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Abstract Chaos generation in a new fractional order
unstable dissipative system with only two equilibrium
points is reported. Based on the integer version of an
unstable dissipative system (UDS) and using the same
system’s parameters, chaos behavior is observed with
an order less than three, i.e., 2.85. The fractional order
can be decreased as low as 2.4 varying the eigenval-
ues of the fractional UDS in accordance with a switch-
ing law that fulfills the asymptotic stability theorem
for fractional systems. The largest Lyapunov exponent
is computed from the numerical time series in order
to prove the chaotic regime. Besides, the presence of
chaos is also verified obtaining the topological horse-
shoe. That topological proof guarantees the chaos gen-
eration in the proposed fractional order switching sys-
tem avoiding the possible numerical bias of Lyapunov
exponents. Finally, an electronic circuit is designed to
synthesize this fractional order chaotic system.
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1 Introduction

During the last years, fractional calculus starts to attract
attention of physicists and engineers due to the frac-
tional order models give more accuracy results than
the corresponding integer-order models [1–11]. There
are two main features for that claim; the fractional
order parameter improves the system performance by
increasing one degree of freedom, and the other one is
related to fractional derivative that provides a valuable
tool for the description ofmemory and hereditary prop-
erties in various processes [1–5]. Therefore, the frac-
tional derivatives have been used to describe elegantly
interdisciplinary applications; for instance, in control
theory a fractional order controller has a unique iso-
damping property that improves robustness via reduc-
ing the sensitivity of the system stability margins with
respect to the system uncertainties [6,7]; in viscoelas-
tic materials, the fractional order damping element pro-
vides a superior model because it is modeled as a force
proportional to the fractional order derivative of the
displacement [8]; also in dielectric polarization, a frac-
tional model is better to study the relation between the
dynamic polarization, and frequency and electric field
amplitude [9]; and so on [10,11].

One of the main objectives in the literature about
fractional calculus is to find chaotic behavior in frac-
tional order systems. Usually chaotic attractors can-
not be observed in nonlinear systems whose order is
less than three, so it is highly interesting to analyze
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the routes to get chaos of fractional systems with low
orders. Recently there has been a trend to transform
integer-order chaotic systems in fractional versions
because the integer-order versions preserve chaotic
dynamics when their models become fractional [5],
such as the fractional Lorenz system [12], the frac-
tional Chen system [13], the fractional Chua’s circuit
[14], the fractional Rössler system [15], the fractional
jerk system [16], the fractional Lü system [17], and
many others [18]. Compared to integer-order, the frac-
tional chaotic systems have the following advantages;
the fractional derivatives have complex geometrical
interpretation because of their nonlocal character and
high nonlinearity; the power spectrum of fractional
order chaotic systems fluctuates complexly increasing
the chaoticity in frequency domain; and the computa-
tional complexity goal is also achieved. More specif-
ically, the security in cryptosystems based on chaos
can be increased using the derivative orders of frac-
tional chaotic systems as secret keys in addition to
the system’s parameters [19,20]; so, the complexity
of the verification of each key is strengthened causing
the traditional cracking algorithms of chaotic masking
to be unusable. Therefore, new fractional chaotic sys-
tems are crucial to enhance the performance of several
integer-order chaos-based applications. Recently, engi-
neering applications using fractional order chaotic sys-
tems have been demonstrated, such as a digital cryptog-
raphy approach, an image encryption method, a cipher
and an authenticated encryption scheme [21–24].

In this work, a fractional order unstable dissipa-
tive system (FOUDS) is proposed and analyzed, con-
sidering the dynamical characteristics of the integer-
order UDS that have been previously reported [25]. In
a first case, we are interested in finding an effective
minimum order using the same system’s parameters
as integer-order version while chaos behavior is pre-
served. The chaotic attractor of the fractional system
appears as a result of the combination of several unsta-
ble one-spiral trajectories around a saddle hyperbolic
equilibrium point. As second case, we study the trade-
off between the eigenvalues of equilibrium points and
the reduction in effective dimension, which is the sum
of all orders concerned to derivatives, in the proposed
fractional order chaotic system. The resulting chaotic
attractor has the same number of equilibria as scrolls
as shown herein.

The presence of chaos in FOUDS has been vali-
dated by using the time series analysis of the numerical

temporal data. Additionally, we also demonstrate that
chaotic behavior obtaining the topological horseshoe
of FOUDS in both cases because it not only provides
much information that Lyapunov exponents, but also
shows detailed dynamics of chaos. Therefore, a frac-
tional order system should be chaotic if a horseshoe
can be found to exist in it [26–31]. The reason to find
a horseshoe is that Lyapunov exponents seem insuffi-
cient to reveal chaotic characteristics of the fractional
order systems because the numerical error may make
them uncertain, especially when the computed largest
Lyapunov exponent is close to zero. Finally, an elec-
tronic circuit is designed to obtain circuit simulations
of FOUDS with two different fractional orders.

2 Basic definitions in fractional calculus

In literature, there are different definitions for frac-
tional derivatives [2–5]. The Riemann–Liouville and
the Caputo definitions are more reported than others
[3]. The Caputo definition of the fractional derivative
is,

0D
α
t f (t) = 1

Γ (n − α)

∫ t

0

f (n)(τ )

(t − τ)α+1−n
dτ, (1)

and the Riemann–Liouville definition can be described
as

aD
α
t f (t) = 1

Γ (n − α)

dn

dtn

∫ t

a
(t − τ)n−α−1 f (τ )dτ,

(2)

where n = �α�, and Γ is the Gamma function,

Γ (z) =
∫ ∞

0
t z−1e−tdt, (3)

in both definitions.
Besides, for fractional order systems the stability

region depends on the fractional order α as shown in
Fig. 1. Note that a saddle hyperbolic stationary point of
a fractional order linear system can be transformed in
a stable stationary point by just changing the derivative
order α of the system. This is an important consider-
ation for the design of chaotic attractors based on the
proposed FOUDS.
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Fig. 1 Stability region of a fractional order linear time invariant
system with order 0 < α < 1

2.1 Numerical method for solving fractional
differential equations

Similar to integer-order systems, the solution of the
fractional systems is computed using a numerical inte-
gration algorithm. The Adams–Bashforth–Moulton
(ABM)method, a predictor–corrector scheme, reported
in [32] is used herein to obtain the time evolution of
fractional derivatives of the proposed FOUDS. That
algorithm is a generalization of the classical Adams–
Bashforth–Moulton integrator that is well known for
the numerical solution of first-order problems [33,34].
We select the ABM as numerical solver because it is
based on the Caputo derivatives which allows us to
specify both homogeneous and inhomogeneous initial
conditions contrary toRiemann–Liouville-basedmeth-
ods.Additionally, recent literature has shown that using
a frequency domain approximation in the numerical
simulations of fractional systems may result in wrong
consequences [35].

Consider the following fractional differential equa-
tion:

Dα y(t) = f (t, y(t)), 0 ≤ t ≤ T ;
y(k)(0) = y(k)

0 , k = 0, 1, . . . , n − 1.
(4)

The solution of (4) is given by an integral equation of
Volterra type as

y(t) =
�α�−1∑
k=0

yk0
tk

k! + 1

Γ (α)

∫ t

0
(t−z)α−1 f (z, y(z))dz.

(5)

As it is showed in [3], there is a unique solution of (4)
on some interval [0, T ], thence we are interested in a
numerical solution on the uniform grid {tn = nh|n =
0, 1, . . . , N } with some integer N and step size h =
T/N , then (5) can be replaced by a discrete form to get
the corrector as follows

yh (tn+1) =
�α�−1∑
k=0

yk0
tk

k! +
hα

Γ (α+2)
f
(
tn+1, y

p
h (tn+1)

)

+ hα

Γ (α + 2)

n∑
j=0

a j,n+1 f
(
t j , yh

(
t j

))
, (6)

where

a j,n+1 =

⎧⎪⎪⎨
⎪⎪⎩

nα+1 − (n − α)(n + 1)α, j = 0,
(n − j + 2)α+1 + (n − j)α+1

−2(n − j + 1)α+1, 1 ≤ j ≤ n,

1, j = n + 1,

(7)

Moreover, the predictor has the following structure

y ph (tn+1)=
�α�−1∑
k=0

yk0
tk

k!+
1

Γ (α)

n∑
j=0

b j,n+1 f
(
t j , yh

(
t j

))
,

(8)

with b j,n+1 defined by

b j,n+1 = hα

α

(
(n + 1 − j)α − (

n − jα
))

. (9)

The error of this approximation is given by

max
j=0,1,...N

∣∣y (
t j

) − yh
(
t j

)∣∣ = O
(
hP

)
, (10)

where P = min(2, 1 + α).

2.2 Stability conditions of fractional order systems

A general fractional order linear time invariant system
is described by

dαx

dtα
= Ax + Bu, (11)

where x ∈ Rn is the state vector, u ∈ R is a scalar
signal, A ∈ Rn×n is a linear operator, B ∈ Rn is a
constant vector and α is the fractional commensurate
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order. The linear part of the system given by (11) can
be rewritten as

dαx

dtα
= Ax, x(0) = x0, (12)

with 0 < α < 1. The stability analysis of that system
can be divided in two conditions as follows [5]:

– Asymptotically stable The system (12) is asymp-
totically stable if and only if | arg(λ)| > απ

2 for
all eigenvalues (λ) of matrix A. In this case, the
solution x(t) tends to 0 like t−α .

– Stable The system (12) is stable if and only if
| arg(λ)| ≥ απ

2 for all eigenvalues (λ) of matrix
A obeying that the critical eigenvalues must satisfy
| arg(λ)| = απ

2 and have geometric multiplicity of
one.

Accordingly, the equilibrium points p ≡ (x∗
1 , x

∗
2 , x

∗
3 )

of a general commensurate fractional order system,
dαx
dt = f (x) with fractional order 0 < α < 1, are
locally asymptotically stable if all the eigenvalues (λ)
of its Jacobianmatrix evaluated at the equilibriumpoint
fulfill the following condition

min
i

|arg (λi )| >
απ

2
. (13)

Hence, the fractional order α is the key parameter to
change the stability of an equilibrium point as a func-
tion of the stable and unstable regions which are shown
in Fig. 1.

3 Fractional order unstable dissipative system
(FOUDS)

3.1 Unstable dissipative system

A dynamical system is called unstable dissipative sys-
tem (UDS) because it is dissipative in one of its compo-
nents while unstable in the other two. The UDS is built
with a switching law to obtain a strange attractor. The
strange attractor appears as a result of the combination
of several unstable one-spiral trajectories. Each of these
trajectories lies around a saddle hyperbolic equilibrium
point. [25] proposed the following multiscroll chaotic
system by switching linear systems

ẋ = y,
ẏ = z,
ż = −ax − by − cz + g(x),

(14)

with

g(x) =
{

β, if x ≥ 0.35,
0, otherwise,

(15)

being a = 1.5, b = 1, c = 1 and β = 1 the system’s
parameters. The system in (14) is dissipative if the sum
of its eigenvalues is negative, additionally this system
has three eigenvalues; one eigenvalue is a negative real
number and two eigenvalues are complex numberswith
positive real part.

3.2 Chaos generation in FOUDS

In this section, the corresponding fractional order sys-
tem of (14), considering (15) as the switched function,
is introduced and analyzed. The main idea is to find the
minimum fractional order where the system exhibits
chaotic behavior using the same value for the sys-
tem’s parameters as the integer-order case. The result-
ing FOUDS is given by

Dαx = y,
Dα y = z,
Dαz = −ax − by − cz + g(x),

(16)

where α ∈ (0, 1). The equilibrium points of the sys-
tem in (14) and its eigenvalues are given in Table1.
The system has only two equilibrium points O and E1

which are saddle points of instability index two; there-
fore, there is a double-scroll attractor given by the sys-
tem (16) as its equilibrium points are the same as the
integer-order version.

In order to obtain fractional chaos from FOUDS, the
stability general theoremgiven in (13)must be satisfied.
As a result, the system (16) displays regular and stable
behavior if

Table 1 Equilibrium points and corresponding eigenvalues

Equilibrium point Eigenvalues

O(0, 0, 0) −1.2041, 0.1020 ± 1.1115i

E1(0.66, 0, 0) −1.2041, 0.1020 ± 1.1115i
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Fig. 2 Projections of the attractors onto the xy-plane for parameters given in Table2

Table 2 Parameters for which FOUDS generates chaotic behavior

Order α System’s parameters Behavior λmax Phase portrait

0.94 a = 1.5, b = 1, c = 1, β = 1 Fixed point Fig. 2a

0.95 a = 1.5, b = 1, c = 1, β = 1 Chaos 0.44 Fig. 2b

0.96 a = 1.5, b = 1, c = 1, β = 1 Chaos 0.51 Fig. 2c

0.97 a = 1.5, b = 1, c = 1, β = 1 Chaos 0.54 Fig. 2d

0.98 a = 1.5, b = 1, c = 1, β = 1 Chaos 0.56 Fig. 2e

0.99 a = 1.5, b = 1, c = 1, β = 1 Chaos 0.6 Fig. 2f

α <
2

π
min
i

|arg (λi )| ≈ 0.9417 (17)

Accordingly, the system does not show chaotic behav-
ior for α < 0.9417 as demonstrated in Fig. 2a where
the projection of the attractor onto the xy-plane for
α = 0.94 is displayed.

Hence, in order to show that FOUDS can gen-
erate chaotic behavior we consider α ≥ 0.95. Fig-
ure2b shows the projection of the chaotic attractor
onto the xy-plane for α = 0.95. Figure2c–f shows
the projections of the attractors onto the xy-plane for
α = 0.96, 0.97, 0.98, 0.99, respectively. This set of
chaotic attractors has the same number of equilibria
as scrolls. By using the same parameters as integer-

order case, we observe that FOUDS generates chaotic
behavior with an effective minimum dimension as low
as 2.85. Table2 summarizes the results.

Figure4a shows the largest Lyapunov exponentλmax

for the attractors of FOUDS in Fig. 2 as a function
of the fractional order α. The largest Lyapunov expo-
nent is computed from the numerical time series of the
state variable x using TISEAN package software as it
has been appointed as a proved tool to investigate the
presence of chaos in several numerical and experimen-
tal systems [36]. As a result, FOUDS shows chaotic
behavior because it has an attractor with a positive Lya-
punov exponent at least.Weobserve this behavior in the
approximate range of α ∈ [0.95, 0.99] by considering
the system’s parameters a = 1.5, b = 1, c = 1, β = 1.
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Table2 shows that the magnitude of the largest Lya-
punov exponent depends on the fractional order α, as
reported in [12–18].

3.3 Chaos in lowest orders of FOUDS

As mentioned in the introduction, a viable application
of the fractional chaotic systems consists on using the
fractional derivative order as the key for secure commu-
nications schemes. So smaller the valueof the fractional
order, the greater the number of possible combinations
for the secret key.

As second case, other values for system’s parame-
ters a, b, c, and function g(x) are proposed in order to

find chaos behavior with lower fractional orders. By
means of considering the strange attractor that appears
as a result of the combination of several unstable one-
spiral trajectories around a saddle hyperbolic station-
ary point, the corresponding eigenvalues are scaled in
a proper form to preserve the chaotic regime and the
asymptotic stability in (13). Notice that the equilibrium
points (Table1) together with commutation plane are
identical as integer-order case. It means a and β must
be chosen in a convenient way to preserve the relation
β/a = 0.66.

Chaotic attractors of FOUDS are observed for two
different sets of parameters, given in Table3, as shown
in Fig. 3d–f. Compared to previous case, chaos can

Table 3 Parameters for which FOUDS generates regular oscillations and chaotic behavior with low orders

Order α System’s parameters Behavior λmax Phase portrait

(i) 0.7 a = 7.5, b = 0.2, c = 0.2, β = 5 Limit cycle Fig. 3a

(ii) 0.74 a = 4.5, b = 0.3, c = 0.3, β = 3 Limit cycle Fig. 3b

(iii) 0.77 a = 3, b = 0.5, c = 0.5, β = 3 Limit cycle Fig. 3c

(iv) 0.8 a = 3.75, b = 0.7, c = 0.7, β = 2.5 Chaos 0.4 Fig. 3d

(v) 0.82 a = 4.75, b = 0.9, c = 0.9, β = 3.16 Chaos 0.53 Fig. 3e

0.83 a = 4.75, b = 0.9, c = 0.9, β = 3.16 Chaos 0.66 Fig. 3f
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Fig. 3 Projections of the attractors onto the xy-plane for parameters given in Table3
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Fig. 4 Largest Lyapunov exponent of the proposed fractional
system in (16) for cases in Tables2 and 3, respectively. The hori-
zontal axis represents fractional order α with dimensionless, the
vertical axis represents the magnitude of λmax

be obtained with lower effective dimensions of 2.49,
2.46 and 2.4, respectively. Similarly, the largest Lya-
punov exponent of these attractors is plotted versus α

in Fig. 4b. Again, the fractional system in (16) presents
chaotic behavior in the approximate interval of α ∈
[0.815, 0.84] with a = 4.75, b = 0.9, c = 0.9, β =
3.16. In addition, regular oscillations are found when
the system’s parameters do not fulfill the stability con-
dition, as displayed in Fig. 3a–c.

4 Topological horseshoe analysis in FOUDS

A common analysis to verify the chaotic behavior of a
dynamical system is carried out by computing its Lya-
punov exponents as they are a good tool to characterize
the high sensitivity to the initial conditions. Neverthe-

less, when dealing with chaotic systems, sometimes it
is difficult to get Lyapunov exponents with high com-
putation accuracy because it may also depend on the
length of time computed as well as the step size used to
numerical integration algorithms [30,31]. Therefore,
the largest Lyapunov exponent seems insufficient to
validate absolutely the chaotic behavior of fractional
order systems, especially when the computed value of
this exponent is close to zero, and the numerical error
may cause a bias.

On the other hand, the topological horseshoe theory,
which is based on the notion of symbolic dynamics
[26–31], provides a rigorous proof to estimate topo-
logical entropy, verifies existence of chaos and reveals
invariant sets of chaotic attractors in chaotic systems.
The topological horseshoe depends on the geometry
of continuous maps on some subsets of interest in
state space based on the second return Poincaré map;
for continuous-time systems, the topological horseshoe
theorem cannot be directly applied [27]. Therefore, one
needs to find an appropriate Poincaré section to obtain
a Poincaré map.

In this work, the topological horseshoe of FOUDS
is determined for the cases shown in previous sec-
tion in order to double check its chaotic regime and
because not only provides much information that Lya-
punov exponents, but also shows detailed dynamics of
chaos, that is to say, the attractor of a fractional order
system should be chaotic if a horseshoe can be found
to exist in it [26].

The basic procedure is to propose an appropriate
Poincaré section and define a second return Poincaré
map, which implies that the entropy of the attractors
of FOUDS is not less than log 2, giving a compelling
signature of chaos.

4.1 Aspects of symbolic dynamics

Let Sm = {0, 1, . . . ,m−1} and∑
m be the collection of

all bi-infinite sequences with their elements s ∈ ∑
m :

s = {. . . , s−n, . . . , s−1, s0, s1, . . . , sn, . . . },
si ∈ Sm, ∀i.

If we consider another sequence s̄ ∈ ∑
m , with

s̄ = {. . . , s̄−n, . . . , s̄−1, s̄0, s̄1, . . . , s̄n, . . . },
s̄i ∈ Sm, ∀i.
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Then the distance between s and s̄ is defined as

d (s, s̄) =
∞∑

−∞

1

2|i |
|si − s̄i |

1 + |si − s̄i | . (18)

4.2 Metric space and the m-shift

With the distance defined in (18),
∑

m , is ametric space
and with the following three properties whereby a set
is called a Cantor set.

Theorem 1 [28] The metric space
∑

m is

(i) compact;
(ii) totally disconnected;
(iii) perfect.

Now define a map of
∑

m into itself, denoted by γ , as
follows:

γ (si ) = si+1, ∀i. (19)

The map γ is called an m-shift map, which has the
following properties.

Theorem 2 [26] (a) γ (
∑

m) = ∑
m, and γ is continu-

ous; (b) The shift map γ as a dynamical system defined
on

∑
m has:

(i) a countable infinity of periodic orbits consisting of
orbits of all periods;

(ii) an uncountable infinity of nonperiodic orbits;
(iii) a dense orbit.

In thismanner, the dynamics generated by the shiftmap
γ displays sensitive dependence on initial conditions
on a closed invariant set and transitivity; therefore, it is
chaotic. (See [26–31] for proofs of the theorems.)

Let X be a metric space, D be a compact sub-
set of X and f : D → X be a map satisfying the
assumption that there exist m mutually disjoint sub-
sets D1, . . . , Dm−1 and Dm of D, so that the restric-
tion of f to each Di , f |Di , is continuous, for all
i = 1, . . . ,m − 1.

Definition 1 [28,29] Let ξ be a compact subset of D,

such that for every 1 ≤ i ≤ m, ξi = ξ
⋂

Di is non-
empty and compact. Then ξ is called a connection with
respect to D1, . . . , Dm−1 and Dm . Let F be a family
of connections with respect to D1, . . . , Dm−1 and Dm,

satisfying the property:

ξ ∈ F ⇒ f (ξi ) ∈ F.

Then F is said to be an f -connected familywith respect
to D1, . . . , Dm−1 and Dm .

Definition 2 [26] If there is a continuous and ontomap

h : K →
∑
m

such that h ◦ f = γ ◦ h, then f is said to be a semi-
conjugate to γ.

Theorem 3 [26–29] If there is an f -connection family
with respect to D1, D2, . . . , Dm, then there is a com-
pact invariant set K ⊂ D, such that f |K is semi-
conjugate to an m-shift map.

Theorem 4 [17] For two dynamical systems (X, f )
and (Y, g), if (X, f ) is semi-conjugate to (Y, g), then
the topology entropy of f is not less than that of g.

The topological entropy is a nonnegative real number.
Then, the system is chaotic if its topological entropy
is not zero. Furthermore, if g is an m-shift map, then
ent ( f ) ≥ ent (g) = logm, that is, f is chaotic when
m > 1.

4.3 Finding the topological horseshoe in the proposed
FOUDS

In this subsection, we prove the existence of the horse-
shoe in the fractional order system in (16) based on the
review of the section above.

First, the planeΩ = {(x, y, z) ∈ R3 : x = 0}which
is shown in Fig. 5 is proposed considering FOUDS in
(16) with a = 4.75, b = 0.9, c = 0.9, β = 3.16. On

−0.5 0 0.5 1 −1

0

1

−1

−0.5

0

0.5

1

y

x

z

Fig. 5 Chaotic attractor of the FOUDS with parameters a =
4.75, b = 0.9, c = 0.9, β = 3.16
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this plane, we choose a Poincaré section with its four
vertices being

A(0, 0.45, 0.48), B(0, 0.53, 0.538),

C(0, 0.54, 0.498), D(0, 0.46, 0.44).

The Poincaré map

P : |ABCD| → Ω,

is defined as follows. For eachpoint x ∈ |ABCD|, P(x)
is chosen to be the second return intersection point with
Ω under the flow of the system (16) with initial con-
dition x . Under this Poincaré map P , P(x) is very
thin hook-like strip which is wholly across |ABCD|
as shown in Fig. 6, where

A′ = P(A), B ′ = P(B), C ′ = P(C), D′ = P(D),

are the images of points, respectively.

Theorem 5 The Poincaré map P corresponding to the
Poincaré section |ABCD| has the property that there
is a closed invariant set Λ ⊂ |ABCD| for which P|Λ
is semi-conjugate to the 2-shift map. Hence, ent (P) ≥
log 2 > 0. This implies that attractor generated by the
proposed FOUDS in (16) with a = 4.75, b = 0.9, c =
0.9, β = 3.16, has a positive topological entropy.

Proof In order to prove the assertion, one must find
two mutually disjointed subsets of |ABCD|, such that
a P-connected family with respect to them exists. ��
The subsets are denoted by Q1 and Q2 as shown in
Fig. 6, the first subset Q1 with the quadrangle |ADEF |.
Under the first return Poincaré map P , the subset Q1

is mapped to |A′D′E ′F ′| with AD mapped to A′D′
and EF mapped to E ′F ′. We can make the conclusion
that the image P(Q1) lies wholly across the quadrangle
|ABCD| with respect to AD and BC as shown in the
Fig. 7.

The second subsetQ2, namelyquadrangle |GBCH |,
with GH and BC being its bottom and top edges,
respectively. Like Q1, the subset Q2 is mapped to
|G ′B ′C ′H ′| under the Poincaré map P with GH
mapped to G ′H ′ and BC mapped to B ′C ′. Thus,
the image P(Q2) lies wholly across the quadrangle
|ABCD| with respect to AD and BC as shown in the
Fig. 8.

Evidently, the subsets Q1 and Q2 are mutually dis-
jointed. Therefore, it follows that for every connection
of |ABCD| respect Q1 and Q2, for instance, Q5, the
images P(Q5 ∩ Q1) and P(Q5 ∩ Q2) also lie wholly

Fig. 6 Two mutually disjoint subsets |AEFD| and |GBCH | of
the quadrangle |ABCD|

Fig. 7 The image |A′E ′F ′D′| of the quadrangle |AEFD| under
the map P

Fig. 8 The image |G ′B ′C ′H ′| of the quadrangle |GBCH | under
the map P
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across the quadrangle |ABCD|. Thus the images of
P(Q5 ∩ Q1) and P(Q5 ∩ Q2) are still connected with
respect to Q1 and Q2. According to Definition1 and
Theorem3, there is a P-connected family, so that the
Poincaré map P is semi-conjugate to the 2-shift map.
Based on Theorem4, it is concluded that the entropy of
P is not less than log 2, which implies that the attrac-
tors in Fig. 3e, f have a positive entropy. The proof is
completed.

Similarly, we apply the same proof to demon-
strate the topological horseshoe when a = 3.75, b =
0.7, c = 0.7, β = 2.5, are selected as system’s para-
meters of FOUDS in (16), the corresponding attractor
is shown in Fig. 3d. In this plane, i.e., x = 0, we set a
Poincaré section with its four vertexes being

Â(0, 0.4, 0.45), B̂(0, 0.45, 0.475),

Ĉ(0, 0.5, 0.45), D̂(0, 0.45, 0.4).

The Poincaré map

P̂ : | Â B̂Ĉ D̂| → Ω̂,

is defined as follows. For eachpoint x ∈ | Â B̂Ĉ D̂|, P̂(x)
is chosen to be the first return intersection point with
Ω̂ under the flow of the system (16) with initial con-
dition x . Under this Poincaré map P̂ , P̂(x) is a very
thin hook-like strip which is wholly across | Â B̂Ĉ D̂| as
shown in Fig. 9, where

Â′ = P̂
(
Â
)

, B̂ ′ = P̂
(
B̂

)
,

Ĉ ′ = P̂
(
Ĉ

)
, D̂′ = P̂

(
D̂

)
,

are the images of points, respectively.

Theorem 6 The Poincaré map P corresponding to the
Poincaré section | Â B̂Ĉ D̂| has the property that there
is a closed invariant set Λ̂ ⊂ | Â B̂Ĉ D̂| for which P̂|Λ̂
is semi-conjugate to the 2-shift map, Hence, ent (P̂) ≥
log 2 > 0. This implies that attractor generated by
system (16) with a = 3.75, b = 0.7, c = 0.7, β = 2.5,
has a positive topological entropy.

Proof In order to demonstrate the Theorem6, two
mutually disjointed subsets of | Â B̂Ĉ D̂|must be found,
such that a P̂-connected family with respect to them
exists. ��
The subsets are denoted by Q3 and Q4 as shown in
Fig. 9, the first subset Q3 with the quadrangle | ÂD̂ Ê F̂ |.
Under the first return Poincaré map P̂ , the subset Q3

is mapped to | Â′ D̂′ Ê ′ F̂ ′| with ÂD̂ mapped to Â′ D̂′

Fig. 9 The image | Â′ Ê ′ F̂ ′ D̂′| of the quadrangle | ÂÊ F̂ D̂| under
the map P̂

Fig. 10 The image |Ĝ ′ B̂ ′Ĉ ′ Ĥ ′| of the quadrangle |Ĝ B̂Ĉ Ĥ |
under the map P̂

and Ê F̂ mapped to Ê ′ F̂ ′. Again, the conclusion is
the image P̂(Q3) lies wholly across the quadrangle
| Â B̂Ĉ D̂| with respect to ÂD̂ and B̂Ĉ as shown in the
Fig. 9.

The second subset Q4 shown is, namely quadran-
gle |Ĝ B̂Ĉ Ĥ |, with Ĝ Ĥ and B̂Ĉ being its bottom and
top edges, respectively. Like Q3, the subset Q4 is
mapped to |Ĝ ′ B̂ ′Ĉ ′ Ĥ ′| under the Poincaré map P̂ with
Ĝ Ĥ mapped to Ĝ ′ Ĥ ′ and B̂Ĉ mapped to B̂ ′Ĉ ′. Thus,
the image P̂(Q4) lies wholly across the quadrangle
| Â B̂Ĉ D̂| with respect to ÂD̂ and B̂Ĉ as shown in the
Fig. 10.

Evidently, the subsets Q3 and Q4 are mutually dis-
jointed. Therefore, it follows that for every connection
of | Â B̂Ĉ D̂| respect Q3 and Q4, for instance, Q6, the
images P̂(Q6 ∩ Q3) and P̂(Q6 ∩ Q4) also lie wholly
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across the quadrangle | Â B̂Ĉ D̂|. Thus, the images of
P̂(Q6∩Q3) and P̂(Q6∩Q4) are still connections with
respect to Q3 and Q4. According to Definition1 and
Theorem3, there is a P̂-connected family, so that the
Poincaré map P̂ is semi-conjugate to the 2-shift map.
Based on Theorem4, it is concluded that the entropy of
P̂ is not less than log 2, which implies that the attractor
in Fig. 3d has a positive entropy. The proof is com-
pleted.

All these facts prove that the attractors of FOUDS
with fractional orders 0.83, 0.82 and 0.8 are chaotic.

5 Circuit simulation of FOUDS

This section describes the design and simulation of
an analog electronic circuit that realizes the fractional
order system in (16) using three integration channels
to implement the state variables x, y, z and an only cir-
cuit that models the nonlinearity (15). These integra-
tion channels are designed by general analog compu-
tation approaches incorporated with a fractional order
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Fig. 11 a Circuit diagram to realize the fractional order unstable
dissipative system (16) for α = 0.95. b Fractance element to get
a fractional order, α = 0.8

(a)

(b)

Fig. 12 Circuit simulations of the chaotic attractors of FOUDS
with fractional orders a α = 0.95 and, b α = 0.8

impedance called fractance, as shown in Fig. 11. Up
to now, there are many papers about the guidelines to
design circuits for fractances [2,15,16,37]. By consid-
ering the design procedure in Refs. [15,16], the frac-
tances to approximate two different fractional orders,
α = 0.95 and α = 0.8, are obtained as sketched by the
blue dotted box and red dot–dash box, respectively, in
Fig. 11.

For the nonlinearity (15), the electronic implemen-
tation uses a high-gain amplifier configuration based
on operational amplifiers (opamps), and two diodes to
generate a vertical voltage shift. The area remarked by
the green solid line in Fig. 11 represents the nonlin-
earity where resistors Rs1, Rs2 and voltage E control
its breakpoint whereas the resistor Rs3 and saturation
voltage of opamps set β.
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Figure12a shows the circuit simulation of the
chaotic attractor of FOUDS with a fractional order
α = 0.95. The circuit parameters are chosen to
R = Rg1 = Rg2 = Ry = Rz = 10 kΩ, Rx =
7.78 kΩ, Rs1 = 1 kΩ, Rs2 = 1MΩ, Rs3 =
68 kΩ, E = 0.35 V, R1 = 694.6MΩ, R2 = 32.82
MΩ, R3 = 0.3260MΩ,C1 = 0.7794μF,C2 =
0.2699μF,C3 = 0.3260μF, D1 = D2 = 1n4001,
and TL081 opamps. By connecting the fractance
marked with a red dot–dash box as shown in Fig. 11a,
the circuit simulation of the chaotic attractor of FOUDS
with a fractional order α = 0.8 is given in Fig. 12b. The
updated parameters are Rx = 2.9 kΩ, Ry = Rz =
13.8 kΩ, Rs3 = 25.37 kΩ, R1 = 39.80MΩ, R2 =
9.839MΩ, R3 = 0.9330MΩ, R4 = 0.09319MΩ,

R5 = 0.009555MΩ,C1 = 0.1884μF,C2 =
0.7619μF,C3 = 0.4520μF,C4 = 0.2545μF,

C5 = 0.1396μF .
By comparing the chaotic attractors in Fig. 12 with

those in Figs. 2b and 3d, it can be concluded that the
circuit simulations are consistent with the numerical
simulations.

6 Conclusion

A fractional order unstable dissipative system has
been introduced and analyzed. Chaotic behavior was
observed with different fractional orders as a function
of the system’s parameters. The minimum fractional
order, α = 0.8, was obtained by modifying the eigen-
values of the fractional system but preserving the same
equilibrium points as interger-order case. All fractional
chaotic attractors analyzed have same scrolls than equi-
libria. The largest Lyapunov exponent was computed
to give a first validation of chaotic behavior for all frac-
tional chaotic attractors. Furthermore, the topological
horseshoe for the lower fractional orders was found in
order to confirm that the entropy of P is not less than
log 2. This gave a rigorous proof to guarantee that the
proposed fractional order unstable dissipative system
(FOUDS) can generate chaotic behavior. Finally, an
electronic circuit to realize the fractional order chaotic
system has been also introduced.
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