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Abstract This paper studies the fractional-order dis-
turbance observer (FODO)-based adaptive sliding
mode synchronization control for a class of fractional-
order chaotic systems with unknown bounded distur-
bances. To handle unknown disturbances, the nonlinear
FODO is explored for the fractional-order chaotic sys-
tem. By choosing the appropriate control gain parame-
ter, the disturbance observer can approximate the dis-
turbance well. On the basis of the sliding mode control
technique, a simple sliding mode surface is defined.
A synchronization control scheme incorporating the
introduced sliding mode surface and the designed dis-
turbance observer is then developed. Under the con-
trol of the synchronization scheme, a good synchro-
nization performance is realized between two identical
fractional-order chaotic systems with different initial
conditions. Finally, the numerical simulation results
illustrate the effectiveness of the developed synchro-
nization control scheme for fractional-order chaotic
systems in the presence of external disturbances.
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1 Introduction

Over the past decades, fractional calculus has attracted
increasing concerns of researchers, which has been
widely applied in the fields of engineering and physics,
such as system control [1], electromechanics [2] and
signal processing [3]. So far, integer-order nonlinear
systems have been studied extensively [4–7]. Since the
mathematical model of a real plant can be accurately
described via the fractional-order differential method
[8,9], many systems can be expressed as fractional dif-
ferential equations, for example fractional-order eco-
nomic system [10], fractional-order biological popula-
tion model [11], fractional-order financial system [12]
and fractional-order chaotic and hyperchaotic systems
[13–19]. Recently, the synchronization of fractional-
order chaotic systems has been extensively investi-
gated because of the potential applications in electrical
engineering and secure communication. Therefore, it
is significant to develop the synchronization control
of fractional-order chaotic systems based on fractional
calculus.

The chaotic synchronization is that the synchroniza-
tion errors asymptotically approach zero for the tra-
jectories of drive system and response system. Since
the synchronization was firstly realized between two
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identical chaotic systems by Pecora and Carroll [20,
21], the chaotic synchronization has been developed
quickly and many synchronization control schemes
for fractional-order chaotic systems have been pro-
posed including impulsive control [22], active con-
trol [23], adaptive control [24], generalized projective
control [25] and passive control [26]. In addition, it
is well known that sliding mode control is an effec-
tive robust control scheme and the sliding mode con-
trol scheme has the features of fast global convergence
and high robustness to external disturbances [27]. In
recent years, slidingmode control has been investigated
for linear and nonlinear systems [28–31] and many
important results have been reported for the synchro-
nization of fractional-order chaotic systems by using
the sliding mode control strategy. In [32,33], from the
stability theory of fractional-order systems and active
sliding mode control method, the synchronization was
achieved for two fractional-order chaotic systems. The
sliding mode synchronization control was realized for
uncertain fractional-order Duffing–Holmes systems in
[34]. In [35], the stabilization and synchronizationwere
investigated for a class of chaotic fractional-order sys-
tems via a novel fractional-order sliding mode method.
A robust fractional-order slidingmode schemewaspro-
posed, and the synchronization was realized for uncer-
tain fractional-order chaotic systems in [36]. In [37], a
new three-dimensional fractional-order chaotic system
was presented and its adaptive sliding mode synchro-
nization was studied. The synchronization was stud-
ied for a class of fractional-order arbitrary dimensional
hyperchaotic systemsbasedon the slidingmode control
method in [38]. The above-mentioned works focused
on synchronization of fractional-order chaotic systems
via sliding mode control approach. In practice, many
real physical systems are subjected to exogenous dis-
turbance and the disturbance may lead to oscillations
and even increase instability of systems; it is significant
to investigate the synchronization of fractional-order
chaotic systems with external disturbance. According
to the conclusion above, the bounded assumption for
fractional derivative of disturbances was introduced
[34]. In [36,38], unknown disturbances in fractional-
order systems were tackled by adaptive estimation
method. However, the nonlinear FODO has rarely been
considered in synchronization control of fractional-
order chaotic systems in the literature.

Since the nonlinear disturbance observer can
approximate unknown disturbance well, it can be

employed to restrain the interference of external distur-
bance. In the past decades, many design techniques of
integer-order disturbance observer have been reported.
In [39], a disturbance observer-based control was pro-
posed for nonlinear systems with disturbances. The
nonlinear disturbance observerwas developed for robot
manipulators in [40]. In [41], an adaptive fuzzy track-
ing control scheme was explored based on disturbance
observer for multi-input and multi-output nonlinear
systems. By using the terminal sliding mode tech-
nique, a disturbance observer-based adaptive sliding
mode control scheme was proposed for near-space
vehicles (NSV) in [42]. In [43], a Nussbaum distur-
bance observer was designed for NSV. On the basis
of the terminal sliding mode technique and the dis-
turbance observer method, an anti-disturbance control
schemewas presented forNSV in [44].With such expe-
rience of the applications of disturbance observers, it
is necessary to design nonlinear FODO to compensate
for the effects caused by unknown disturbances.

Inspired by the above discussions, we develop a syn-
chronization control scheme to synchronize fractional-
order chaotic systems with unknown external distur-
bances based on a designed nonlinear FODO and a
simple sliding mode surface. To illustrate the effective-
ness of the given synchronization control method, a
modified fractional-order Jerk system is analyzed by
using the proposed synchronization control scheme.

The organization of the paper is as follows. Sec-
tion 2 details the problem formulation. The nonlinear
FODO is designed in Sect. 3. The sliding mode surface
is constructed, and the sliding mode synchronization
controller is proposed based on the developed nonlin-
ear FODO in Sect. 4. A modified fractional-order Jerk
system is presented, and the effectiveness of the pro-
posed synchronization control method is demonstrated
via numerical simulation in Sect. 5, followed by some
concluding remarks in Sect. 6.

2 Problem statement and preliminaries

Fractional calculus is an extension to integer-order cal-
culus. Several existing definitions of fractional deriva-
tives are given in [45], where the Caputo definition is
used in engineering applications extensively.We firstly
introduce the following Caputo definition.

Definition 1 [45] For the function g(t), the Caputo
fractional derivative of fractional-order α is defined as
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follows:

Dαg(t) = 1

Γ (m − α)

∫ t

t0

g(m)(τ )

(t − τ)α−m+1 dτ. (1)

where m − 1 < α < m, m = [α] + 1, [α] denotes
the integer part of α, and the Γ (·) is gamma function,
which is defined asΓ (m−α) = ∫ ∞

0 tm−α−1e−tdt . The
main advantage of (1) is that Caputo derivative of a con-
stant is equal to zero. In this paper, the fractional-order
chaotic systems will be described by using Caputo def-
inition with lower limit of integral t0 = 0 and the order
0 < α < 1.

Definition 2 [46] The Mittag–Leffler function with
two parameters is defined as

Eα1,α2(z) =
∞∑
k=0

zk

Γ (kα1 + α2)
(2)

where α1 > 0, α2 > 0, z stands for set of complex
numbers.

On the basis of the Caputo definition of fractional
derivative, the fractional-order chaotic system will be
introduced.

Consider the following fractional-order chaotic sys-
tem as the drive system:

Dαx(t) = Ax(t) + f (x(t)). (3)

where A ∈ Rn×n denotes a constant matrix, x(t) =
(x1(t), x2(t), . . . , xn(t))T ∈ Rn is a state vector,
f (x(t)) = ( f1(x(t)), f2(x(t)), . . . , fn(x(t)))T ∈ Rn

is the nonlinear function vector.
The response system is defined as follows:

Dα y(t) = Ay(t) + f (y(t)) + d(t) + u(t). (4)

where y(t) = (y1(t), y2(t), . . . , yn(t))T ∈ Rn is
the state vector, f (y(t)) = ( f1(y(t)), f2(y(t)), . . . ,
fn(y(t)))T ∈ Rn is the nonlinear function vec-
tor, d(t) = (d1(t), d1(t), . . . , dn(t))T ∈ Rn

is the unknown bounded disturbance, and u(t) =
(u1(t), u1(t), . . . , un(t))T ∈ Rn is the control input.

This paper aims at developing a FODO-based adap-
tive sliding mode synchronization control scheme, so
that the synchronization is realized between two iden-
tical fractional-order chaotic systems in the presence
of external unknown disturbances. On the basis of the
designed sliding mode controller, the response system
can well synchronize the drive system under the proper
condition. In order to obtain the main results, the fol-
lowing lemmas, properties and assumption are intro-
duced.

Lemma 1 [47] Let χ(t) ∈ � be a continuous and
derivable function. Then, for any time instant t ≥ t0,
we have

1

2
Dαχ2(t) ≤ χ(t)Dαχ(t). (5)

where 0 < α < 1.

Lemma 2 [48] Consider the following fractional-
order system

Dαq(t) ≤ −b0q(t) + b1 (6)

then there exists a constant t1 > 0 such that for all
t ∈ (t1,∞), we have

‖q(t)‖ ≤ 2b1
b0

(7)

where q(t) is the state variable and b0 and b1 are two
positive constants.

Property 1 [49] If g1 is a constant and the order
β2 > 0, the Caputo fractional derivative satisfies the
following condition:

Dβ2g1 = 0. (8)

Property 2 [49] The Caputo fractional derivative sat-
isfies the following linear characteristic:

Dα [a1g2(t) + a2g3(t)] = a1D
αg2(t) + a2D

αg3(t).

(9)

where g2(t) and g3(t) are functions and a1 and a2 are
constants.

Assumption 1 For the external disturbance di (t) with
i = 1, 2, . . . , n, the Caputo fractional derivative of
di (t) is bounded, that is |Dαdi (t)| ≤ ζi and ζi > 0
is an unknown positive constant.

3 Design of fractional-order disturbance observer

In this section, a nonlinear FODO will be designed to
approximate the external disturbance in the response
system (4). Without loss of generality, according to the
response system (4), we have

Dα yi (t) = θi + fi (y(t)) + ui (t) + di (t) (10)

where θi is i th element of Ay(t), yi (t) is the i th element
of y(t), fi (y(t)) is the i th element of f (y(t)), ui (t) is
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the i th element of u(t), di (t) is the i th element of d(t)
and i = 1, 2, . . . , n.

Since d(t) in (4) is unknown, d(t) cannot be applied
to developing synchronization control for the drive sys-
tem (3) and the response system (4). To overcome
the above problem, a fractional-order nonlinear distur-
bance observer is designed to estimate disturbance.

To design the nonlinear FODO, an auxiliary variable
is introduced based on the design technique of integer-
order disturbance observer as follows [41]:

φi (t) = di (t) − σi yi (t) (11)

where σi > 0 is a constant to be determined.
Combining (10) and (11), the Caputo fractional

derivative of φi (t) can be written as

Dαφi (t) = Dαdi (t) − σi D
α yi (t)

= −σi (θi + fi (y(t)) + di (t))

− σi ui (t) + Dαdi (t)

= −σi (θi + fi (y(t)) + φi (t) + σi yi (t))

− σi ui (t) + Dαdi (t) (12)

To obtain the disturbance estimate, the estimate of
intermediate variable φi (t) is described as

Dαφ̂i (t) = −σi (θi + fi (y(t)) + σi yi (t))

− σi φ̂i (t) − σi ui (t) (13)

where φ̂i is the estimate of φi .
According to (11), the disturbance di (t) can be esti-

mated as

d̂i (t) = φ̂i (t) + σi yi (t) (14)

Define d̃i (t) = di (t) − d̂i (t). Considering (11) and
(14), we have

φ̃i (t) = φi (t) − φ̂i (t) = di (t) − d̂i (t) = d̃i (t) (15)

Considering (12) and (13), the Caputo fractional
derivative of φ̃i (t) can be written as

Dαφ̃i (t) = −σi φ̃i (t) + Dαdi (t) (16)

On the basis of the above discussions, in order to
analyze the convergence of disturbance estimate error
d̃i (t), a Lyapunov function candidate can be chosen as

Vd = 1

2
d̃2i (t) = 1

2
φ̃2
i (t) (17)

Invoking (17) and Lemma 1, the Caputo fractional
derivative of Vd is described as

DαVd(t) ≤ φ̃i (t)D
αφ̃i (t) (18)

Substituting (16) into (18), we obtain

DαVd(t) ≤ φ̃i (t)(−σi φ̃i (t) + Dαdi (t)) (19)

According to (19) and Assumption 1, we have

DαVd(t) ≤ −σi φ̃
2
i (t) + 1

2
φ̃2
i (t) + 1

2
ζ 2
i

= −
(

σi − 1

2

)
φ̃2
i (t) + 1

2
ζ 2
i

= −B0Vd(t) + B1 (20)

where B0 = 2σi − 1 and B1 = 1
2ζ

2
i . To ensure the

estimated error is bounded, the nonlinear FODO con-
trol gain σi should be chosen to make σi > 0.5. The
conclusion that the signals φ̃i (t) and d̃i (t) are bounded
can be drawn from (20) and Lemma 2.

On the basis of Lemma 2 and (20), we obtain

|Vd(t)| ≤ ζ 2
i

2(σi − 0.5)
(21)

which means

∣∣∣d̃i (t)
∣∣∣ ≤

√
ζ 2
i

(σi − 0.5)
(22)

According to (22), the disturbance estimation error
d̃i is upper bounded. For the external disturbance di (t)
with i = 1, 2, . . . , n, the disturbance approximation

error d̃i (t) = di (t) − d̂i (t) satisfies
∣∣∣d̃i (t)

∣∣∣ ≤ κi and

κi > 0 is an unknown positive constant. In actual appli-

cation, the upper bound of
∣∣∣d̃i (t)

∣∣∣ is difficult to deter-

mine; therefore, the estimated value κ̂i of κi is intro-
duced, where i = 1, 2, . . . , n.

The above design procedure of nonlinear FODO can
be summarized in the following theorem:

Theorem 1 Consider the response system (4) and the
nonlinear FODO is designed as (13) and (14). The
disturbance estimate error of the proposed nonlinear
FODO is bounded.

On the basis of the above-mentioned analyses, The-
orem 1 can be easily proven.

4 Synchronization control of fractional-order
chaotic systems

In this section, the nonlinear FODO-based adaptive
sliding mode control scheme will be proposed to guar-
antee the trajectories of drive system (3) and response
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system (4) which are ultimately bounded synchroniza-
tion. To design the synchronization control scheme, we
firstly define error state e(t) = y(t) − x(t)(e(t) =
(e1(t), e2(t), . . . , en(t))T ∈ Rn). From (3) and (4), the
corresponding synchronization error system is as fol-
lows:

Dαe(t) = Ae(t) + f (y(t)) − f (x(t)) + d(t) + u(t)

(23)

To investigate the stabilization of fractional-order
synchronization error system (23), a simple sliding
mode surface is defined as

si (t) = ei (t). (24)

where i = 1, 2, . . . , n
From (24), we have

Dαsi (t) = Dαei (t)

= Aie(t) + fi (y(t)) − fi (x(t))

+ di (t) + ui (t) (25)

where Ai denotes the i th line of A and fi (x(t)) denotes
the i th element of f (x(t)).

Using the adaptive sliding control approach, the
desired synchronization control input is designed as

ui (t) = −Aie(t) − ( fi (y(t)) − fi (x(t))) − ηi si (t)

− κ̂i sign(si (t)) − d̂i (t) (26)

where sign(·) is the sign function and ηi > 0 is a design
constant. Meanwhile, the estimated value κ̂i is updated
by

Dακ̂i = γi
(|si (t)| − κ̂i

)
(27)

where γi > 0 is a design constant.
If the synchronization control scheme is designed as

(26) for fractional-order synchronization error system
(23), the sliding mode surface satisfies that the sliding
mode surface si (t) is bounded stable in the form of

|si (t)| ≤ a (28)

where a > 0 is a unknown constant.
From (24) and (28), one obtains

|ei (t)| ≤ a (29)

According to the above discussion, if the sliding
surface si (t) is bounded, then the synchronization
error ei (t) is also bounded. Therefore, the nonlin-
ear FODO-based adaptive sliding mode synchroniza-
tion control scheme for fractional-order chaotic sys-
tems with unknown disturbances can be summarized
in the following theorem and will be proved by using
fractional-order Lyapunov method.

Theorem 2 For the synchronization error system (23)
with 0 < α < 1, the sliding mode surface is designed
according to (24). The external unknown bounded dis-
turbance is estimated by using the designed nonlinear
FODO (13) and (14). Then, the synchronization error
e(t) is ultimately bounded stable under the adaptive
sliding control scheme (26) and (27).

Proof To analyze the convergence of synchronization
error e(t), we consider the Lyapunov candidate func-
tion as

V (t) =
n∑

i=1

1

2
s2i (t) +

n∑
i=1

1

2
d̃2i (t)

+
n∑

i=1

1

2

(
1√
γi

(κ̂i − κi )

)2

(30)

According to Property 2 and (30), we have

DαV (t) =
n∑

i=1

1

2
Dαs2i (t) +

n∑
i=1

1

2
Dα

(
1√
γi

κ̃i

)2

+
n∑

i=1

1

2
Dα d̃2i (t) (31)

where κ̃i = κ̂i − κi .
From Lemma 1, (31) can be written as

DαV (t)≤
n∑

i=1

si (t)D
αsi (t)+

n∑
i=1

1√
γi

κ̃i D
α

(
1√
γi

κ̃i

)

+
n∑

i=1

1

2
Dα d̃2i (t) (32)

Based on Property 2, (32) is equivalent to

DαV (t) ≤
n∑

i=1

si (t)D
αsi (t) +

n∑
i=1

1

γi
κ̃i D

ακ̃i

+
n∑

i=1

1

2
Dα d̃2i (t) (33)

On the basis of (25), one has

DαV (t) ≤
n∑

i=1

si (t) (Aie(t) + fi (y(t)) − fi (x(t)))

+
n∑

i=1

si (t) (di (t) + ui (t))+
n∑

i=1

1

γi
κ̃i D

ακ̃i

+
n∑

i=1

1

2
Dα d̃2i (t) (34)
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Referring to Property 1 and κ̃i = κ̂i − κi , we obtain

Dακ̃i = Dακ̂i (35)

According to (27) and (35), we have

n∑
i=1

1

γi
κ̃i D

ακ̃i =
n∑

i=1

κ̃i
(|si (t)| − κ̂i

)

=
n∑

i=1

κ̃i |si (t)| −
n∑

i=1

κ̃i κ̂i

≤
n∑

i=1

κ̃i |si (t)| −
n∑

i=1

1

2
κ̃2
i +

n∑
i=1

1

2
κ2
i

(36)

Invoking (36), we obtain

DαV (t) ≤
n∑

i=1

si (t) (Aie(t) + fi (y(t)) − fi (x(t)))

+
n∑

i=1

si (t)(di (t) + ui (t)) +
n∑

i=1

κ̃i |si (t)|

−
n∑

i=1

1

2
κ̃2
i +

n∑
i=1

1

2
κ2
i +

n∑
i=1

1

2
Dα d̃2i (t)

(37)

Substituting (26) into (37) yields

DαV (t) ≤
n∑

i=1

si (t)
(
−ηi si (t)+d̃i (t)−κ̂i sign(si (t))

)

+
n∑

i=1

κ̃i |si (t)| −
n∑

i=1

1

2
κ̃2
i +

n∑
i=1

1

2
κ2
i

+
n∑

i=1

1

2
Dα d̃2i (t) (38)

Furthermore, (38) can be rewritten as

DαV (t) ≤
n∑

i=1

−ηi s
2
i (t) +

n∑
i=1

|si (t)|
∣∣∣d̃i (t)

∣∣∣

+
n∑

i=1

κ̃i |si (t)| −
n∑

i=1

1

2
κ̃2
i +

n∑
i=1

1

2
κ2
i

−
n∑

i=1

κ̂i |si (t)| +
n∑

i=1

1

2
Dα d̃2i (t) (39)

with
n∑

i=1

κ̃i |si (t)| −
n∑

i=1

κ̂i |si (t)| = −
n∑

i=1

κi |si (t)| (40)

According to (40), it yields

DαV (t) ≤
n∑

i=1

−ηi s
2
i (t) −

n∑
i=1

1

2
κ̃2
i +

n∑
i=1

1

2
κ2
i

+
n∑

i=1

1

2
Dα d̃2i (t) (41)

Considering (20) and (41), we have

DαV (t) ≤
n∑

i=1

−ηi s
2
i (t) −

n∑
i=1

1

2
κ̃2
i +

n∑
i=1

1

2
κ2
i

n∑
i=1

−(σi − 1

2
)d̃2i (t) +

n∑
i=1

1

2
ζ 2
i

≤ −B2V (t) + B3 (42)

where B2 = min(2ηi , 1, 2σi − 1) and B3 =
n∑

i=1

1
2ζ

2
i +

n∑
i=1

1
2κ

2
i .

To ensure the synchronization error is bounded, the
corresponding design parameters ηi and σi should be
chosen tomake ηi > 0 and σi > 0.5. According to (42)
and Lemma 2, it may directly show that the signals s(t),
e(t) and d̃i (t) are ultimately bounded. From Lemma 2
and (42), we obtain

|V (t)| ≤
∑n

i=1 ζ 2
i + ∑n

i=1 κ2
i

B2
(43)

which implies

‖s(t)‖ ≤

√√√√√2

(
n∑

i=1
ζ 2
i +

n∑
i=1

κ2
i

)

B2
(44)

From the inequality (44), the synchronization error
e(t) and s(t) will be ultimately bounded as t → ∞.
Therefore, the synchronization error system (23) is
bounded stable based on Lemma 2. The bounded syn-
chronization of drive system (3) and response system
(4) is achieved. This concludes the proof. 
�
Remark 1 Since the response system (4) is with the
unknown time-varying disturbance, the nonlinear
FODO is employed to estimate the disturbance in this
paper. To develop the disturbance observer, Assump-
tion 1 is introduced. This assumption means that the
Caputo derivative of the disturbance is bounded. If the
Caputo derivative of the disturbance is unbounded, the
estimation performance of nonlinear FODO could be
poor. Thus, Assumption 1 is necessary for the distur-
bance.
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Remark 2 As for the proposed nonlinear FODO, we
can see that the estimated error with suitable transient
performance can be obtained by appropriately adjust-
ing design parameter σi . For example, the approxima-
tion error could be decreased by increasing the value of
σi . Therefore, appropriate parameter should be chosen
based on the performance of whole systems.

5 Simulation example

5.1 Modified fractional-order Jerk system

In [50], a new chaotic generator was investigated
by constructing a three-segment piecewise-linear odd
function with variable break point. From the differen-
tial equation of chaotic generator in [50], the modified
fractional-order Jerk system is given as follows:

Dαx1(t) = x2(t)

Dαx2(t) = x3(t)

Dαx3(t) = −ε1x1(t) − x2(t) − ε2x3(t) − f3(x(t))

(45)

where the parameters ε1 = 1.5, ε2 = 0.35 and f3(x(t))
is a piecewise-linear function defined by

f3(x(t)) = 1

2
(ϑ0 − ϑ1)(|x1(t) + 1| − |x1(t) − 1|)

+ϑ1x1(t) (46)

where ϑ0 < −1 < ϑ1 < 0 and ϑ0 = −2.5, ϑ1 =
−0.5.

According to the system (45) and the piecewise-
linear function (46), the three equilibrium points of
the modified fractional-order Jerk system are given in
Table 1. The Jacobian matrix for system (45) can be
written as

J =
⎡
⎣

0 1 0
0 0 1

−1.5 − ∂ f3(x(t))
∂x1(t)

−1 −0.35

⎤
⎦ . (47)

Table 1 Equilibriumpoints of themodified fractional-order Jerk
system

Linear region f3(x(t)) Equilibrium points

x1(t) > 1 −0.5x1(t) − 2 Q+ = (2, 0, 0)

−1 ≤ x1(t) ≤ 1 −2.5x1(t) Q0 = (0, 0, 0)

x1(t) < −1 −0.5x1(t) + 2 Q+ = (−2, 0, 0)

On the basis of Table 1, the corresponding eigen-
values for equilibrium point Q0 are λ1 = 0.6228
and λ2,3 = −0.4864 ± 1.1701 j . And, for equilibrium
points Q+ and Q−, the eigenvalues are λ1 = −0.7614
and λ2,3 = 0.2057 ± 1.1274 j . When the fractional-
order α = 0.98 is chosen, we obtain the following
characteristic equation of the equilibrium points Q+
and Q−:
λ294 + 0.35λ196 + λ98 + 1 = 0 (48)

with unstableλ1,2 = 1.0013±0.0142 j , and
∣∣arg(λ1,2)∣∣

= 0.0142 < π/2ϑ = 0.0157, in which ϑ = 100
(ϑ is the lowest common multiple of fractional-order
denominator). Thus, the modified fractional-order Jerk
system (45)with chaotic dynamic behaviors is based on
the theorem in [51]. When the initial values are chosen
as (1, 1, 1)T and the fractional-order α = 0.98, the
fractional-order modified Jerk system exhibits chaotic
behaviors as shown in Fig. 1.

5.2 Numerical simulation of synchronization control

In this section, to illustrate the effectiveness of the pro-
posed synchronization controller, the synchronization
of modified fractional-order Jerk system (45) is inves-
tigated. Consider the fractional-order chaotic system
(45) as drive system. From (4), the response system is
defined as follows:

Dα y1(t) = y2(t) + d1(t) + u1(t)

Dα y2(t) = y3(t) + d2(t) + u2(t)

Dα y3(t) = −ε1y1(t) − y2(t) − ε2y3(t)

− f3(y(t)) + d3(t) + u3(t) (49)

where d1(t), d2(t) and d3(t) are unknown bounded dis-
turbances. u1(t), u2(t) and u3(t) are designed synchro-
nization control inputs. f3(y(t)) is defined as

f3(y(t)) = 1

2
(ϑ0 − ϑ1)(|y1(t) + 1| − |y1(t) − 1|)

+ϑ1y1(t) (50)

According to (45) and (49), the synchronization
error system can be written as

Dαe1(t) = e2(t) + d1(t) + u1(t)

Dαe2(t) = e3(t) + d2(t) + u2(t)

Dαe3(t) = −ε1e1(t) − e2(t) − ε2e3(t)

− f3(y(t)) + f3(x(t)) + d3(t) + u3(t)

(51)
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Fig. 1 Chaotic behaviors of modified fractional-order Jerk system. a x1(t) − x2(t) plane, b x1(t) − x3(t) plane, c x2(t) − x3(t) plane,
d x3(t) − x1(t) − x2(t) space

Referring to the designed controller (26), the syn-
chronization controller can be written as

u1(t) = −e2(t) − η1s1(t) − κ̂1sign(s1(t)) − d̂1(t)

u2(t) = −e3(t) − η2s2(t) − κ̂2sign(s2(t)) − d̂2(t)

u3(t) = ε1e1(t) + e2(t) + ε2e3(t) + f3(y(t))

− f3(x(t)) − η3s3(t) − κ̂3sign(s3(t)) − d̂3(t)

(52)

Substituting (52) into (51), we have

Dαe1(t) = −η1s1(t) − κ̂1sign(s1(t)) + d̃1(t)

Dαe2(t) = −η2s2(t) − κ̂2sign(s2(t)) + d̃2(t)

Dαe3(t) = −η3s3(t) − κ̂3sign(s3(t)) + d̃3(t) (53)

where Dακ̂i = γi (|si (t)| − κ̂i ) with γi > 0 and i =
1, 2, 3.

To demonstrate the effectiveness of the proposed
nonlinear FODO-based adaptive sliding mode syn-
chronization control scheme, the numerical simula-
tion results are presented for the modified fractional-
order Jerk system under the following conditions:
the initial conditions x0(t) = (1, 1, 1)T , y0(t) =
(1.2, 0.6, 0.5)T , κ̂0 = (0.1, 0.1, 0.1)T and φ̂0(t) =
(0.1, 0.1, 0.1)T , and the designed parameters are cho-
sen as α = 0.98, σ1 = σ2 = σ3 = 50, γ1 =
γ2 = γ3 = 0.1 and η1 = η2 = η3 = 50.
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D cos(2t)
20.98cos(2t+0.98 )

Fig. 2 Comparison result of 20.98 cos(2t + 0.98π
2 ) and

Dα cos(2t)

The disturbance is assumed as d1(t) = cos(2t),
d2(t) = cos(2t) and d3(t) = cos(2t). On the basis
of the result in [52], we have ρ1Dα cos(ρ2t) =
ρ1

1
2 ( jρ2)

mtm−α(E1,m−α+1( jρ2t) + (−1)n E1,m−α+1

(− jρ2t)) with j denotes the unit of imaginary part
with ρ1 and ρ2 which are arbitrary numbers. In this
paper, the parameter m = 1 and the fractional-order
α = 0.98. Thus, ρ1ρ

α
2 cos(ρ2t + πα

2 ) can be used to
approximate ρ1Dα cos(ρ2t). The comparison result is
shown in Fig. 2 for the case of ρ1 = 1 and ρ2 = 2.
According to Fig. 2, Assumption 1 is satisfied.

The numerical results are shown in Figs. 3 and 4
under the proposed nonlinear FODO-based adaptive
sliding mode control scheme. The state synchroniza-
tion results of drive system (45) and response system
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Fig. 3 Synchronization control results of modified fractional-order Jerk system. a Synchronization state of x1(t) and y1(t), b synchro-
nization state of x2(t) and y2(t), c synchronization state of x3(t) and y3(t), d synchronization error e1(t), e2(t) and e3(t)
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Fig. 4 Disturbance observer results. a d1(t) and d̂1(t), b d2(t) and d̂2(t), c d3(t) and d̂3(t), d observation errors d̃1(t), d̃2(t) and d̃3(t)

(49) are given in Fig. 3a–c. It is shown that good syn-
chronization performance is achieved. Figure 3d shows
the synchronization errors e1(t), e2(t) and e3(t) are
convergent. Furthermore, the observation performance
of the proposed FODO (13) and (14) is presented in
Fig. 4. It is evident in Fig. 4 that the observer is effec-
tive and feasible. According to the simulation results,
the drive system (45) and the response system (49) are
bounded synchronization under the designed sliding
mode controller (26) and the adaptive update law (27).
Therefore, the proposed nonlinear FODO-based adap-
tive sliding mode synchronization control scheme is
valid for fractional-order chaotic systems with external
disturbance.

6 Conclusion

In this paper, the nonlinear FODO-based adaptive slid-
ing mode synchronization control scheme has been
studied for fractional-order chaotic systems in the pres-
ence of external disturbance. A nonlinear FODO has
been developed to approximate the unknown distur-
bances. A sliding mode synchronization controller has
been designed based on the nonlinear FODO for syn-
chronization of fractional-order chaotic systems. Fur-
thermore, an example is given in the present paper, i.e.,
the synchronization between two modified fractional-
order Jerk systems. The numerical simulations show
the effectiveness of the proposed nonlinear FODO-
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based adaptive sliding mode synchronization control
scheme.
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