control law:

θd
tk = θd

t∗ + K (x−
k − x−∗

)
. (16)

The research for thematrix gainK of the control law
is subject to the resolution of a linear matrix inequality
[7].

2.3.7 Application of the OGY control into the
impulsive hybrid nonlinear dynamics

We have chosen first the same nominal values as in [7],
i.e., a desired nominal slope ϕn = 5 and a nominal
desired torso angle θd

tn = 0. For these nominal values,
the semi-passive gait of the torso-driven biped robot is
chaotic [5,7]. Relying on the previous subsections, the
parameters of the OGY control (16) are:
x−∗ = [16.2245 − 26.2245 − 0.0510 − 118.8042
−95.8755 0.2238]T andK = [5.2077−0.93561.1625
− 0.0516 1.0082 0.3042]. For such fixed point x−∗ , it
corresponds the nominal impact instant τ∗ = 0.1173
(or τ∗ = 0.8230 after scaling according to [7]). We
stress that these results are fairly close to that iden-
tified in [7] with a slight difference in the value of
the gain matrix K. Application of the OGY control
law to the impulsive hybrid nonlinear dynamics of the

torso-driven biped robot has controlled chaos as seen
in Fig. 2. Figure 2a shows the variation of the step
period of the controlled semi-passive dynamic walk-
ing of the biped robot, whereas Fig. 2b reveals the

variation of the desired torso angle or the OGY con-
trol law at each walking step. Here, the departure point
of the controlled semi-passive gait is chosen to be the
fixed point x−∗ itself of the desired one-periodic hybrid
limit cycle. Although chaos is controlled, nevertheless
the one-periodic fixed point at which the controlled
semi-passive gait converges is completely different to
the desired fixed point x−∗ and hence the desired step
period τ∗ where the nominal desired torso angle is
θd

tn = 0 . The controlled step period stabilizes at the
value 0.8197 and the desired torso angle is found to
converge to the value −2.1691. Moreover, such sta-
bilization needs almost 100 steps of the biped robot.
We note that this unexpected result is completely dif-
ferent to that found in [7], where the semi-passive
gait converges nearly to the desired one-period cyclic
motion.

In addition, we have chosen another value of the
nominal desired torso angle θd

tn = 20 and we kept the
same nominal slope ϕn = 5. We stress that the uncon-
trolled semi-passive gait of the torso-driven biped robot
is also chaotic [5,7]. Numerical calculation of the one-
periodic fixed point of the hybrid Poincaré map and the
gain matrix gave the following results:
x−∗ = [10.2346 − 20.2346 20.0004 − 121.4976
−66.5838 −0.0016]T ,K = [5.1745 −0.8128 1.0744
− 0.0563 1.1977 0.3255], and τ∗ = 0.1234 (or τ∗ =
0.8687 after scaling). With these values of the OGY
control law (16), the chaotic semi-passive gait is well
controlled as seen in Fig. 3. Here, the departure point of
the semi-passive gait is chosen arbitrary to be different
to the identified fixed point x−∗ . The step period con-
verges to the value 0.8699 and the desired torso angle
converges to 20.1624. These results are almost identical
to the desired ones. Compared to the previous case, the
chaotic semi-passive gait needs about 20 steps in order
to be controlled. In the present case, results obtained
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Fig. 2 Controlled step period (a) and controlled desired torso angle (OGY control law) (b) for the nominal values ϕn = 5 and θd
tn = 0

Fig. 3 Controlled step period (a) and controlled desired torso angle (OGY control law) (b) for the nominal values ϕn = 5 and θd
tn = 20

from the OGY control of the impulsive hybrid nonlin-
ear dynamics are more convincing (Fig. 3).

3 Analysis of the controlled impulsive hybrid
nonlinear dynamics via bifurcation diagrams

In this section,we aim at investigatingmainly bymeans
of bifurcation diagrams the displayed behaviors in
the impulsive hybrid nonlinear dynamics of the torso-
driven biped robot under the OGY control designed
in the previous section. In addition, these behaviors
will be compared with those identified in [4] in order

to highlight the difference between the linearization
method of the impulsive hybrid nonlinear dynamics
developed in this paper and that achieved in [7]. Then,
we have chosen the desired nominal slope ϕn = 5
and the two nominal values of the desired torso angle:
θd

tn = 0 (as in [4]) and θd
tn = 20. Thus, using the calcu-

lated parameters of theOGYcontrol law in the previous
section, we vary gradually the slope angle ϕ (chosen to
be the bifurcation parameter) in order to show the influ-
ence/performance of the OGY control on the behavior
of the controlled semi-passive dynamic walking of the
biped robot under variation of the slope parameter.
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Fig. 4 Bifurcation diagrams (a and c: step period, b and d:
desired torso angle, i.e., the OGY control) revealing the dis-
played behaviors of the semi-passive dynamic walking of the
torso-driven biped robot under the OGY control as the slope

parameter ϕ varies for the nominal slope ϕn = 5 and for two
different nominal desired torso angles: a and b for θd

tn = 0, and
c and d for θd

tn = 20

Figure 4 shows the different bifurcation diagrams
revealing the controlled step period as well as the
desired torso angle (the OGY control law) of the con-
trolled semi-passive gait of the biped robot under the
OGY control. It is obvious that, as the bifurcation para-
meter ϕ is swept from left to right from the nominal
value ϕn = 5, the controlled impulsive hybrid nonlin-
ear dynamics exhibits only one-periodic motions in a
very narrow interval of slopes. The one-periodic behav-
ior is terminated at ϕ = 5.011 (resp. ϕ = 5.075)
for θd

tn = 0 (resp. θd
tn = 20) through a cyclic-fold

bifurcation (indicated by CFB) leading hence to the
abrupt fall of the biped robot. However, when the
bifurcation parameter is swept in the opposite direc-
tion, the controlled semi-passive dynamics displays a
Neimark–Sacker bifurcation (marked NSB in Fig. 4) (a
secondary-Hopf bifurcation or a torus bifurcation) as
in [4] giving rise hence to the generation of a quasi-
periodic behavior. This Neimark–Sacker bifurcation
occurs at the parameter ϕ = 4.185 (resp. ϕ = 4.635)
for θd

tn = 0 (resp. θd
tn = 20). On further decreasing

the parameter ϕ, the controlled impulsive hybrid non-
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Fig. 5 Transformation of the closed invariant circle born via the
Neimark–Sacker bifurcation (for the case ϕn = 5 and θd

tn = 0)
into a chaotic attractor in the 2D Poincaré section as the slope

parameter decreases: a ϕ = 4.18, b ϕ = 4.01, c ϕ = 3.98 and d
ϕ = 3.93

linear dynamics experiences the formation of chaos
and as a result the sudden death of the bipedal chaos
at ϕ = 3.928 (resp. ϕ = 4.435) for θd

tn = 0 (resp.
θd

tn = 20) by means of a boundary crisis [5].
Figure 5 shows different attractors in the 2D pro-

jected Poincaré section (θ̇−
ns versus θ−

ns). These attrac-
tors are plotted for different values of the slope para-
meter ϕ beyond the Neimark–Sacker bifurcation and
for the nominal slope ϕn = 5 and the nominal desired
torso angle θd

tn = 0. Figure 5a depicts the 2D torus
(or equivalently the 2D closed invariant circle) for the
slope parameter ϕ = 4.18. The transient dynamics is
shown inside the invariant circle in Fig. 5a. By moving

slightly the bifurcation parameter ϕ, the closed invari-
ant circle loses progressively its own shape, as seen in
Fig. 5b for ϕ = 4.01 and Fig. 5c for ϕ = 3.98. For
these two parameters, the controlled dynamics of the
biped robot under consideration is also quasi-periodic,
but the form of the 2D closed invariant curve becomes
more complex as the slope parameter ϕ decreases. Fig-
ure 5c reveals a chaotic attractor in the 2D projected
Poincaré section for ϕ = 3.93.

In order to better understand the behavior of the
torso-driven biped robot under control as it goes down
an inclined surface, we have captured both the one-
periodic gait for the slope angleϕ = 4.4 and the chaotic
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Fig. 6 Numerical
simulation of the
one-periodic gait (a) and the
chaotic gait (b) for ϕ = 4.4
and ϕ = 3.93, respectively

gait for ϕ = 3.93, as seen in Fig. 6. Figure 6a shows
some typical steps of the one-periodic gait, whereas
Fig. 6b reveals 12 steps of the chaotic gait. In these
two pictures, the values under the slope indicate the
period of each step. It is obvious that the step period
keeps the same value for ϕ = 4.4, but it is erratic for
ϕ = 3.93. Moreover, it is clear from Fig. 6b that at
each step, the torso of the biped robot reaches a new
desired position. Nevertheless, such desired position of
the torso varies also in a chaotic manner as observed
in the bifurcation diagram in Fig. 5b. Thus, the torso
can be stabilized either in the backward position or in
the forward position as the biped robot walks down the
slope.

Figure 7 shows the previous displayed nonlinear
phenomena in Fig. 4 (indicated by A2) and those (indi-
cated by A1) identified in [4]. We emphasize that only
the case for ϕn = 5 and θd

tn = 0 was investigated
by us in [4]. The other case (ϕn = 5 and θd

tn = 20)
is investigated for the first time in this paper. It is
obvious from Fig. 7 that the displayed behaviors in
the impulsive hybrid nonlinear dynamics under the
two OGY controllers are completely different. For the
attractor A1, the impulsive hybrid nonlinear dynamics
under the OGY control experiences a period-doubling
route to chaos from the critical point ϕ = 6.33 (resp.
ϕ = 5.954) for θd

tn = 0 (resp. θd
tn = 20) giving

then rise to an interval of slopes for an efficient con-
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Fig. 7 Bifurcation diagrams: step period (a, c) and desired torso
angle (OGY controller) (b, d) as the bifurcation parameter ϕ

varies, for the nominal slope ϕn = 5 and for two different values
of the nominal desired torso angle: a and b θd

tn = 0, c and d

θd
tn = 20. Here, we plot the behavior of semi-passive gait under
the OGY control designed in this paper (attractor A2) and that
observed in [4] using the OGY control method developed in [7]

trolled one-periodic semi-passive gait larger than that
of the attractor A2. In addition, we emphasize that the
attractor A1 was found to exhibit also the Neimark–
Sacker bifurcation [4]. We stress that the displayed
behaviors for the two controlled semi-passive walking
dynamics for slopes inferior to ϕn = 5 have almost
the same shape. In addition, it is worth noting that
for all slopes, the attractor A2 is developed in a very
small interval of slopes compared with the attractor
A1.

4 Calculation of the spectrum of Lyapunov
exponents via the controlled hybrid Poincaré
map

In this section, we aim at computing the spectrum of
Lyapunov exponents in the impulsive hybrid nonlinear
dynamics (1) under the OGY controller (16) in order to
investigate further periodic, quasi-periodic and chaotic
gaits. However, morbid problems have been encoun-
tered in which we are unable to calculate the Jacobian
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matrix of the continuous dynamics (1) under the OGY
control and hence we are unable to compute numeri-
cally the fundamental solution matrix. We note that in
[6], we calculated the spectrum of the Lyapunov expo-
nents in the impulsive hybrid nonlinear dynamics but
without control (the desire torso angle θd

t was kept con-
stant). Then, in order to prevent the computation prob-
lem of Lyapunov exponents, our main idea is to use
the controlled hybrid Poincaré map (7) under the OGY
control (16).

Furthermore, the second problem in the calcula-
tion of the spectrum of Lyapunov exponents via the
controlled hybrid Poincaré map lies in its dimension.
Indeed, we note first that the dimension of the impul-
sive hybrid nonlinear dynamics (1) is 6. Then, we have
6 Lyapunov exponents: λ0, λ1, λ2, λ3, λ4 and λ5,
where λ0 is always zero [6,21]. Moreover, the con-
trolled hybrid Poincaré map (7) is also 6-dimensional.
However, the Poincaré map must be 5-dimensional.
Then, using expression (7) to calculate the spectrum of
Lyapunov exponentsmakes the numerical computation
results unreliable. Therefore, to prevent also this prob-
lem, a dimension reduction of the hybrid Poincaré map
will be achieved. As a result, the five Lyapunov expo-
nents calculated using the reduced-dimension Poincaré
map will be approximately: λ1, λ2, λ3, λ4 and λ5.

4.1 Dimension reduction of the controlled hybrid
Poincaré map

Using expression of the control law (16), the controlled
hybrid Poincaré map (7) in closed loop becomes:
⎧
⎪⎨

⎪⎩

x−
k+1 = P̂ (x−

k , τk
) = Ĵ (τk) x

−
k + Ĥ (τk)

s.t.
Q̂ (x−

k , τk
) = Ĵ 0 (τk) x

−
k + Ĥ0 (τk) = 0

, (17)

where Ĵ (τk) = J (τk) + G (τk)K, Ĥ (τk) =
H (τk) + G (τk)

(
θd

t∗ − Kx−∗
)
, Ĵ 0 (τk) = CĴ (τk),

and Ĥ0 (τk) = CĤ (τk) + 2ϕ.

We note that in (3), C =
[
1 Ĉ

]
, where Ĉ =

[
1 0 0 0 0

]
. Posing x−

k =
[

x−
1,k
z−k

]
, where x−

1,k ∈ R

and z−k ∈ R
5×1. Then, using expression (3a), we can

write the following relations lying z−k and x−
k :

x−
k = Φ z−k + Θ, (18a)

z−k = Ψ x−
k , (18b)

where Φ =
[ −Ĉ
I5×5

]
, Θ =

[ −2ϕ
O5×1

]
, and Ψ =

[O5×1 I5×5
]
, withO is the zero matrix.

Then, relying on relations in (18), expressions in
(17) are reformulated as follows:
⎧
⎪⎨

⎪⎩

z−k+1 = P̌ (z−k , τk
) = J̌ (τk) z

−
k + Ȟ (τk)

s.t.
Q̌ (z−k , τk

) = J̌ 0 (τk) z
−
k + Ȟ0 (τk) = 0

, (19)

where J̌ (τk) = Ψ Ĵ (τk)Φ, Ȟ (τk) = Ψ Ĵ (τk)Θ +
Ψ Ĥ (τk), J̌ 0 (τk) = Ĵ 0 (τk)Φ, and Ȟ0 (τk) =
Ĵ 0 (τk)Θ + Ĥ0 (τk).

Hence, expression (19) reveals the reduced-
dimension controlled hybridPoincarémap in the closed
loop.

4.2 Analysis of order/chaos with the spectrum of
Lyapunov exponents

We emphasize that the numerical computation of the
spectrum of Lyapunov exponents via the controlled
hybrid Poincaré map (19) was achieved by means of
its Jacobian matrix DP̌ (z−k , τk

)
[21]. “Appendix 4”

presents themethod for determining expression of such
Jacobian matrix.

In order to classify approximately the observed
(periodic and chaotic) attractors in the bifurcation dia-
grams in the previous Sect. 3, the bifurcation diagram
of the controlled hybrid Poincaré map system (19) for
the case ϕn = 5 and θd

tn = 0, and the corresponding
Lyapunov exponents diagram are given in Fig. 8a, b,
respectively. Figure 8c, d are an enlargement of Fig. 8a,
b, respectively. In Fig. 8d, we plotted only the two
largest Lyapunov exponents λ1 and λ2 in order to show
the variation of the largest Lyapunov exponent λ1.

It is obvious that the regions where all Lyapunov
exponents are negative correspond to periodic attrac-
tors and that with a positive Lyapunov exponent (i.e.,
λ1 > 0) correspond to chaotic attractors. Furthermore,
when λ1 = 0, then the controlled behavior of the
bipedal gait is quasi-periodic, as depicted in Fig. 8d.
Moreover, it is worth noting that when the periodic
solution meets the Neimark–Sacker bifurcation and
also the cyclic-fold bifurcation, the two largest Lya-
punov exponents λ1 and λ2 tends to zero, as shown in
Fig. 8b. The diagram of Lyapunov exponents in Fig. 8b
(resp. (d)) is in good agreement with the bifurcation
diagram in Fig. 8a (resp. (c)).
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Fig. 8 a The bifurcation diagram of the controlled hybrid Poincaré map (19) with respect to the slope parameter ϕ and b variation of
the Lyapunov exponents with respect to the slope parameter ϕ. c and d are a blow-up view of a and b, respectively

5 Discussion

We have seen that chaos and bifurcations were dis-
played in the OGY-based controlled hybrid Poincaré
map and also in the impulsive hybrid nonlinear dynam-
ics of the torso-driven biped robot under the OGY con-
trol as the slope parameter ϕ varies. Then, we can stress
that the OGY control, since it was developed using
the Poincaré map’s concept and via its linearization
around the one-periodic fixed point and for some nom-
inal value ϕn of the slope, its effect was remarkable
only around such nominal value. Then, asϕ varies away
of its nominal value, the OGY control loses progres-
sively its performance and hence the torso-driven biped
robot under the OGY control will generate some unex-

pected behaviors, i.e., the cyclic-fold bifurcation, the
Neimark–Sacker bifurcation and chaos. Such nonlin-
ear phenomena can be observed also using other con-
trol methods such as the damping method, which was
used by Goswami et al. [2].

On the other hand, we can emphasize that the major
drawback of the OGY-based control approach was due
to the (long) waiting time until the system trajectory
(the flow) enters with the Poincaré section (here the
walking surface Γ in (2b)) a close neighborhood of
the target one-periodic limit cycle. In fact, in literature,
several papers have showed the drawbacks of the OGY
method in some dynamic systems (see for example [1,
25,28]). It has been shown that the dynamics of the
controlled system under the OGY method can change
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and accordingly exhibits different nonlinear behaviors
and generally the period-doubling route to chaos was
generated.

6 Conclusion and future works

In this work, we analyzed bifurcations and chaos in
the semi-passive dynamic walking of the torso-driven
biped robot under an OGY-based controller where the
desired torso angle was the accessible control parame-
ter. Such controller was designed firstly by linearizing
the impulsive hybrid nonlinear dynamics of the semi-
passive biped robot around a desired one-period hybrid
limit cycle, and secondly by developing an analyti-
cal expression of a controlled hybrid Poincaré map.
We linearized both the differential equation and the
algebraic equation of the semi-passive walking model.
Hence, the Poincaré map was found to be linear in
terms of the state vector and also in terms of the con-
trol input, the desired torso angle. We demonstrated
that identification of the one-periodic fixed point of
the hybrid Poincaré map and calculation of its Jaco-
bian matrix depend only upon the impact instant. We
showed that application of the designed controller into
the impulsive hybrid nonlinear dynamics has controlled
chaos.

In addition, we analyzed the performance of the
OGY-based controller on the behavior of the semi-
passive biped robot as the slope parameter varies. We
showed through bifurcation diagrams that, for some
nominal values of the slope and the desired torso
angle, the controlled semi-passive dynamic walking of
the biped robot exhibits a cyclic-fold (resp. Neimark–
Sacker) bifurcation for slopes higher than (inferior to)
the nominal slope. Moreover, we showed that, on fur-
ther decreasing the slope parameter, chaos was devel-
oped. In addition, we analyzed the closed invariant
circle and its deformation to a chaotic attractor in
the 2D Poincaré section as the bifurcation parameter
varies.

Furthermore, our investigation on chaos and bifur-
cations in the semi-passive walking dynamics under
the OGY-based control approach was achieved by
means of the spectrum of Lyapunov exponents. In fact,
in order to overcome the calculation problem of the
spectrum of Lyapunov exponents via the continuous-
time impulsive hybrid nonlinear dynamics, such study
was done via the controlled hybrid Poincaré map.

To achieve this objective, we reduced the dimension
of the hybrid Poincaré map (under the OGY con-
troller) and we determined expression of the Jacobian
matrix.

Our proposed strategy for the building of an ana-
lytical expression of the controlled hybrid Poincaré
map from the impulsive hybrid nonlinear dynamics
for the OGY-based controller design can be applied
for several model of biped robots with a more compli-
cated morphology, such as the passive biped robot with
knees (and with torso), the compass-gait biped robot
with semicircular feet (with knees and/or torso), etc.
Moreover, developing a controller using the designed
controlled hybrid Poincaré map without linearizing it
should be considered as future works.

Furthermore, as chaos and bifurcations were dis-
played in the hybrid Poincaré map under the OGY
control, we can use the multiparameter control method
[22] or the semi-continuous method [23] in order to
improve the response of the torso-driven biped robot
while walking down the inclined surface.

Appendix 1

In this appendix, we describe the impulsive hybrid non-
linear dynamics (1)–(2) of the torso-driven biped robot
based on the Lagrangian formulation [6,7].

Lagrangian representation

As θ = [ θns θs θt
]T

is the vector of generalized coor-
dinates of the torso-driven biped robot, the impulsive
hybrid nonlinear dynamics of its dynamic walking is
modeled as follows [7]:

J (θ)θ̈+H(θ , θ̇)+G(θ)=Bu as long as θ ∈ Ω,

(20a)
{

θ+ = Reθ
−

θ̇
+ = Seθ̇

− whenever
{
θ , θ̇
}

∈ Γ , (20b)

where subscribes + and − mean just after and just
before the impulsive impact phase, respectively. In
(20), J is the inertia matrix, H includes Coriolis and
centrifugal terms, G includes gravity forces, B is the
input matrix, Re is the position renaming matrix, and
Se is the velocity reset matrix. These matrices are
expressed like so:
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J (θ) =
⎡

⎣
mb2 −mlbcos(θs − θns) 0

−mlbcos(θs − θns) ma2 + (m + m H + mT )l2 mT rlcos(θs − θt )

0 mT rlcos(θs − θt ) mT r2

⎤

⎦ ,

H(θ , θ̇) =
⎡

⎣
mlbθ̇2s sin(θs − θns)

−mlbθ̇2nssin(θs − θns) + mT rl θ̇2t sin(θs − θt )

−mT rl θ̇2s sin(θs − θt )

⎤

⎦ ,

G(θ) = g

⎡

⎣
mbsin(θns)

−(ma + (m + m H + mT )l)sin(θs)

−mT rsin(θt )

⎤

⎦ ,

B =
⎡

⎣
0
1

−1

⎤

⎦ , Re =
⎡

⎣
0 1 0
1 0 0
0 0 1

⎤

⎦ ,

Se = Re − ReM−1
e N e

(
D−1

e + N T
e M−1

e N e

)−1Qe,

N e = QT
e − CeD−1

e , Me = J − CeD−1
e CT

e ,

De = (2m + m H + mT )I2,

Qe =
[

lcos(θns) −lcos(θs) 0
lsin(θns) −lsin(θs) 0

]
, and

Ce =
⎡

⎣
mbcos(θns) mbsin(θns)

− (ma + (m + m H + mT ) l) cos(θs) − (ma + (m + m H + mT ) l) sin(θs)

−mT rcos(θt ) −mT rsin(θt )

⎤

⎦ .

In (20), the two sets Ω and Γ are described as fol-
lows:
Ω = {

θ ∈ �3 : L1(θ) = l (cos(θs +ϕ)−cos(θns +ϕ)) > 0
}

(21a)

Γ =
⎧
⎨

⎩

L1(θ) = l (cos(θs +ϕ)−cos(θns +ϕ)) = 0
L2(θ , θ̇) = l

(
sin(θns +ϕ)θ̇ns −sin(θs +ϕ)θ̇s

)
< 0

L3(θ) = l (sin(θns)−sin(θs)) > 0

⎫
⎬

⎭

(21b)

Semi-passive control law

As described in [6,7], the main role of the control law
u is to stabilize the torso of the biped robot at some
desired position (or systematically at some desired
torso angle θd

t ) in order to achieve a semi-passive
dynamic walking. Then, according to [7], the designed
semi-passive control input u is expressed as follows:
{

u = (CN (θ))−1 (v − CM(θ , θ̇)
)

v = −Kd θ̇t + Kp(θ
d
t − θt )

(22)

where Kp and Kd are two gains of the semi-passive
control law u, C = [ 0 0 1

]
,

M(θ, θ̇) = −J (θ)−1
(H(θ, θ̇) + G(θ)

)
, and N (θ)

= J (θ)−1B.

State representationof the semi-passivewalkingdynam-
ics

Using expression of the semi-passive control law (22),
the impulsive hybrid nonlinear dynamics defined by
(20) and (21) is reformulated hence with the state rep-
resentation (1) and (2).

In (1), f (x)=
[

θ̇(
I3− N (θ)C

CN (θ)

)
M(θ , θ̇)− N (θ)C

CN (θ)

(Kpθ + Kd θ̇
)
]
,

g(x) =
[

03×3
N (θ)
CN (θ)

Kp

]
, h (x) =

[
Re 03×3
03×3 Se

]
x, and I3

is the three-dimensional identity matrix.

Appendix 2

According to [7], linearization of the nonlinear dynam-
ics (1a) around a desired one-periodic flow is achieved
without considering that the desired torso angle θd

t is
effectively the control input. Then, each linear sub-
model Mi , for all i = 1, 2, . . . , n, around the point
χ i is defined as follows:

ẋ = Ai x + Di for t(i−1) ≤ t ≤ ti ,
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with Ai = f x(χ i ) + gx(χ i )θ
d
t , and Di = (

f (χ i )

− f x(χ i )χ i
)+(g(χ i ) − gx(χ i )χ i

)
θd

t , where f x(x)

= ∂ f (x)
∂x , and gx(x) = ∂ g(x)

∂x .

Appendix 3

In this section, we define expressions of the Jacobian
matrixDP x−

k

(
x−

k , τk, θ
d
tk

)
and thematrixDPθd

tk

(
x−

k ,

τk, θ
d
tk

)
, which are introduced in the linearized con-

trolled Poincarémap (14). According to [11], these two
matrices are defined like so:

DP x−
k

(
x−

k , τk, θ
d
tk

)
= ∂P (x−

k , τk, θ
d
tk

)

∂x−
k

+ ∂P (x−
k , τk, θ

d
tk

)

∂τk

∂τk

∂x−
k

,

(23a)

DPθd
tk

(
x−

k , τk, θ
d
tk

)
= ∂P (x−

k , τk, θ
d
tk

)

∂θd
tk

+ ∂P (x−
k , τk, θ

d
tk

)

∂τk

∂τk

∂θd
tk

.

(23b)

Based on expression (8a), we have in (23):
∂P(x−

k ,τk ,θ
d
tk

)

∂x−
k

= J (τk), and
∂P(x−

k ,τk ,θ
d
tk

)

∂θd
tk

= G (τk).

Moreover, according to [7], we can demonstrate that:
∂P(x−

k ,τk ,θ
d
tk

)

∂τk
= AnP

(
x−

k , τk, θ
d
tk

)+Dn +Bnθd
tk . Fur-

thermore, we emphasize that determination of expres-
sion of the two quantities ∂τk

∂x−
k
and ∂τk

∂θd
tk

in (23) needs

the derivation of the relation (8b). Then, the derivative
of the function Q (x−

k , τk, θ
d
tk

) = 0 with respect to x−
k

and θd
tk yields respectively:

∂Q (x−
k , τk, θ

d
tk

)

∂x−
k

+ ∂Q (x−
k , τk, θ

d
tk

)

∂τk

∂τk

∂x−
k

= 0, (24a)

∂Q (x−
k , τk, θ

d
tk

)

∂θd
tk

+ ∂Q (x−
k , τk, θ

d
tk

)

∂τk

∂τk

∂θd
tk

= 0. (24b)

Relyingonexpression (8b),wehave:
∂Q(x−

k ,τk ,θ
d
tk

)

∂x−
k

=
J 0 (τk), and

∂Q(x−
k ,τk ,θ

d
tk

)

∂θd
tk

= G0 (τk). In addition,

basedon (3b),we canwrite:
∂Q(x−

k ,τk ,θ
d
tk

)

∂τk
= ∂Q(x−

k ,τk ,θ
d
tk

)

∂P(x−
k ,τk ,θ

d
tk

)

∂P(x−
k ,τk ,θ

d
tk

)

∂τk
< 0, and

∂Q(x−
k ,τk ,θ

d
tk

)

∂P(x−
k ,τk ,θ

d
tk

) = C.

From relations in (24), the two quantities ∂τk

∂x−
k
and

∂τk

∂θd
tk
are expressed like so:

∂τk

∂x−
k

= −
(

∂Q (x−
k , τk, θ

d
tk

)

∂τk

)−1

×∂Q (x−
k , τk, θ

d
tk

)

∂x−
k

, (25a)

∂τk

∂θd
tk

= −
(

∂Q (x−
k , τk, θ

d
tk

)

∂τk

)−1

×∂Q (x−
k , τk, θ

d
tk

)

∂θd
tk

. (25b)

Substitution of (25a) and (25b) into (23a) and (23b)
gives then the following expressions:

DP x−
k

(
x−

k , τk, θ
d
tk

)
= ∂P (x−

k , τk, θ
d
tk

)

∂x−
k

−∂P (x−
k , τk, θ

d
tk

)

∂τk

×
(

∂Q (x−
k , τk, θ

d
tk

)

∂τk

)−1

×∂Q (x−
k , τk, θ

d
tk

)

∂x−
k

, (26a)

DPθd
tk

(
x−

k , τk, θ
d
tk

)
= ∂P (x−

k , τk, θ
d
tk

)

∂θd
tk

−∂P (x−
k , τk, θ

d
tk

)

∂τk

×
(

∂Q (x−
k , τk, θ

d
tk

)

∂τk

)−1

×∂Q (x−
k , τk, θ

d
tk

)

∂θd
tk

. (26b)

Hence, since J 0 (τk) = CJ (τk) and G0 (τk) =
CG (τk), the two expressions in (26) can be recast as
follows:
DPx−

k

(
x−

k , τk , θ
d
tk

)

=
[

I −
(
AnP

(
x−

k , τk , θ
d
tk

)+ Dn + Bnθd
tk

)
C

C
(
AnP

(
x−

k , τk , θ
d
tk

)+ Dn + Bnθd
tk

)

]

J (τk) ,

(27a)

DPθd
tk

(
x−

k , τk , θ
d
tk

)

=
[

I −
(
AnP

(
x−

k , τk , θ
d
tk

)+ Dn + Bnθd
tk

)
C

C
(
AnP

(
x−

k , τk , θ
d
tk

)+ Dn + Bnθd
tk

)

]

G (τk) .

(27b)
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Appendix 4

In this Appendix, we present the method for deter-
mining expression of the Jacobian matrix DP̌ of the
reduced-dimension controlled hybrid Poincaré map
(19) in order to calculate the spectrum of Lyapunov
exponents.

The Jacobian matrixDP̌ is expressed like so:

DP̌ (z−k , τk
) = dP̌ (z−k , τk

)

dP̂ (x−
k , τk

)

×dP̂ (x−
k , τk

)

dx−
k

× dx−
k

dz−k
. (28)

As P̌ (z−k , τk
) = z−k+1 and P̂

(
z−k , τk

) = x−
k+1, then

according to expressions in (18) it is easy to demon-

strate that
dP̌(z−k ,τk

)

dP̂(x−
k ,τk

) = Ψ and
dx−

k

dz−k
= Φ. More-

over,
dP̂(x−

k ,τk
)

dx−
k

is the Jacobian matrix of the controlled

hybrid Poincaré map with non-reduced dimension

(17). According to Sect. 2.3.5, we have:
dP̂(x−

k ,τk
)

dx−
k

=
DP x−

k

(
x−

k , τk, θ
d
tk

) + DPθd
tk

(
x−

k , τk, θ
d
tk

)K, where

expression of DP x−
k

(
x−

k , τk, θ
d
tk

)
and that of DPθd

tk(
x−

k , τk, θ
d
tk

)
are defined in (26), and θd

tk is the control
law expressed by (16).

Hence, we emphasize that computation of the Jaco-
bianmatrix of the reduced-dimension controlled hybrid
Poincaré map (19) is based mainly on the Jacobian
matrix of the controlled hybrid Poincaré map (17).

References

1. Andrievskii, B., Fradkov, A.: Control of chaos: methods
and applications. I.Methods. Autom.RemoteControl 64(5),
673–713 (2003)

2. Goswami, A., Thuilot, B., Espiau, B.: Study of the passive
gait of a compass-like biped robot: symmetry and chaos. Int.
J. Robot. Res. 17, 1282–1301 (1998)

3. Gritli, H.: Analyse et Contrôle du Chaos dans les Systèmes
Mécaniques Impulsifs. Cas des Oscillateurs avec Impact et
des Robots Bipèdes Planaires. Presses Académiques Fran-
cophones, Saarbrucken, Germany (2015)

4. Gritli, H., Belghith, S.: Displayed phenomena in the semi-
passive torso-driven biped model under OGY-based control
method: birth of a torus bifurcation. Appl. Math. Model.
(2015). doi:10.1016/j.apm.2015.09.066

5. Gritli, H., Belghith, S., Khraeif, N.: Cyclic-fold bifurcation
and boundary crisis in dynamic walking of biped robots. Int.
J. Bifurc. Chaos 22(10), 1250257 (2012)

6. Gritli, H., Belghith, S., Khraeif, N.: Intermittency and inte-
rior crisis as route to chaos in dynamic walking of two biped
robots. Int. J. Bifurc. Chaos 22(3), 1250056 (2012)

7. Gritli, H., Belghith, S., Khraeif, N.: OGY-based control of
chaos in semi-passive dynamic walking of a torso-driven
biped robot. Nonlinear Dyn. 79(2), 1363–1384 (2015)

8. Gritli, H., Khraeif, N., Belghith, S.: Cyclic-fold bifurca-
tion in passive bipedal walking of a compass-gait biped
robot with leg length discrepancy. In: Proceedings of the
IEEE International Conference on Mechatronics, pp. 851–
856 (2011)

9. Gritli, H., Khraeif, N., Belghith, S.: Semi-passive con-
trol of a torso-driven compass-gait biped robot: bifurca-
tion and chaos. In: Proceedings of the International Multi-
Conference onSystems, Signals andDevices, pp. 1–6 (2011)

10. Gritli, H., Khraeif, N., Belghith, S.: Period-three route
to chaos induced by a cyclic-fold bifurcation in passive
dynamic walking of a compass-gait biped robot. Commun.
Nonlinear Sci. Numer. Simul. 17(11), 4356–4372 (2012)

11. Gritli, H., Khraeif, N., Belghith, S.: Chaos control in pas-
sive walking dynamics of a compass-gait model. Commun.
Nonlinear Sci. Numer. Simul. 18(8), 2048–2065 (2013)

12. Gritli, H., Khraeif, N., Belghith, S.: Further investigation of
the period-three route to chaos in the passive compass-gait
biped model. In: Azar, A.T., Vaidyanathan, S. (eds.) Hand-
bookofResearch onAdvanced IntelligentControl Engineer-
ing and Automation, Advances in Computational Intelli-
gence and Robotics (ACIR), pp. 279–300. IGI Global, USA
(2015)

13. Grizzle, J.W., Abba, G., Plestan, F.: Asymptotically stable
walking for biped robots: analysis via systems with impulse
effects. IEEE Trans. Autom. Control 46(1), 51–64 (2001)

14. Iqbal, S., Zang, X.Z., Zhu, Y.H., Zhao, J.: Bifurcations and
chaos in passive dynamic walking: a review. Robot. Auton.
Syst. 62(6), 889–909 (2014)

15. Kuznetsov, Y.: Elements of Applied Bifurcation Theory, 3rd
edn. Springer, New York (2004)

16. Li, Q., Guo, J., Yang, X.S.: New bifurcations in the simplest
passive walking model. Chaos Interdiscip. J. Nonlinear Sci.
23, 043110 (2013)

17. Li, Q., Yang, X.S.: New walking dynamics in the simplest
passive bipedalwalkingmodel.AppliedMathematicalMod-
elling 36(11), 5262–5271 (2012)

18. Li, Q., Yang, X.S.: Bifurcation and chaos in the simple pas-
sive dynamic walking model with upper body. Chaos Inter-
discip. J. Nonlinear Sci. 24, 033114 (2014)

19. Oseledec, V.: A multiplicative ergodic theorem: Lya-
punov characteristic numbers for dynamical systems. Trans.
Moscow Math. Soc. 19, 197–231 (1968)

20. Ott, E.: Chaos inDynamical Systems.CambridgeUniversity
Press, New York (1993)

21. Parker, T.S., Chua, L.O.: Practical Numerical Algorithms
for Chaotic Systems. Springer, New York (1989)

22. de Paula, A.S., Savi, M.A.: A multiparameter chaos control
method based on OGY approach. Chaos Solitons Fractals
40(3), 1376–1390 (2009)

23. de Paula, A.S., Savi, M.A.: Comparative analysis of chaos
control methods: a mechanical system case study. Int. J.
Non-Linear Mech. 46(8), 1076–1089 (2011)

24. Safa, A., Alasty, A., Naraghi, M.: A different switching sur-
face stabilizing an existing unstable periodic gait: an analysis

123

http://dx.doi.org/10.1016/j.apm.2015.09.066


Bifurcations and chaos in the semi-passive dynamic walking under OGY control 1973

based on perturbation theory. Nonlinear Dyn. 81(4), 2127–
2140 (2015)

25. Scholl, E., Schuster, H.G.: Handbook of Chaos Control, 2nd
edn. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
(2008)

26. Sekhavat, P., Sepehri, N., Wu, Q.: Calculation of lyapunov
exponents using nonstandard finite difference discretization
scheme: a case study. J. Differ. Equ. Appl. 10(4), 369–378
(2004)

27. Tavakoli, A., Hurmuzlu, Y.: Robotic locomotion of three
generations of a family tree of dynamical systems. Part
I: passive gait patterns. Nonlinear Dyn. 73(3), 1969–1989
(2013)

28. Witvoet, G.: Control of chaotic dynamical systems using
ogy. Technische Universiteit Eindhoven, Eindhoven, The
Netherlands, Tech. rep. (2005)

29. Wu, B., Zhao, M.: Bifurcation and chaos of a biped robot
driven by coupled elastic actuation. In: Proceedings of the
World Congress on Intelligent Control and Automation, pp.
1905–1910 (2014)

123


	Bifurcations and chaos in the semi-passive bipedal dynamic walking model under a modified OGY-based control approach
	Abstract
	1 Introduction
	2 Modified OGY control method for the semi-passive torso-driven biped robot
	2.1 The semi-passive torso-driven biped robot
	2.2 Impulsive hybrid nonlinear dynamics of the semi-passive torso-driven biped robot
	2.3 Modified OGY-based control of the semi-passive bipedal dynamic walking
	2.3.1 Linearization of the impulsive hybrid nonlinear dynamics around a desired one-periodic hybrid limit cycle
	2.3.2 Determination of a reduced impulsive hybrid linear dynamics
	2.3.3 Development of the explicit expression of the controlled hybrid Poincaré map
	2.3.4 Determination of the one-periodic fixed point of the controlled hybrid Poincaré map
	2.3.5 Linearization of the controlled hybrid Poincaré map around its one-periodic fixed point
	2.3.6 Stabilization of the one-periodic fixed point
	2.3.7 Application of the OGY control into the impulsive hybrid nonlinear dynamics


	3 Analysis of the controlled impulsive hybrid nonlinear dynamics via bifurcation diagrams
	4 Calculation of the spectrum of Lyapunov exponents via the controlled hybrid Poincaré map
	4.1 Dimension reduction of the controlled hybrid Poincaré map
	4.2 Analysis of order/chaos with the spectrum of Lyapunov exponents

	5 Discussion
	6 Conclusion and future works
	Appendix 1
	Lagrangian representation
	Semi-passive control law
	State representation of the semi-passive walking dynamics

	Appendix 2
	Appendix 3
	Appendix 4
	References




