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Abstract This paper focuses on the iterative identifi-
cation problems for a class of Hammerstein nonlinear
systems. By decomposing the system into two fictitious
subsystems, a decomposition-based least squares itera-
tive algorithm is presented for estimating the parameter
vector in each subsystem. Moreover, a data filtering-
based decomposition least squares iterative algorithm
is proposed. The simulation results indicate that the
data filtering-based least squares iterative algorithm
can generate more accurate parameter estimates than
the least squares iterative algorithm.
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1 Introduction

The block-oriented nonlinear systems are popular used
for modeling and analyzing nonlinear problems in vari-
ous aspects of our society, such as parameter estimation
[1,2], energy harvesting systems [3], signal processing
[4-6], predictive control [7,8] and system identifica-
tion [9,10]. For decades, many approaches have been
studied on the system identification and parameter esti-
mation for linear or nonlinear dynamics systems. The
approaches not only can be applied to obtain the math-
ematical models of the systems [11] but also play an
important role in analyzing the controlled dynamics
systems [12,13]. For example, Hagenblad et al. [14]
derived a maximum likelihood identification method
for Wiener models. By the key-term separation prin-
ciple, Voros [15] solved the parameter identification
problem of nonlinear dynamic systems with both actua-
tor and sensor nonlinearities using three-block cascade
models. Based on the least squares principle, Hu et al.
[16] derived a recursive extended least squares algo-
rithm for identifying Wiener nonlinear moving aver-
age systems. By using the polynomial nonlinear state
space approach, Paduart et al. [17] identified a nonlin-
ear system with a Wiener—Hammerstein structure. By
using the maximum likelihood method, Sun and Liu
[18] offered an APSO-aided identification algorithm
to identify Hammerstein systems.

The model decomposition technique can be used
to separate a large-scale system into several subsys-
tems with small sizes and to enhance the computational
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efficiency [19,20]. Recently, Zhang [21] proposed a
three-stage least squares iterative identification algo-
rithm for output error moving average systems using
the model decomposition; Bai and Liu [22] presented
a normalized iterative method to find a least squares
solution for a system of bilinear equations by using the
decomposition technique; Wang and Ding [23] sepa-
rated a bilinear-parameter cost function into two linear-
parameter cost functions and derived a least squares-
based and a gradient-based iterative identification algo-
rithms for Wiener nonlinear systems.

The filtering technique has been proved to be effec-
tive in parameter estimation [24,25] and state estima-
tion [26]. Recently, Zhao et al. [27] studied a maxi-
mum likelihood method to obtain the parameter esti-
mation of the batch processes by employing the parti-
cle filtering approach; Ding et al. [28] used the filtering
technique to derive a recursive least squares parameter
identification algorithm for systems with colored noise;
Wang and Tang [29] presented a filtered three-stage
gradient-based iterative algorithm for a class of linear-
in-parameters output error autoregressive systems by
using the model decomposition and the data filtering
technique.

By extending the methods in [21,30] from the linear
systems to an input nonlinear output error autoregres-
sive (IN-OEAR) system, this paper studies its iterative
identification problem. The objective is to decompose
a bilinear-parameter system into two fictitious subsys-
tems by using the model decomposition and to present
a least squares-based iterative algorithm for the IN-
OEAR system. Furthermore, using an estimated noise
transfer function to filter the input—output data of the
system to be identified, a data filtering-based least
squares iterative algorithm is presented. Compared
with the least squares iterative algorithm, the filtering-
based least squares iterative algorithm can achieve
higher estimation accuracy. The proposed algorithms
differ from the least squares or gradient-based iterative
algorithms for Hammerstein nonlinear ARMAX sys-
tems using the over-parameterization method in [31].

Briefly, the rest of this paper is organized as fol-
lows: Section 2 gives the identification model of the
IN-OEAR systems. Section 3 presents a least squares
iterative identification algorithm by using the model
decomposition. Section 4 derives a filtering-based least
squares iterative identification algorithm for the IN-
OEAR systems. A numerical example is provided in
Sect. 6 to show the effectiveness of the proposed algo-
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rithms. Finally, we give some concluding remarks in
Sect. 7.

2 System description

The typical block-oriented nonlinear models include
Hammerstein models (a nonlinear static block fol-
lowed by a dynamics linear block), Wiener models
(a linear dynamics block followed by a static nonlin-
ear block), Hammerstein—Wiener models and Wiener—
Hammerstein models. Here, we consider a Hammer-
stein nonlinear system with colored noise in Fig. 1,

_ B(@)_
y() = A(Z)M(f) + w(?), (D
u(t) = fu@)), 2

where y(¢) is the measured output, w(¢) is the distur-
bance with zero mean, u(¢) and i(¢) are the input and
output of the nonlinear block, respectively, and A(z)
and B(z) are polynomials in the unit backward shift
operator z ' (z71y(t) = y(r — 1)):

AR =l+az " +az 2+ +ap,z7 ",

B(2) == b1z 4+ baz P4 by 2

Assume that the order n, and n, are known and
y() =0,u(t) = 0and v(¢t) = 0 for r < 0. The output
of the nonlinear block is a linear combination of the

known basic functions f; () and unknown coefficients
o
u(t) = oy fi(w(t)) + oo for(u(®)) + -+ + om fm (1))
= fu(®))e,

where

o= [og, 00, ..., 0m]" € R™,

F@@)=1Aw@), L), ..., fu@@)]eR>",

The basic functions f;(*) can be the known order in
the input or the trigonometric functions.

For the system with colored noise, the disturbance
w(t) can be fitted by an autoregressive process

1

w(t) = e

(1), 3)

Or a moving average process
w(r) = D(2)v(),

or an autoregressive moving average process
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Fig.1 The Hammerstein
nonlinear system with
colored noise

u(t)

a(t) s | 20

D
w(t) = ﬁv(t),

C(2)
where v(¢) is the white noise with zero mean and vari-
ances o2, C(z) and D(z) are polynomials in the unit

backward shift operator 71 [32]:

C@=1+az ' vz 2+ +epz™,

D) =14+diz ' +dpz 2+ +dpyz .

This paper assumes the disturbance to be an autore-
gressive process, and the proposed algorithms can be
extended to the other two cases.

Define an intermediate variable:

B® ).

x(t) = A0)

“4)

Define the parameter vectors and the information vec-
tors as

ay b
a by
a:=| . |eR' b:=| . |eR",
_ana bnb
o,
e
c = . e R,
_cnc
Su@—1))
Su@—2))
F(t) = , e Rwxm
S —np))

@, =[—x@—1), —x( —2),
s =x(t —ng)]T € R,
@n0) = [—w(t — 1), —w(t —2),
o —w(t — )]t e R,
From (3) and (4), we have
w(t) =[1 = C@)]w) +v()
=—ciw(it—1)—cwt—-2)—---

y(t)

Y

A(z)

J\w(t)
g\,
—cpw(t —ne) +v(t)

= g} (e + v(t), (5)
x(@) =[1—-A@Ix() + B()u(r)
=—aix(t—1)—ax(t—-2)—---
— ap,X(t —ng) + by f(u@ — 1))
+by f(u(t —2)a
+ ot by f(u(t —np))a

=@l (a+b"F(h)e. (6)
The output y(¢) in (1) can be expressed as
V(1) = x(0) + w(t) (7)
=g (a+b" Fe+ol(He+vt).  (8)

This is the identification model for the Hammerstein
nonlinear system.

3 The decomposition-based least squares iterative
algorithm

It is worth pointing out that model (8) contains the
product of the parameters b of the linear part and o«
of the nonlinear part. The pair 8b and «/8 leads to
the same input—output relation for any nonzero con-
stant B. In order to ensure identifiability, we assume
that ||| = 1 and the first entry of the vector « is posi-
tive, i.e., 1 > 0. Although we can use the Kronecker
product to transform the bilinear-parameter identifica-
tion problem to a linear-parameter identification prob-
lem [33,34], the dimension of the resulting unknown
parameter vector increases, so does the calculation
load. Here, we decompose this system into two ficti-
tious subsystems: one containing the parameter vector

a -
0= [ b j|, and the other containing the parameter vec-

tor ¥ := [:i| Letk =1, 2,3, ... be an iterative vari-

A ar(t) A ay(t)
able, 0;(t) := | » and ¥, (1) := | .
k(@) [bk(t)} k(@) |:ck(t)
estimates of @ and # at iteration k. Define two fictitious
outputs:

] be the
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T -1
yi(t) == y(t) — @, (t)c . t .
= @i (Na+b"F(H)a +v(t), )= D, 0:(De3()
j=t—L+1
= @100+ v(0), ©) —
— _ T . .
n(t) = (1) = ¢, (a x> (D)
= b F()a + (pg(t)c + v(1), j=t—L+1
= @3 ()P + (1), (10) —ol(jal. (14)
where The difficulty is that the right-hand sides of (13) and
@,(0) i (14) contain the unknown parameter vectors ¢ and a,
0,(1) = [ F() a} € R%™, the information vectors ¢, (t) and @,(f) contain the
FT (b unknown parameter vectors & and b and the unknown
0, (1) == [ () :| e R, intermediate variables Zc(t —1) zind w(t — i), soitis
@n(1) impossible to compute 8 () and # (¢) by (13) and (14)

Opt a set of data from j =t — L+ 1to j =1t (L
denotes the data length) and define two quadratic cri-
terion functions:
! 2
n®= Y [ni-eloe] .
j=t—L+1
! 2
h» = 3 [nh-eiie].
j=t—L+1
Based on the least squares principle, letting the partial
derivative of J; (@) and J,(#) with respect to § and ¢
be zero, respectively, we can obtain the following least
squares iterative algorithm:
—1
t
=\ > ool
j=t—L+1
13
x> ey, (11)
j=t—L+1
—1
t
=] D e:(Des()
j=t—L+1
1
x> eyl (12)
j=t—L+1
Substituting (9) into (11) and (10) into (12) gives
—1
t
=1 D eiHel()
j=t—L+1
t

x> oD

j=t—L+1
—a(jel. (13)
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directly. Here, the solution is based on the hierarchical
identification principle [35]. Let wy (t —i) and X (£ — i)
be the estimates of w(t — i) and x (¢ — i) at iteration k,
Do), @y (1), 91 1 (1), and @, ; (1) be the estimates of
@,(1), 9,(), ¢ (t), and @, (¢) at iteration k and define

Gap () = [—Xp1(t = 1), X511 = 2), ...,
— X1 (t — na)]T € R",
P () =[xt = 1), =1 (r = 2), ...,

N T
— W1t —ne)] € R™,

[ e ® T g
@14 (1) = [F(l)&k—l(t)] s
. FT(I)Ek(f)i| mne

= . R
024 (1) |: On.1 () ©

From (6), we have x; (1—i) = @1 (t—i)a+b" F(t—i)a.
Replacing ¢, (t — i), @, b and a with their estimates
@a it — 1), ar (1), bi(r) and & () gives

Rt — i) = @g  (t — Dag(0) + by ()VF(t — )& (1)

From (7), we have w(t — i) = y(t — i) — x(t —i).
Replacing x (¢ — i) with X (¢ — i), we can compute the
estimate of w(t) through:

wp(t —i) = y(t —i) — Xp(t —i).

Replacing the unknown ¢ and ¢ () in (13) with their
estimates ¢;—1(¢) and @ ;(¢), the unknown a, @,(t)
and @, (1) in (14) with their estimates ay (t), @, ; (¢) and
@, (), we can summarize the decomposition-based
least squares iterative (D-LSI) algorithm for estimating
0 and ¥ as follows:

-1
1

> Do)

j=t—L+1

01 (1) =
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t
XX o) D —eniDe-10)]
j=t—L+1

s)

—1
t

Z éz,k(j)ég,k(j)

j=t—L+1

D) =

t
x D0 o2 [y0) = driDix(i ]

j=t—L+1
(16)
@a,k(t) = [_ik—l(t - 1)’ _xAk—l(t - 2)1 ey
— &1t =) (17
Py () = [—p—1( = 1), =1t = 2), ...,
— 1t =)' (18)
T
6140 = 910 & OFT )] (19)
N T
P20 = [ OF 1), 67, 0)] 20)
Rt = i) = T4t = Dar(t) + by (VF (¢ — a0,
i=1,2,...,n4 21
Dt — )=yt — ) = 2@ — )0 j=12.....n
(22)

filw@=1) fou@—=1) - fun(u@—1))
Nw@ =2) frw@—=2)) - fu(u—2))

F(t) = . . .
At =) @l —np)) - fulult —np)

(23)

a (1) = 0 (1 : ny), (24)

by (t) = 0,.(t) (g + 12 ng + np), (25)

n 19 1:
& (t) = sgn [ﬂk(t)(l)] D@ im) (26)
1B %) (1 m)]|

To initialize the D-LSI algorithm, the initial value
A ao(t)
Oo(1) = [bo(t)
vector with i)o(t) # 0, &o(t) is taken to be a vector
with ||&o(?)|| = 1, and ¢((¢) is taken to be an arbitrary
real vector. The initial value of intermediate variables
wo(t — i) and Xo(t — i) is taken to be two random
numbers.

:| is generally taken to be a nonzero

4 The filtering-based least squares iterative
algorithm

Using the polynomial C(z) (a linear filter) to filter the
input—output data, the model in (1) can be transformed
into two identification models: an input nonlinear out-
put error model with white noise and an autoregressive
noise model. Multiplying both sides of Eq. (1) by C(z)
yields

B
C)y@) = %C(z)ﬁ(r) + v(t). 27)

Define the filtered output y¢(7) and input u¢(¢):
yi(t) == C(2)y()
=y +cyt—1D+cy@—2)
4+ 4 cpy(t —n),
ug(r) == C(2)u(t)
= C@la1 fi(u(@®)) + a2 fo(u(r))
+o o fn (u(1))]
= a181(1) + 2g2(r) + -+ + ot gm (1),

where

git) :=C@fju@), j=12,...,m.
Define an information matrix:

gt =1 g —=1) - gut—1)

g1t —2) gt —=2) - gn(t—2)
G(t) = . . .

g1t —nyp) ga(t —np) -+ gm(t —np)
e Rwxm .

Then, Eq. (27) can be rewritten as

yi(t) = jgﬁfu) + ().
Define an intermediate variable:
xg(t) == @ﬁf@)'

A(z)

Then, we have

xe (1) = [1 — A(@)]x¢ (1) + B(2)ug (1)

=9l (a+b"G()a, (28)
where
@i(t) == [—x(t — 1), —xp(t —2), ..., —xp(t — ng)]"
€ R",

@ Springer



1900

J. Maet al.

The filtered output y¢(¢) can be expressed as
ye(t) = x¢ (1) + v (1)
= ol (Ha+b "G + v(r). (29)
Define a fictitious output and two quadratic criterion
functions as
y3(0) = yr(1) — ¢ (Da
= TG +v(1),

r 2

5O = > |-l

j=t—L+1

'oor 2

L= Y [nh-eia] .

j=t—L+1
where
03(t) = [gzg()x € Rra b (30)
@4(1) == GT ()b e R™. (31)

Minimizing the criterion functions J3(@) and J4(),
and letting the partial derivatives of J3(0) and J4(ot)
with respect to @ and « be zero, respectively, give the
following iterative algorithm to estimate € and o:

—1
t

by =| > (i)
Jj=t—L+1
t
x> 93Dy, (32)
j=t—L+1
: —1
@ =1 D e(Dei()

j=t—L+1

t
x> ea(Hy()

j=t—L+1
t
> w(Hei()
j=t—L+1
t
x> e |w) el (a]. 33

j=t—L+1

However, the polynomial C(z) is unknown, so are the
filtered output y¢(z), the filtered input u;(¢) and the
filtered information matrix G(¢). Thus, it is impossible
to obtain the estimates @ x(t) and & (7) by (32) and (33).
Here, we need to compute the parameter estimation
vector &x(t) = [C1.x(t), Cax(t), ..., Cn.x(t)]T firstly
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and then use the estimated polynomial C w(t,z) =1+
ez + ez 2+ + Ene k(127" 1o filter
y(t), i(t) to obtain the estimates yr ¢ (¢), s (¢) and
G (1).

According to (5), define a quadratic criterion func-
tion:

t
. 12
Js) = > [w()—e.(e]
j=t—L+1

Minimizing the criterion functions Js(c) gives the iter-
ative estimate of c:

. -1
GO = D e.(Hes()

j=t—L+1

t
x> @a(Hw(). (34)
j=t—L+1

We can find that the right-hand side of (34) contains
the unknown information vector ¢,(#) and interme-
diate variable w(¢). Similarly, replacing the unknown
@,(t) and w(t) in (34) with their corresponding esti-
mates @,, ,(¢) and Wy (¢), we can obtain the least squares
iterative algorithm for computing the estimate ¢ (¢) as
follows:

-1
t

> ear(Doni()

j=t—L+1

(1) =

t
XD PN, (35)

j=t—L+1

i) = [—k—1(t = 1), =1 (t = 2), ...,

— w1 (t — nc)]T ) (36)
Bt — i) = y(t — i) — @ 1 (t — )ag—1 (1)
by F(t — )1 (1) 37)

Using the obtained estimate ¢ (¢) to construct the poly-
nomial

Celt, ) = 1+ k2 +é0(02 72
+o A Cp k()2
to ﬁlEer y(t) and ft(t) gives the filtered estimates Jr (1)
and ug k (1):
Stk (0) = Cr(t, )y(0)
=y(O) + @y =D+ @)yt —2)
ot G k(DY —ne),
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it (1) = Cr(t, D)ie(0)
= Ci(t, 2) [G1,6(0) 1 () + Gk (0) o (u(t))
+ e k(1) fin (1)) ]
=181k (1) + a2k ()82, (?)
+o At Wk (D) &m i (1),
where g (¢) can be computed by

2jx(0) = Cit, 2) f (u(®))
= fi(®) + @) fju@ — 1))

+Co k@) fiu(t —2)) + -+

+Cne k() fj (Ut — ne)).
Let (}f’ (1) be the estimate of ¢ () and define
Gp (1) = [—Rppo1 (= 1), =Xpp1(0 = 2), ...,

— X p—1(t —ng)] € R".

From (28), we have x¢(t —i) = (pg(t —)a+b"G(t —
i)a. Replacing the parameter vectors a, b and « with
their estimates ay (¢), by (t) and &y (¢) at iteration k and
the unknown @ (¢t —i) and G (¢ —i) with their estimates

@ (t — i) and G (¢ — i), respectively, the estimate
Xtk (t — i) can be computed by

Res(t — 1) = fp ot — Dax(e) + by (G (t — D (o).

According to (30) and (31), we define

. @f,k (t) :| ng+np
Gr(nag—1 (1) '

A AT s
@44 () == G, ()b (t) € R™.

@3,1((1‘) = |:

Replacing ¢5(#) and yr(¢) in (32) with their estimates
@31 (t) and J¢ (1), replacing @4(2), y¢(#) and @¢(?) in
(33) with their estimates @4 (), J¢(t) and @ (1),
respectively, we can obtain the following data filtering-
based least squares iterative algorithm by using the
model decomposition technique (the F-D-LSI algo-
rithm for short):
—1

t
by =| D 93:(NP3()

j=t—L+1
t
X Z 035N Ik (), (38)
j=t—L+1
~ T
0300 = [01, 0.1, 06, 0] (39)

Pr () = [—Rea—1(t = D, =Fp -1t = 2), ...,
A T .
— Rrk—1(t—na)|", i=1,2,...,nq, (40)

Rt — i) = Lt — Dag(t)+by (DGt — (o),

(41)
: —1
= D Gur(NPir()
j=t—L+1
t
x > DI —olDai ],
j=t—L+1
(42)
. AT o
Pur() = G (Db (1), 43)
g1kt —1) St —1) -+ gui—1)
R 81kt —2) okt —2) -+ gui(t—2)
Gi(t) = . . .
81kt —np) gkt —np) -+ gmk(t — np)
(44)
2ik() = i) + &1 4 () fiu(t — 1))
e () fiut —2)) +---
ok (O [t = np)), 45)
Yrk@) = y@)+ @)yt — 1) + Crx @)yt —2)
+---+ 6nc,k(t)y(t —ne), (46)
-1
t
GO = D Pur(Noni(i)
j=t—L+1
t
XD Gar(De(), (47)
Jj=t—L+1
P i) = [—k—1(t = 1), =1 (£ = 2), ...,
— w1 (t — nc)]T ) (48)
Wit — j) = y(t = j) — @a (¢ — Pég—1(1)
~T R
— by (OF(t — j)éx_ (1),
j=12,...,n (49)
() =[~Zp1(t = 1), =K1t = 2), ...,
— Xk—1(t — na)]T , (50)
fult = i) = [014 0 = D, &L OF @ = )| 8i(0),
i=1,2,...,nq, (51)
Siu( —=1)) fou@—=1) - fu(u@—1))
fiu( =2)) @ —=2) - fuu@—2))
F@t) = . ) .
Fuult =) Frult —np)) - fu(ult — np))
(52)
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ac(t) = 0, (1)(1 2 ny), » [ Start )
bi(1) = 0c(1)(na + 1 ng +ny), (54) I
oy (t ; i) it = — Ve
O_‘k (I) _ sgn[&k(t)(l)] ’i‘k( ) ’ &k (I) _ &k(f), (55) Collect {u(i),y(@) :t=0,1,...,L — 1}, give €
lloek ()] |
n A R n T
er(t) = [E1x(), G2k (@), ..., Ene k(D] (56) Initialize: k = 1, give 80 (t), &o(t), Go(t),
~ AT AT AT T Jg,0(t — i), 8¢,0(t —4), Zo(t — 1), and Wo(t — 1)
CHOB RO HORAG] IS (57) I
To initialize the F-D-LSI algorithm: let k = 1 and set Collect u(t), y(t), compute F(t)
A ao(t
the initial values: 0y (¢) = |:‘f0( )i| be any nonzero l
) bo(1) Construct @r (1), @y (), @as(®), wi(t) [=htl
real vector with bo () # 0, & (¢) be an real vector with l
lleo(®)]l = 1, ¢o(¢) be an arbitrary real vector, Xf o(t —

i), Xo(t —i) and wo(r — i) are random numbers, y¢ o (t —
i) = 1/po, po is taken to be alarge number, for example
po = 10°. The flowchart of the F-D-LSI algorithm for
computing ék(t), &y (¢) and € () is shown in Fig. 2.

5 The F-D-LSI algorithm with finite measurement
data

On the basis of the F-D-LSI algorithm, this section sim-
ply gives the data filtering-based least squares iterative
algorithm with finite measurement data. Letting r = L,
from J3(0), J4(a) and J5(c), we have

L
Js®) == D [3t(j) — o3(HO,

j=1

L
J1(e) := D [yr(t) — of (Na — 5 (al’,
j=1
L
Jg(e) = > [w(j) — @u(jel’.
j=1
Applying the similar way of deriving the F-D-LSI algo-
rithm and minimizing the criterion functions Jg(@),
J7(a) and J3(c), we can obtain the F-D-LSI algorithm
with finite measurement data for estimating @k, oy and
¢ as follows:
A L _1
0 = | D 031 (NP3
j=1

L
X > @3k (NFra(). (58)
j=1

n n n AT
P340 = [0f (. 841G, O1", 1=1,2,..., L,
(59)
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Update ¢ (t), compute g; x(t), C;'k(t)

]

Construct @s 4 (1), g i (1)

]

Update 0} (t), construct @ar(t)

|

Update & (t)

|

Compute & 1, (t), £ (t), normalize & (t)

@ (t) = O—1(1)]| > &?

Obtain the estimate @y(t)

]

t:=t+1

Fig. 2 The flowchart of the F-D-LSI algorithm for computing
01 (1), @k () and &, (1)

P (1) = [—Xpp1(t — 1), —=Xpp_1(t = 2), ...,

—Repo1(t —n)]", (60)
~ N ~ AT A ~
X k(1) = @ g (Dax + by G (H)ay, (61)
L —1
Q= z¢4,k(j)(b1,k(j)
j=1
L
X > 9 r(NBr() — of p(Dal. (62)
=1
. 2T s
P41 (1) = G (Dby, (63)
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< Stirt )

Collect {u(t),y(t) : t=1,2,...,L}, give e

I

Initialize: k = 1, give O, &9, ¥r0(t — 1),

;f?f’()(t — 1), Zo(t — 1), and wo(t — 7)

}

Compute F'(t)

!

Construct @y (1), @y, (1), Pak(t), Wk (t)

}

Update ¢y, compute §; 1 (t) and ék(t)

}

Construct @3 (1), Utk (t)

!

Update 6, construct @4,5(t)

}

Update &y

}

Compute Zf j(t), £ (t), normalize &,

k:=k+1

1Ok — Okl > e?

Obtain the estimate ék

e

Fig. 3 The flowchart of the F-D-LSI algorithm with finite mea-
surement data for computing Oy

g1kt —1) S —1) -+ Zui—1)
81kt —2) Lu(t—=2) -+ gmi(t—2)

Gi(1) =
§1,k(l.— np) 8A2,k(l.— np) - gm,k(f._”lb)
(64)
gjk®) = fiu(®) +crufju(—1))
+eonfiu@ —2)+---
+ Cnok f(u(t — ne)), (65)

Fig. 4 An experimental setup of a water tank system

Yea(t) = y(@) + eyt — 1) + Copy(t —2) + -+

+ Cne kYt = ne), (66)
-1

L
&= Pur(Nenr()
j=1

L
X D Pu i (DWR(), (67)
j=1

Gui(t) = [——1(t = 1), =1 (t = 2), ...,
— i1t —no)]" (68)

~ ~ ~ AT N
Wi (1) = (1) — @ (Dak—1 — by F(Dax—1. (69)
@a,k(t) = [—.X:Ak_](t— 1)5 —.X:Ak_l(t—z), )

— &1t — )] (70)
50) = [010). &L FT(0) | b, G

fNilw@—=1) folult =1) -+ fulu@—1)
@ =2) fou@—=2)) - fu(u®—2))

F(t) =
f1w(t —np)) fout —np)) -+ fn(u(t —np))

(72)

aip = 0;(1:ny), (73)

by, =60,(1 +n,:n, +np), (74)

_ R a . _

o = sgnfog ()] ——, oy = oy, (75)

flock

& = 1. éa, ---,5n(,,k]T, (76)

A AT A A

Or=10,.a..¢ 1" (77)

The flowchart of computing the parameter estimate O
in the F-D-LST algorithm in (58)—(77) with finite mea-
surement data is shown in Fig. 3.
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Fig. 5 The diagram of the v(t)
water tank setup R PR S
14c12—1
u(t) | e NEC 0
. . . b1z~ . .
g | . | 14arz—T g\ i

The F-D-LST algorithm can be used to identify input
nonlinear systems (Hammerstein nonlinear systems).
The typical example is the first-order water tank sys-
tem in Fig. 4, where u(¢) is the valve opening, u(¢)
is the water inlet flow, and y(¢) is the liquid level, the
transfer function of the linear dynamical block has the
form of lj’rla zl;l_] . The nonlinearity of the valve can be
approximately fitted by a polynomial or a linear combi-
nation of the known base functions, and the disturbance
is an autoregressive process w(t) 1= ﬁlz,lv(t), v(t)
is white noise. The diagram of the water tank setup is
shown in Fig. 5. Thus, the proposed F-D-LSI algorithm
can be applied to such a system.

6 Example

Consider a Hammerstein nonlinear simulation model
as follows:

_B@u !
y() = A(Z)M(I)Jr co

v(1),

a(t)= au’ (1) +aau’ (1) =0.80u’(t)+0.60u> (1),
AR) = 14+aiz " +arz2 = 14038271 + 042772,
B(z) = b1z '+ bz =075z —0.33:72,
C@)=1+cz'=14085;"",

0 = [0.38,0.42, 0.75, —0.33, 0.80, 0.60, 0.85] .

In simulation, the input {u(#)} is taken as a persistent
excitation signal sequence with zero mean and unit
variance, and {v(7)} as a white noise sequence with
zero mean and variance o2, the data length L = 1000
and L = 2000, respectively. Applying the D-LSI algo-
rithm in (15)—(26) and the F-D-LSI algorithm with
finite measurement data in (58)—(77) to estimate the
parameters of this system, the parameter estimates and
their estimation errors § := ||ék — 0]/110] with dif-
ferent data length L are given in Tables 1-2, the F-
D-LSI parameter estimation errors with different noise
variances o> are shown in Fig. 6, the parameter esti-
mation errors of the two algorithms are plotted in
Fig. 7.

Table 1 The parameter estimates and errors versus iteration k (62 = 0.50%, L = 1000)

Algorithms k ap ap by by o] o c1 §(%)
D-LSI 1 0.02094  —0.03204 0.74481  —0.55602 0.77692 0.62960 0.00093 63.84914
2 0.43473 0.42385 0.77060  —0.33095 0.79820 0.60240 0.73608 7.77756
3 0.33152 0.34580 0.77836  —0.38595 0.79127 0.61147 0.84967 6.64827
4 0.33904 0.36807 0.77330  —0.37870 0.79340 0.60870 0.85005 5.22390
5 0.35427 0.38317 0.77291  —0.36665 0.79227 0.61017 0.85142 3.86301
10 0.35876 0.38411 0.76986  —0.36141 0.79072 0.61218 0.85202 3.51741
F-D-LSI 1 0.04618  —0.02019 0.75006  —0.57505 0.88337 0.66748 0.61513 39.88773
2 0.35925 0.45558 0.76516  —0.37960 0.76723 0.61844 0.77757 6.37890
3 0.30853 0.36912 0.75579  —0.38307 0.78741 0.62341 0.84159 6.45868
4 0.37483 0.39413 0.75879  —0.34759 0.78024 0.62273 0.85002 2.70707
5 0.37107 0.40813 0.75494  —0.33713 0.78356 0.62274 0.85211 2.00202
10 0.37561 0.40488 0.75717  —0.33660 0.78353 0.62138 0.85277 1.99342
True values 0.38000 0.42000 0.75000  —0.33000 0.80000 0.60000 0.85000
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Table 2 The parameter estimates and errors versus iteration k (02 = 0.502, L = 2000)

Algorithms k aj a by by o o) c1 §(%)
D-LSI 1 —0.01200 0.00614 0.72453  —0.55148 0.77936 0.62658  —0.00384 63.79498
2 0.46302 0.45050 0.74061  —0.29910 0.79530 0.60622 0.75542 8.11391
3 0.33566 0.35793 0.76113  —0.36301 0.78854 0.61498 0.85624 5.23040
4 0.36287 0.39897 0.75618  —0.34691 0.79055 0.61239 0.85650 2.22579
5 0.38124 0.40648 0.75569  —0.33352 0.78855 0.61497 0.85919 1.56941
10 0.37432 0.40012 0.75440  —0.33702 0.78826 0.61534 0.85936 1.87768
F-D-LSI 1 —0.00063  —0.00294 0.73928 —0.57364 0.88889 0.66575 0.57716 41.60456
2 0.37176 0.46262 0.75183 —0.36609 0.76951 0.61516 0.77109 6.24188
3 0.31375 0.38596 0.74718 —0.37215 0.79236 0.61911 0.84758 5.34710
4 0.37879 0.39422 0.75172  —0.33997 0.78415 0.61771 0.85527 2.23945
5 0.38252 0.42147 0.74641 —0.32178 0.78701 0.61801 0.85822 1.54725
10 0.38485 0.41473 0.74928 —0.32332 0.78753 0.61631 0.85903 1.48614
True values 0.38000 0.42000 0.75000  —0.33000 0.80000 0.60000 0.85000
Fig. 6 The F-D-LSI 0.45 [ ' ' b
estimation errors § versus k
(L = 2000) 04} ]
0.35 i
03Ff g
025 6?=3.00° ¢°=200° °=050° -
(2=}
02} i
0.15 | g
01Ff i
0.05 |- 3
00 &Is 1I0 15
k
When the noise variance o2 = 1.002, iteration k = a(t) = 0.79551u%(t) 4+ 0.60594u° (1).
15, the D-LSI estimated model is given by
o 0.76582z! — 0.319927~2 - I;S(r)g]odel 1val;datlon, wzeol(l)sle a;1(1)1:)f(e)rentddz;11taset.(L,Z j
= u =
y 1+ 0387882—1 + 0.3775272 samples rom ¢ to )gn the estimate
1 models obtained by the D-LSI algorithm and the F-
+——v(1), D-LSI algorithm. The predicted outputs and the true
I+ 085828, 1" g P P

outputs are plotted in Fig. 8 from + = 2001 to 2100
and Fig. 9 from ¢ = 2001 to 3000. Using the estimated
outputs to compute the average output errors:

i(t) = 0.77549u>(t) + 0.63137u (1),

the F-D-LSI estimated model is given by
0.77354z~" — 0.311407 >

1= i .
Y0 = 150398271 + 0.40385: 2" T oo }
U S b = w5 | D D) = I | = 0.0550784,
1+ 085839Z_1 ’ j=2001
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Fig.7 The parameter 0.7 T T
estimation errors § versus k

2 _ 2 —
(62 = 1.502, L = 1000) sl )

o4r D-LSI F-D-LSI

03 b

Fig. 8 The true output and
predicted output from 6 i
t = 2001 to 2100

(02 =1.00%, k = 15)

True output / Predicted output

| | | | | | | | |
2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100
t

Solid line: y(¢); cross: g1 (¢); dots: ga(t)

3000 2 — Under the same data length, the parameter estima-

8oy = —— Z [y(j) — 3( j)]2 = 0.0548344, tion errors become smaller as the noise variances
1000 | . d —see Fig. 6
j=2001 ecrease—see Fig. 6.

Under the same noise variances and data lengths,
the F-D-LSI algorithm can generate more accurate
parameter estimates than the F-LST algorithm—see
Tables 1 and 2 and Fig. 7.

The F-D-LSI algorithm can generate accurate para-
meter estimates after only several iterations—see
Tables 1 and 2.

— The parameter estimation errors are becoming The predicted outputs are very close to the true out-

smaller (in general) as k increasing—see Figs. 6 puts, so the estimated model can capture the dynam-
and 7 ics system well—see Figs. 8 and 9.

where y;(¢) is the predicted output given by the D-LSI
model, y,(¢) is the predicted output given by the F-D-
LSI model, and y(¢) is the true output.

From Figs. 6,7, 8,9 and Tables 1 and 2, we can draw
the following conclusions.
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Fig. 9 The true output and sk
predicted output from
t = 2001 to 3000

(62 = 1.00%, k = 15)

True output / Predicted output

_6,

= X
e

| |
2000 2100 2200

| | | | |
2500 2600 2700 2800 2900

t

| |
2300 2400

Solid line: y(t); cross: g1(t); dots: g2(¢)

7 Conclusions

This paper presents a least squares iterative algorithm
and a filtering-based least squares iterative algorithm
for IN-OEAR systems by using the model decompo-
sition technique. Compared with the D-LSI algorithm,
the F-D-LSI algorithm has higher estimation accuracy.
The simulation test validates the effectiveness of the
proposed algorithms. The proposed algorithms can be
extended to study the parameter estimation problem for
dual-rate sampled systems and non-uniformly sampled
systems [36—38] and applied to other fields [39—42].
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