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Abstract The prediction of gear vibration and noise
has always been a major concern in gear design. Noise
and vibration are inevitable problems that are involved
in transmission systems; they have intensified when
some nonlinear phenomena such as jump phenom-
enon, tooth separation and period-doubling bifurcation
appear in the system. Tip and/or root modifications
are well-known solutions that improve dynamic per-
formance of gears. The present work investigates the
complex, nonlinear dynamic behavior of three bevel
gear models: (1) model with pure involute profile, (2)
model with statically optimized tooth profile, and (3)
model with dynamically optimized tooth profile. Tooth
profile modification is employed in models by means
of genetic algorithm in order to extract the best amount
and length of modifications. The dynamic responses
obtained from dynamic analyzer were compared qual-
itatively and quantitatively. By augmenting tooth pro-
file modification, the average value of the dynamic
responses is decreased intensely for both statically and
dynamically optimized gear pairs. Dynamic load factor
is calculated and compared with the involute tooth pro-
file model and the two optimized gear sets. Employing
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teeth optimization leads to elimination of period-2Tm
in both optimized simulations.
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diagram · Tooth profile modification · Dynamic
transmission error · Dynamic load factor

1 Introduction

Bevel gears are important machine elements, which are
used extensively for transmitting power between non-
parallel shafts. One of the most common bevel gears
is straight bevel gear, which can transmit heavy loads.
Dynamic analysis of this type of gear is a controver-
sial issue due to pressing need for achieving higher
speed and tolerating heavier load in some applications.
Most research carried out to date has focused on spur
gear that interestingly expands our understanding of
the vibration of gear system.

Transmission error (TE) is the major source of noise
and vibration [1]. The common definition of TE is the
difference between the actual position of the driven
gear and the position it would occupy if the gear drive
were perfectly conjugate [2]; therefore, it has become
to the first priority to control the effects of this pattern
on geared system. Industries and researchers have used
so many methods in order to decrease effects of fluctu-
ation of TE [2].Micro-geometricmodification is one of
the common intentional removal of material from the
gear teeth flanks, which is extensively used to compen-
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sate for the elastic gear and tooth deflection from the
applied torque. Lin et al. [3] ascertained influences of
profile modification by means of linear and parabolic
teeth relief on the dynamic responses and dynamic load
factors of spur gears by using computational simula-
tion techniques. Kahraman and Blankenship [4] car-
ried out experimental analysis on spur gear in order
to check influence of different linear tip modifications
on dynamic response of several pairs in different input
torques.

So many researches have been done on bevel
gears numerically and experimentally, particularly the
straight bevel gears. Terauchi et al. [5] designed a test
machine in order to investigate dynamic load of gear
teeth, the torque variation and the bending vibration
of straight bevel gear shafts. Oda et al. [6,7] investi-
gated root stress, bending fatigue strength and dynamic
load of straight bevel gear through experiments. They
focused on the dynamic behavior of straight bevel gear
in a technical report [8]. Nalluveettil and Muthuveer-
appan [9] produced a tooth of straight bevel gear and
used finite element method to evaluate bending stress
of a gear tooth, and then numerical outcomes were
compared with experimental data. Gagnon et al. [10]
employed linear finite strip method to compute deflec-
tion of teeth of spur and straight bevel gear. A dif-
ferent approach named Tredgold Approximation was
developed by Elkholy et al. [11] that has divided face
width of straight bevel gear to a number of artificial
spur gears. Load and stress distributions have been
determined on each section by using analytical equa-
tions. Results of this method have been validated with
experimental measurements given by Ref. [5]. Wang et
al. [12] proposed a nonlinear dynamic model of bevel
gear including gears, bearings and shafts. They investi-
gated nonlinear influences of axial, lateral and torsional
stiffnesses of shaft on the vibration of the bevel gear
system. Marambedu [13] developed a full finite ele-
ment model to compute compliance of straight bevel
gear teeth with considering load distribution, transmis-
sion error and contact stress. Bahrami et al. [14] used
Tredgold approximation in order to evaluate Hertzian
stress distribution on the face width of straight bevel
gear.

Some theoretical investigations have been done in
dynamics and vibration of bevel gears. Yinong et
al. [15] carried out a nonlinear analysis on multiple
degree of freedom spiral bevel gear using asymmet-
ric mesh stiffness. Chang-Jian [16] performed nonlin-

ear dynamic analysis of bevel gear system, including
thrust bearing and journal bearing. Yassine et al. [17]
presented dynamics of two-stage straight bevel gear in
different conditions such as gear with the eccentric-
ity defect and cracked tooth by means of numerical
method; the dynamic behavior of the faulty gear sys-
tem compared with the faultless system.

This paper investigates nonlinear dynamics of a
straight bevel gear pair with three types of teeth mod-
ifications. The first model possesses teeth with pure
involute profile, i.e., without tooth profile modifica-
tion (TPM); the second model possesses teeth with
modification acquired fromminimizing static transmis-
sion error (STE) and the third model possesses teeth
with modification acquired from optimizing dynamic
transmission error (DTE). The governing equations of
motion are nonlinear and time-varying due to backlash
function and mesh stiffness, respectively. The periodi-
cally varying mesh stiffness is due to the change in the
number of teeth in contact as the gears rotate. Time-
varyingmesh stiffness is evaluated byHelicalPair soft-
ware [18]. HelicalPair is a software developed in the
Center Intermech MO.RE. (Aster, High Technology
Network of the Emilia Romagna Region). HelicalPair
acts as a preprocessor and postprocessor for a finite
element (FE) solver, namely MSC Marc software. An
advanced toolbox of HelicalPair is tooth optimization
by means of genetic algorithm (GA), which is utilized
to improve performance of the case studies through
modification on tip and root of involute profile.

2 Physical model

The tooth geometry of straight bevel gear is not uni-
form [19]. They vary from heel with wide thickness
to toe with thin thickness; it introduces stiffness vari-
ation along the face width. The bevel gear face width
has been divided to three different artificial spur gears;
see Table 1 for geometrical details. Figure 1 illustrates
the lumped parameter model developed to study the
dynamic behavior of the bevel gears. Table 2 presents
the common gear design parameters of straight bevel
gears. The pinion is connected to the gear via three
equivalent teeth mesh stiffness and three equivalent
viscous dampers. Note that the translational degrees
of freedom (DOF) for bevel gears have been limited in
all directions, i.e., only rotational mobility of the shafts
is allowed.
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Table 1 Design parameters of the artificial equivalent spur gear
pairs

Parameters First slice Second slice Third slice

Number of teeth 45 45 45

Module (mm) 5.7 5.3 4.8

Pressure angle (◦) 20 20 20

Face width (mm) 10 10 10

Tip diameter (mm) 273.08 252.2 231.3

Root diameter (mm) 247.08 228.2 209.3

Nominal torque (N mm) 125,000 119,000 103,000

Fig. 1 Equivalent dynamic model of the straight bevel gear

The equation of motion of the system is obtained by
applying Lagrange formulation [20,21] and is given
by:

I1θ̈1 + c1r11(r11θ̇1 − r21θ̇2 − ėpair1)

+ c2r12(r12θ̇1 − r22θ̇2 − ėpair2)

+ c3r13(r13θ̇1 − r23θ̇2 − ėpair3)

+ k1r11 f (r11θ1 − r21θ2 − epair1)

+ k2r12 f (r12θ1 − r22θ2 − epair2)

+ k3r13 f (r13θ1 − r23θ2 − epair3) = T1

Table 2 Numerical parameters of the straight bevel gear pairs

Parameters Value

Number of teeth 32

Heel Module (mm) 6

Pressure angle (◦) 20

Face width (mm) 30

Module of elasticity (MPa) 206,000

Poisson ratio 0.3

Pitch angle (◦) 45

Outer cone normal backlash (mm) 0.1746

Nominal torque (N mm) 317,000

I2θ̈2 − c1r21(r11θ̇1 − r21θ̇2 − ėpair1)

− c2r22(r12θ̇1 − r22θ̇2 − ėpair2)

− c3r23(r13θ̇1 − r23θ̇2 − ėpair3)

− k1r21 f (r11θ1 − r21θ2 − epair1)

− k2r22 f (r12θ1 − r22θ2 − epair2)

− k3r23 f (r13θ1 − r23θ2 − epair3) = −T2 (1)

In Eq. 1, I1 and I2 are rotary inertia of pinion and
gear, r11, r12, r13 are base radii of pinion slices, and
r21, r22, r23 are base radii of gear slices, respectively.
Deflections all over teeth are considered uniform, so
angular displacement for slices is equal with θ1 for
driver and θ2 for driven gear. Because ofmanufacturing
error and/or some intentional modification on the teeth
profile, a free space is produced between mating teeth,
named no-load transmission error (NLTE) or e(t). T1
and T2 are constant driver torque and breaking torque,
respectively. k j is the time-varying mesh stiffness; c j
is the damping coefficient between the meshing gear
teeth of the pairs. The linear DTE along the line of
action for each slices is defined as λ = r1 jθ1 − r2 jθ2
where j = 1, 2, 3. Hence, Eq. (1) simplified to a new
rotational equation of motion is as follows:

Ieq λ̈θ + Cm(λ̇θ − ėθ ) + Km(t) f (λθ − eθ ) = T1 (2a)

Cm = c1r
2
11 + c2r

2
12 + c3r

2
13 (2b)

Km = k1r
2
11 + k2r

2
12 + k3r

2
13 (2c)

Ieq =
(
1

I1
+ n2

I2

)−1

(2d)

f (λθ − eθ ) =
⎧⎨
⎩

λθ − eθ − θb λθ − eθ > θb
0 −θb ≤ λθ − eθ ≤ θb
λθ − eθ + θb λθ − eθ < −θb

(2e)
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Fig. 2 Comparing torsional mesh stiffness along successive
mesh cycles

where n = r2 j
r1 j

, j = 1, 2, 3 explains gear ratio of the
gear pairs. Note that linear DTEs for pairs are not equal
to each other, while angular DTEs are identical over all.

λθ = θ1 − nθ2 is the angular dynamic transmission
error for whole model, eθ (t) is the time-varying cir-
cumferential NLTE of the model, and θb is the angular
backlash. Clearly, involute profile has zero value for
eθ (t) [20]. Equation (2a) expresses dimensional non-
linear displacement function of the gear pairs. The term
Km is the equivalent of the torsional mesh stiffnesses of
the gear pairs which are simultaneously time-varying
and periodic by fundamental meshing frequency ωm =
2π
60 N1γs , see Fig. 2. N1 is the teeth number of pinion,
and γs[rpm] is the input shaft speed. Therefore, it is
expanded in Fourier series:

Km(t) = k0 +
S∑
j=1

a j cos( jωmt) +
S∑
j=1

b j sin( jωmt)

(3)

where k0 is the average value of torsional mesh stiff-
ness; a j , b j are Fourier coefficients.Mesh stiffness and
NLTE are computed from the aforementioned quasi-
static program that yields angular displacement of
model in Np = 15, discrete rotational position over
a mesh cycle. The number of samples Np is related
to the number of harmonics, S = (Np − 1)/2. Fig-
ure 2 shows mesh stiffness variation for each three
slices over the two successive periods. In thismodel, the
gear meshes have single angular clearance 2θb in spite
of different normal backlash 2bn along face width for
other types of the gears. f (λθ − eθ ) is the rotational
displacement function which is multiplied with stiff-

Fig. 3 Nonlinear displacement function with angular backlash

ness and produces the restoring force function in the
equation of motion, see Fig. 3.

Wheneverλθ −eθ is allocated between+θb and−θb,
the displacement function returns to zero, so mating
teeth separate from each other and contact loss occurs
due to the clearance between gear teeth [22]. For λθ −
eθ > θb, the mesh is expected to be in forward contact,
while in the stateλθ − eθ < −θb undesired backside
contact occurs, which causes several problems in gear
systems; see Ref. [20]. Equation (2a) is normalized by
substituting new parameters as follows:

τ = ωnt, ωn =
√

k0
Ieq

, eθ = eθ

θb
, λ′ = dλ

dτ
,

T g = T1
θb Ieqω2

n
, ζ = Cm

2Ieqωn
(4a)

Km(t) = 1 +
S∑
j=1

a j

Ieqω2
n
cos( jωmt)

+
S∑
j=1

b j

Ieqω2
n
sin( jωmt) (4b)

f (λθ − eθ ) =

⎧⎪⎨
⎪⎩

λθ − eθ − 1 λθ − eθ > 1

0 −1 ≤ λθ − eθ ≤ 1

λθ − eθ + 1 λθ − eθ < −1

(4c)

λ′′
θ + 2ζ(λ′

θ − e′
θ ) + Km(τ ) f (λθ − eθ ) = T g (4d)

Equation (4d) describes a nonlinear differential
equation with time-varying coefficient which excites
system. A numerical integration based on fourth-order
Runge–Kutta integration computes the dynamic behav-
ior of the system. In order to validate the numerical
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Table 3 Numerical parameters of the spur gear pairs of bench-
mark model, Ref. [23]

Parameters Pinion Gear

Number of teeth 50 50

Module (mm) 3 3

Pressure angle (◦) 20 20

Outside diameter (mm) 156 156

Module of elasticity (MPa) 206,000 206,000

Density (kg/m3) 7850 7850

Face width (mm) 20 20

Fig. 4 Comparison between numerical simulation and experi-
mental data from Ref. [23]

outputs of the dynamic solver, its outputs are compared
with experimental data of Kahraman and Blankenship
[23]. The test has been carried out on a spur gear using
data of Table 3.

The gear set was tested by 340Nm torque in the
speed range between 500 and 4000 (rpm). The dynamic
solver records root-mean-square (rms) of DTEs in 100
increments along the last ten steady state periods.
Numerical solutions match quite well with the exper-
imental data; see Fig. 4. Nonlinear softening behavior
and jump phenomena are almost coincide with exper-
imental data. In addition to the primary resonance at
ωm/ωn ≈ 1, two secondary resonances (super harmon-
ics) at approximatelyωm/ωn ≈ 1/2 andωm/ωn ≈ 1/3
have excellent agreement with Ref. [23].

Angular rotations of each three slices along the face
width are considered equal to each other. Aswell as sta-
tic results, the dynamic responses present good agree-

Fig. 5 Comparison of the dimensionless rms of three slices ver-
sus dimensionless excitation frequency

ment for all three slices; Fig. 5 illustrates this compat-
ibility.

3 Optimized profile modification

The modification procedure employed in this study is
the same as in Ref. [24] including selection, crossover
and mutation with certain number of interactions on
population of strings. The genetic algorithmmodel ran-
domly selects first population. The best chromosome
based on its highest fitness, i.e., lowest peak to peak of
transmission error for static model and lowest value of
dynamic transmission error for dynamic model, is thus
selected. Eight parameters including four amplitudes
and four diameters of modification are achieved from
genetic algorithm,which identify the set of profilemod-
ification on both pinion and gear profiles. From oper-
ating pitch diameter to tip diameter and from operating
pitch diameter to root diameter are allowable search-
ing ranges for tip relief and root relief, respectively;
amplitude for removal at operating pitch diameter is
zero.

Several tests have been carried out to achieve an
appropriate optimization for operating condition of the
bevel gear pair. In this study, TPM encompasses tip and
root relief method, linearly. One type of optimization
is based on minimizing peak to peak of static trans-
mission error of the gear sets under operating load,
and the other type of optimization focuses on reduc-
tion in maximum dynamic transmission error. Para-
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Fig. 6 Comparison of rms amplitudes for three case studies

meters of the optimized models passed to dynamic
simulator in order to evaluate influence of modifica-
tions on dynamic behavior of the system. Root-mean-
square (rms) is a beneficial tool to evaluate dynamic
behavior in the range of pinion speed. The initial
conditions for the first increment are considered as
λ(0) = 1.0001, λ′(0) = 1 × 10−5. Consecutive incre-
ments assign initial condition from the last point of the
last period. Simulation includes increasing frequency
ratio (forward simulation) and decreasing frequency
ratio (backward simulation). Figure 6 indicates rms
amplitudes of original and modified gear pairs illus-
trating the nonlinear behavior of the gear sets. There
is a jump down in primary resonance and super har-
monics (particularly at ωm/ωn ≈ 1/2) in backward
simulation of involute profile gears. Due to modifi-
cations, the gaps decreased noticeably from 0.646 to
0.312 and 0.088 for statically optimized profile and
dynamically optimized profile, respectively. Markedly,
both optimizations stand out their drastic influence on
gear dynamic around ωm/ωn ≈ 2 where oscillation
frequency is close to twice natural frequency (principal
parametric resonance) [25]. It is well known that para-
metrically excited systems undergo to parametric insta-
bility gives rise to 2T respond. It is the other source of
oscillation in dynamic systems, but the jumps are elim-
inated by applying profile modifications. It is impor-
tant to compare average values of the amplitudes of the
cases. Due to STE optimization and DTE optimiza-
tion, the mean quantities of amplitudes are decreased
80 and 97%, with respect to pure involute tooth
profile.

4 Nonlinear dynamic behavior of straight bevel
gear

Dynamic behavior of the systems can be analyzed with
different beneficial tools. Bifurcation analysis shows a
qualitative change in the features of a system, such as
the number and type of solutions, under the variation
of one or more parameters [26]; therefore, bifurcation
map illustrates some specific information of nonlinear
dynamic responses.

Dimensionless frequency or dimensionless rota-
tional speed (ωm/ωn) is the bifurcation control parame-
ter which varies between 0.1 and 2.2 during analyzing,
continuously. There are some other applicable control
parameters in geared system, see Ref. [27]. The vari-
able control parameter domain was discretized to 300
steps. The state variables at the end of one integration
step are taken as the initial values for the next step.

Dynamic behavior of involute tooth profile gear is
shown in Figs. 7 and 8 for speed-up and speed-down,
respectively. In backward motion, from 2.2 to 2.073
symmetric periodic solutions are achieved with exci-
tation frequency ωm ; the periodic solution switches to
period-doubling bifurcation with precisely one-half of
the excitation frequency, ωm/2. Two branches emerge
until the frequency ratio approach to approximately
0.6804. The rate of variation the upper branch is
smooth, while the other one changes sharply.

The period-doubling bifurcation behavior is
repeated for speed-up around ωm/ωn ≈ 2 and in the
short range between 0.654 and 0.676; the other fre-
quency ratios have period-one response with asymp-
totic trend near super-harmonics, see Fig. 8. The time

Fig. 7 Bifurcationdiagramof backwardmotionof involute tooth
profile
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Fig. 8 Bifurcation diagram of forward motion of involute tooth
profile

response curve, phase portrait and Poincaré map of
the presented bevel gear system are illustrated for fre-
quency ratios equal to 2.003 (case 1) and 0.6618 (case
2) in backward and forward simulations, respectively;
see Fig. 9. Two separate points in Poincaré map of case
1 indicate period 2-Tm in backwardmotion. Green stars
on the time history and phase portrait curves show start-
ing points of the corresponding excitation period.
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Fig. 10 Bifurcation diagramof backward simulation—statically
optimized teeth

By employing TPM, the period-doubling bifurca-
tion disappeared; i.e., for the excitation frequency range
in that period doubling occurred, the response switched
to periodic motion. Figure 10 presents bifurcation dia-
gram of the bevel gears system with statically opti-
mized system, and Fig. 11 presents bifurcation diagram
of the bevel gears system with dynamically optimized
system.

Fig. 9 Vibration attractors in 2.003 in speed-up (case 1), and 0.6618 (case 2) in speed-down motion
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Fig. 11 Bifurcation diagram of backward simulation—
dynamically optimized teeth

5 Dynamic load factor

The repetitive dynamic load provides condition to arise
fatigue failure in the tooth root, pitting and scoring on
the teeth surface. Reduction in gear dynamic load is
one of the major concerns in the design of power trans-
mission gears [3]. Leftward-leaning resonant response
indicates softening nonlinearity due to stiffness reduc-
tion in the system as the gears lose contact at large
vibrations. Dynamic mesh force (DMF) is defined as
restoring force of gear mesh set [21,28]. Due to varia-
tion of pitch radius of the bevel gears tooth from heel to
toe, we introduce dynamic mesh torque (DMT) instead
ofDMF.DMT introduced as non-dimensional dynamic
restoring mesh:

DMT = Km(τ ) f (λθ − eθ ) (5)

Figure 12 illustrates DMT among successive cycles
for both forward and backward simulation at frequency
ratioωm/ωn = 1.007 for the case of involute tooth pro-
file. This frequency is very close to primary resonance
region. In some segments of period, DMT values van-
ish; i.e., loss of contact. Contact loss domain in back-
ward simulation is more than corresponding domain
in forward simulation; the ratio of forward contact loss
domain over a total mesh frequency period (FCL/Tm f )

in forward simulation is about 0.23, while this ratio
of backward simulation (BCL/Tmb) is almost 0.72;
where Tm f and Tmb are periods of responses of for-
ward and backward simulations, respectively. Besides,
Fig. 6 illustrates that there is a large difference between
forward and backward simulations. Note that for awide
range of the given frequencies, the backward simula-
tion is on a period-doubling branch.
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Fig. 12 Mesh Restoring Torque variation of the involute tooth
profile; BCL backward contact loss, FLC forward contact loss
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Fig. 13 Mesh restoring torque fluctuation for the statically opti-
mized TPM, BCL backward contact loss, FLC forward contact
loss

Figure 13 illustrates the influence of static optimiza-
tion on the straight bevel gear mesh restoring torque at
ωm/ωn = 1.007 in both forward and backward simula-
tions. By augmenting TPM, duration of contact loss is
reduced 92 and 51% comparedwith involute tooth pro-
file gear in backward and forward simulations, respec-
tively; furthermore, the backward and forward simula-
tions superimposed on each other; i.e., BCL = FCL.

Figure 14 shows DMT for the case of bevel gear
with dynamically optimized TPM on the straight bevel
gear mesh restoring torque at ωm/ωn = 1.007. Con-
trary to statically optimized teeth, the contact loss
region is disappeared and DMT fluctuation is sensibly
reduced. Therefore, TPM decreases dynamic ampli-
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Fig. 14 Mesh restoring torque fluctuation for the dynamically
optimized TPM

tude of responses and improves the force behavior of
the system.

A non-dimensional parameter is introduced as
dynamic mesh torque factor. It is the ratio of maxi-
mum value of the dynamic mesh torque in one com-
plete mesh cycle of the steady state response to the
maximum value of static mesh torque (SMT) during
the same cycle [28], Eq. (6):

(DF)RT = (DMT)max

SMT
(6)

where SMT = T g is the non-dimensional static mesh
torque used in non-homogenous part of equation of
motion, Eq. (4d).

Data in Table 4 are dynamic restoring torque factors
for a specific frequency ωm/ωn = 1.007. The dynamic
factor of the bevel gear with dynamically optimized
TPM is less than one-third of corresponding value for
the involute tooth profile case.

6 Discussion and conclusion

In this manuscript, the effects of tooth profile modifica-
tion on the nonlinear dynamic behavior of the straight
bevel gear systems are investigated. For this reason,
bevel gear teeth are simplified using Tredgold method,
and thus the artificial teeth are analyzed statically to
evaluate mesh stiffnesses. Tooth profile modifications
employed in order to optimize the dynamic response of
the bevel gear by means of genetic algorithm toolbox
of HelicalPair software. The optimal TPM is obtained

Table 4 Comparison of the dynamic torque factors for models
with and without modification

Modification (DF)RT

Involute tooth profile 5.98

Statically optimized teeth 2.07

Dynamically optimized teeth 1.91

by two methods: static optimization and dynamic opti-
mization. The statically optimized TPM is obtained
by minimizing the static transmission error fluctuation,
which leads to decline the average value of DTE 80%
with respect to pure involute teeth case. Besides, the
dynamically optimized TPM is obtained by minimiz-
ing the rms of the DTE, which leads to decline in the
average value of DTE (more than 97%). It is worth-
while to obtain a noiseless gearbox. Both models are
compared with the involute tooth profile model. There
are some regions in involute tooth profile model in that
rmsof responses jumpupor downdependon forward or
backwardmotion. Themaximumamplitude of jumps is
reduced noticeably for statically and dynamically opti-
mized tooth profiles, nearly 52 and 86% respectively.

It is observed that in optimized models, the period-
doubling bifurcation regions are disappeared and their
leftward-leaning behavior (softening nonlinearity)
decreased. Furthermore, dynamic mesh torque factor
(DF)RT in dynamically optimized model has better
behavior than statically optimized model.
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