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Abstract In this paper, a new approach based on
neuro-fuzzy systems is proposed to efficiently address
some well-known and challenging problems related to
the design and implementation of efficient (i.e. accu-
rate, robust and stable) controllers for nonlinear and
chaotic systems subject to external disturbances and
uncertain dynamics. To tackle the uncertainty prob-
lem, a neuro-fuzzy system is used to approximate the
uncertain dynamics. Considering the risk that the con-
trol gain function canbe close or equal to zero, this issue
is addressed in order to guaranty singularity avoid-
ance in the control law. The proposed approach guar-
antees that the estimation errors and external distur-
bances cannot affect the stability of the control system.
This approach ensures that the control action remains
realistic in its characteristics such as amplitude and fre-
quency. Another contribution of this paper is to demon-
strate the application of the proposed approach to the
control of a new system exhibiting a strange bifurcation
scenario characterized by a transition from transient
chaos to torus states. As proof of concepts in order to
validate the approach, a benchmarking is performed,
leading to a comparison of the proposed approach with
two neural networks-based controllers recently pre-
sented in the literature. Specifically, all the three afore-
mentioned controllers are applied to a nonlinear system
used in the literature and it is clearly demonstrated how
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the proposed controller outperforms its counterparts.
The performance criteria (of controllers) are expressed
in terms of metrics like the control signal, and the
controllers’ performances in both transient and steady
states.

Keywords Neuro-fuzzy system · Adaptive SMC ·
Robust control · Linearizable system · Chaotic system

1 Introduction

Since the pioneering work of Ott, Grebogi and Yorke
on chaos control in 1990, the problem of chaos con-
trol has received considerable attention from the sci-
entific community. Multiple methods for chaos control
have been introduced and successfully applied. These
methods can be based on either external and/or para-
metric excitation, such as the passive, the adaptive and
the robust adaptive feedback control techniques, just to
name a few [1–4,9].

In many practical applications of control theory,
parameters of the system to be controlled may be
unknown or known with uncertainties; it can also
happen that information about the model structure is
incomplete (for instance dimensionality of the sys-
tem and the form of the nonlinear characteristics of
the equations). To deal with these challenges, during
the past few decades, a tremendous attention has been
devoted on developing efficient adaptive control tech-
niques. For instance, many adaptive control techniques
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based on artificial intelligent, such as Neural Net-
works controllers, Gaussian radial basis adaptive back-
stepping controllers, T-S Fuzzy, affine T-S controllers
and neuro-fuzzy systems controllers, have been devel-
oped and successfully implemented in many applica-
tions [5,10–13,16]. One important application of these
techniques is the control of chaotic systems, used,
for instance, in telecommunication systems (receiver
and transmitter synchronization, chaotic signal genera-
tion, secure communication), chemical reaction, power
energy systems and biology [6,17].

Chaotic systems are known to be very sensitive to
external disturbances and to be highly uncertain non-
linear systems whose underlying dynamics are poorly
known such that least prior system information should
be required for controller’s implementation [18]. This
explains why adaptive controllers are very interesting
for these systems. It is worth to be mentioned that with
the techniques for adaptive control, the controller is
usually designed using the referencemodel or themeth-
ods of feedback linearization. Therefore, the system to
be controlled must be linearizable or strict-feedback
[19,22,27].

There exists one important family of linearizable
or strict-feedback chaotic systems for which multi-
ple adaptive or intelligent control strategies have been
developed, enabling them to be controlled as single-
input and single-output (SISO) systems. The Chua’s
circuit, the Lur’e-like system, the Genesio system and
theDuffing forced system are typical examples of these
types of chaotic systems [8,19–21]. In some cases,
these chaotic systems can be controlled by some of
the adaptive controllers developed for classical SISO
nonlinear systems but with a different control objec-
tive, which can be either chaos suppression, or sys-
tem’s equilibrium point stabilization, or chaos genera-
tion, or chaos synchronization [2,22]. For instance, in
[23] is introduced a hybrid fuzzy system, made of a
combined direct and indirect adaptive control schemes
for adjusting an adaptive fuzzy controller, for a gen-
eral class of nth-order nonlinear system in canonical
form. This controller is applied to a Duffing forced sys-
tem, and its effectiveness in controlling chaotic systems
is clearly demonstrated. In [24], a cluster-based Self-
Organizing Neuro-Fuzzy System (SO-NFS) is pro-
posed for the control of unknown plants. This control
method requires the availability of some input–output
training data that is used by the neuro-fuzzy system
(NFS) to learn its knowledge base, making this con-

trol technique unusable for chaotic systems which are
known for their unpredictable output. In [25], an Adap-
tive Neuro-Fuzzy Controller (ANFC) in combination
with a Sliding Mode Control-based learning algorithm
is used to guarantee the asymptotic stability of an uncer-
tain spherical rolling robot in a compact space. In [10] is
proposed a sliding mode synchronization controller in
which a radial basis function neural network (RBFNN)
is used to construct a compounddisturbance observer. It
is shown that the proposed controller can get the syn-
chronization error convergent to zero and overcome
the disruption of the uncertainty and external distur-
bance on the chaotic system under control. In [26], a
decoupled Neural Fuzzy Sliding Mode Control design
method is proposed for a class of fourth-order nonlinear
systems. The method consists of separating the system
into two second-order subsystems and designing a con-
troller for each subsystem, each of which has its own
sliding surface.

To the best of our knowledge, the singularity prob-
lem that may arise in the control law is not satisfacto-
rily addressed by the state of the art. This problem is an
important issue to be addressedwhen an approximation
of the control gain function appears at the denomina-
tor of the control law. Thus, there is a risk of system’s
instability, and even destruction that may be caused by
a very large or infinite control action caused by the fact
that the denominator is not guaranteed to be nonzero
or not close to zero. To tackle the underlined prob-
lem, some new neural network-based adaptive con-
trol schemes for strict-feedback nonlinear systems have
been recently introduced. In [13], a switching adaptive
control scheme using a Hopfield-based dynamic neural
network for nonlinear systems with external distur-
bances is introduced. The scheme uses a combination
of direct and indirect adaptive controllers to avoid the
singularity issues. In [14] is proposed a simplified adap-
tive backstepping neural network control strategy. This
approach is based on the fact that in the backstepping
design, all unknown functions at intermediate steps are
passed down. Therefore, it is suggested that only a sin-
gle neural network should be used to approximate a
lumped uncertainty at the last step. In [15], an adaptive
neural dynamic surface control scheme is introduced
for disturbed systems. The authors used radial basis
function neural networks with the composite laws con-
structed by prediction error and compensated tracking
error between system state and serial–parallel estima-
tion model for the neural networks weights updating.
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Nevertheless, all these schemes are proven to be
applicable to linearizable or strict-feedback nonlinear
systems under the assumption that their control gain
function remains definite positive with known upper
and lower bounds. Therefore, controllers designedwith
these approaches fail to control some strict-feedback
systems for which the control gain function is with
unknown bounds or cannot be guaranteed to remain
positive definite. Another issue, which is not satisfac-
torily addressed, is the possibility of controlling chaotic
systems with some realistic control actions.

The main contributions of this paper lie in the fol-
lowing:

(a) An extended Neuro-Fuzzy Robust Adaptive SMC-
based controller design approach is introduced, for
which the bounds and the positive definitiveness of
the control gain function are not required.

(b) Applied for controlling chaotic systems,most of the
control strategies available in the literature require
large control actions (because of the instability of
the chaotic trajectories) and unrealistic control task
(e.g. with discontinuous control signal, and very
high switching frequency, which may excite some
unmodelled dynamics) [18,22]. Compared to pre-
vious works, the controller design approach pre-
sented here ensures that the control action remains
as low as possiblewhile being bounded to a realistic
level, especially during the transient phase.

(c) Furthermore, this approach ensures that asymptot-
ical stability of the closed-loop system is guaran-
teed despite errors introduced by the Neuro-Fuzzy
approximation of the unknownnonlinear functions,
the design parameter for singularity avoidance, and
the limit imposed to the input signal for the sake of
protection.

(d) A new three-dimensional linearizable chaotic sys-
tem with two cubic terms is introduced and studied
numerically. After feedback linearization, the con-
trol gain of this system is obtained as a semi-definite
negative function, which makes it uncontrollable
by most of the neural networks-based controllers
available in the literature, which are mainly based
on the assumption that this function is always pos-
itive definite or not close to zero or nonzero (see,
for instance, in [14,15,36]). Therefore, this system
is a good candidate for illustrating the efficiency of
the approach introduced in this paper. Even though
this chaotic system belongs to the general class of

linearizable or strict-feedback nonlinear systems as
the one considered for the design strategies intro-
duced in [13–15], controllers designed based on
these strategies fail to control it. In contrast, the con-
troller designed with the strategy introduced here
is successful to the control of such system.

To demonstrate the applicability of the proposed
approach to non-chaotic systems, a MATLAB simu-
lation is performed on a disturbed uncertain nonlinear
system controlled first by a NFS-based adaptive con-
troller designed with the introduced approach, and then
by the adaptive controllers presented in [14,15].

The rest of this paper is organized as follows. In
Sect. 2, we define the control objective and review
the concept of feedback linearization Sliding Mode
Control. In Sect. 3, the neuro-fuzzy system, which is
used for nonlinear functions approximation through-
out this paper, is presented. In Sect. 4, the neuro-
fuzzy system-based robust adaptive sliding mode con-
trol (NFSRASM) strategy is introduced. In Sect. 5,
the new three-dimensional chaotic system is presented
with its properties. In Sect. 6, we present some numer-
ical simulation results of the new chaotic system. We
also present another nonlinear dynamical system con-
trolled by the NFSRASM and by two recent adaptive
neural networks-based controllers available in the liter-
ature(see [14,15]). In order to prove the effectiveness of
the proposed scheme, its performances during transient
and steady states are comparedwith those obtainedwith
the other schemes. Sect. 7 concludes the paper.

2 Problem statement and preliminaries

Let us consider the general SISO affine nonlinear sys-
tem in non-canonical form:

{
ẋ(t) = f(x(t), u(t)) + σ (t)
y(t) = h(x(t))

(1)

where x(t) ∈ Rn is the vector of the state variables,
u(t) ∈ R is the control input, f(x(t), u(t)) ∈ Rn is the
vector of nonlinear functions usually assumed to be
continuous, σ(t) is the external disturbance and y(t) is
the measured system output.

The control objective is to apply a suitable control
signal u(t) that forces the system output y(t) to track a
given desired trajectory yd(t) while keeping the whole
state bounded. System (1) is characterized by the fact
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that the output y(t) is related to the input u(t) only
indirectly through the state variables x(t). Therefore, it
is not obvious to see how the control law u(t) can be
designed for the tracking behaviour of y(t). In order
to overcome this difficulty, ignoring the perturbations
terms in (1), we apply feedback linearization to (1) as
follows [19,22,27]:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ẏ = L1
f h(x) + Lg(h(x))u = L1

f h(x) if Lg(h(x)) = 0

ÿ = L2
f h(x) + Lg

(
L1

f (h(x))
)

u = L2
f h(x) if Lg

(
L1

f (h(x))
)

= 0

· · ·
y(r) = Lr

f h(x) + Lg

(
Lr−1

f (h(x))
)

u if Lg(Lr−1
f h(x)) �= 0

(2)

with L f h(x) = ∇h(x)· f =
[

∂h(x)
∂x1

· · · ∂h(x)
∂xn

]
[ f1(x) · · ·

fn(x)]T being the lie derivative of h(x(t)) with respect
to f(x).

The last equation of (2) shows the direct and simple
relationship between y(t) and u(t). In this equation, r
denotes the relative degree of y(t) for Lg(Lr−1

f h(x)) �=
0. In other words, this is the smallest integer for which
the coefficient of u(t) or the control gain is nonzero
over the space we want to control the system [22].

Assumption 1 For system (1), the relative degree is
assumed to be equal to the system’s dimension, i.e.
r = n so that there are no problems related to internal
dynamics.

By setting α(x) = Lr
f h(x) and β(x) = Lg(Lr−1

f h(x)),
and considering the disturbance terms, we have:

y(t)(r) = α(x) + β(x)u + ψ(t) (3)

where β(x) �= 0 and the disturbance term is bounded
by Ψ = max |ψ(t)|.
Assumption 2 All the states of system (1) are avail-
able through measurements for all time t and are
bounded on a compact set Ω ∈ Rn .

Let us denote the tracking error as:

e(t) = y(t) − yd(t) (4)

and define the sliding function giving the error dynam-
ics as:

s(t) = e(t)(r−1) + λr−1e(t)(r−2) + · · · + λ1e(t) (5)

where λi (i = 1, 2, . . . , r − 1) are positive constants
chosen carefully such that:

pr−1 + λr−1 pr−2 + · · · + λ1 = 0 (6)

is a Hurwitz polynomial corresponding to limt→∞ e(t)
= 0.

Differentiating s(t) with respect to the time t , we
get:

ṡ(t) = e(t)(r) + λr−1e(t)(r−1) + · · · + λ1ė(t) (7)

Assumption 3 yd(t) and its time derivatives up to a
sufficiently high order are known and bounded.

Knowing that e(t)(r) = y(r) − yd
(r) and using it in

(7), we obtain:

ṡ(t) = α(x) + β(x)u(t) + ψ(t) − yd(t)(r)

+λr−1e(t)(r−1) + · · · + λ1ė(t) (8)

Let us define a synthetic or intermediate controller
as:

ν(t) = −yd(t)(r) + λr−1e(t)(r−1) + · · · + λ1ė(t) (9)

This implies that:

ṡ(t) = α(x) + β(x)u(t) + ψ(t) + ν(t) (10)

If α(x) and β(x) are exactly known and β(x) is guar-
anteed to be nonzero or not close to zero at all moment,
the SlidingMode Control approach based on a constant
rate reaching law can be used for the controller design
[27]. The constant rate reaching law is given by:

ṡ(t) = −ηsign(s(t)) (11)

where η represents the constant rate chosen such that
η > Ψ = max |ψ(t)| in order to unsure the closed-loop
system’s robustness against external disturbances. By
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equalizing (10) (neglecting the disturbance term ψ(t))
and (11), one can derive the control law as:

u(t) = 1

β(x)
[−α(x) − ν(t) − ηsign(s(t))] (12)

By applying (12) in (10), we obtain:

ṡ(t) = −ηsign(s(t)) + ψ(t) (13)

In order to analyse the global stability of (1) when
(12) is applied, we select a positive definite Lyapunov
function as follows:

V (t) = 1

2
s(t)2 (14)

and check whether V̇ (t) ≤ 0 for all time t .
Using (13) in the time derivative of (14), knowing

that |s(t)| = s(t)sign(s(t)), we obtain:

V̇ (t) = s(t)ṡ(t) = −η|s(t)| + s(t)ψ(t)

≤ −η|s(t)| + s(t)Ψ (15)

η > Ψ leads to V̇ (t) ≤ 0. This implies achievement
of global stability. Hence e(t) converges to zero expo-
nentially in finite time and the control objective is met.

If α(x) and β(x) are unknown, (12) cannot be used.
We should approximate these nonlinear functions by
some algorithms and use their estimations α̂(x)and
β̂(x) in the control law (12). This justifies the use of a
NFS, which is simply recalled in the next section.

3 Configuration of the neuro-fuzzy system

Considering assumption 2 is valid so that the state vari-
ables remain bounded in the compact setΩ ∈ Rn at all
instants t , we can use the universal approximation theo-
rem to get the approximate values of the unknown func-
tions. The universal approximation theorem by a fuzzy
logic system can be summarized as follows [13,27]:

– For the n system’s inputs x j (with j = 1, 2, . . . , n),
define the fuzzy sets Ai

j (with i = 1, 2, . . . , m
where m is the number of rules)

– Adopt m fuzzy rules to construct the fuzzy systems
α̂(x|θα) and β̂(x|θβ). The fuzzy rules are in the
form:

R(i) : If x1 is Ai
1 and · · · and xn is Ai

n

Then α̂ is Ei
α̂
and β̂ is Ei

β̂

where Ai
1, Ai

2, . . . , Ai
n, Ei

α̂
and Ei

β̂
are fuzzy sets

corresponding to the membership functions μAi
1
,

μAi
2
, . . . , μAi

n
and μEi

α̂
and μEi

β̂

, respectively. μEi
α̂

andμEi
β̂

are fuzzy singletons, whileμAi
1
, μAi

2
, . . . ,

μAi
n
are calculated for each input x j from the

Gaussian function:

μAi
j
(x j ) = exp

[
− (x j − pi

j )
2

2q2

]
(16)

where pi
j and q are the parameters of the Gaussian

function.These parameters and the number of fuzzy
rules (m) are very relevant for the accuracy of the
system’s output. In fact, these parameters must be
chosen so that the membership functions covers the
space containing all possible values of the normal-
ized inputs. On the other hand, the more fuzzy rules
we use, the more accurate becomes the approxima-
tion. However, a high number of fuzzy rules yields
increased computation load and system’s cost [13].

– Using the average defuzzification techniques, the
outputs of the fuzzy system are calculated from:

α̂(x|θ̂α)=

∑m
i=1 θ̂αi (t)

(
n∏

j=1
μAi

j
(x j )

)

∑m
i=1

(
n∏

j=1
μAi

j
(x j )

) = θ̂T
α (t)ϕ(x)

(17)

β̂(x|θ̂β )=

∑m
i=1 θ̂βi (t)

(
n∏

j=1
μAi

j
(x j )

)

∑m
i=1

(
n∏

j=1
μAi

j
(x j )

) = θ̂T
β (t)ϕ(x)

(18)

where θ̂T
α (t) = [θ̂α1(t), θ̂α2(t), . . . , θ̂αm(t)] and

θ̂T
β (t) = [θ̂ θβ1(t), θ̂β2(t), . . . , θ̂βm(t)] are the
weighting vectors, for which we will select (in the
next section) update rules that ensure the achieve-
ment of the control objective. The fuzzy single-
tons μEi

α̂
and μEi

β̂

reach their maximum with the

weights θ̂αi and θ̂βi , i.e. μEi
α̂
(θ̂αi ) = μEi

β̂

(θ̂βi ) = 1

[13,23].
The components of the vector of fuzzy basis func-
tions ϕ(x)T = [ϕ1(x), ϕ2(x), . . . , ϕm(x)] are cal-
culated as follows:
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Fig. 1 Synthetic representation of the neuro-fuzzy systemwhere
xi (i = 1, 2, . . . , n) are the inputs and α̂(x|θ̂α) and β̂(x|θ̂β ) are
the outputs

ϕi (x) =

n∏
j=1

μAi
j
(x j )

∑m
i=1

(
n∏

j=1
μAi

j
(x j )

) (19)

In order to exploit the learning ability of neural net-
works in addition to the structural advantage of fuzzy
logic systems, we use the NFS depicted in Fig. 1. The
fuzzy neural network is made of four layers: the input
layer, the membership layer, the basis function layer
and the output layer.

The common selection of the fuzzy system or neuro-
fuzzy inputs in many applications is either the error
e(t) and its derivative (or its rate of change) or the
n state variables of the system to be controlled [13,
28]. The values applied to the input nodes are directly
transmitted to the membership layer, which has n × m
nodes. Each node in this layer uses (16) to calculate
the membership values to be used in the basis function
layer. This late layer has m nodes; each node stands
for an element of the vector ϕ(x) calculated from (19)
using the membership values provided directly by the
preceding layer. The links between the nodes of the
basis function layer and the nodes of the output layer
are weighted by the elements of the vectors θ̂α(t) and
θ̂β(t), which are tuned online to provide α̂(x|θ̂α) and
β̂(x|θ̂β) at the two output nodes.

Suppose the optimal values of the weights are θ∗
α ∈

Rm and θ∗
β ∈ Rm defined by:

θ∗
α = arg min

θ̂α∈Θα

[
max
x∈Ω

|α̂(x|θ̂α) − α(x)|
]

(20)

θ∗
β = arg min

θ̂β∈Θβ

[
max
x∈Ω

|β̂(x|θ̂β) − β(x)|
]

(21)

where Θα ∈ Rm and Θβ ∈ Rm are the sets of accept-
able values for the weighting vectors approximations
θ̂α and θ̂β , respectively. The exact nonlinear functions
α(x) and β(x) can therefore be expressed as:

α(x) = θ∗
αϕ(x) + εα(x) (22)

β(x) = θ∗
βϕ(x) + εβ(x) (23)

where εα(x) and εβ(x) are the approximation errors.

Assumption 4 The approximation errors εα(x) and
εβ(x) are bounded by some constants εαM > 0 and
εβM > 0, respectively, over the compact set Ω ∈ Rn ,
i.e. maxx∈Ω |εα(x)| ≤ εαM and maxx∈Ω |εβ(x)| ≤
εβM .

The differences between the NFS outputs and the
exact nonlinear functions are given by:

α̂(x|θ̂α) − α(x) = θ̃T
α ϕ(x) − εα(x) (24)

β̂(x|θ̂β) − β(x) = θ̃T
β ϕ(x) − εβ(x) (25)

where θ̃α(t) = θ̂α(t) − θ∗
α and θ̃β(t) = θ̂β(t) − θ∗

β are
the errors on approximated weights.

4 Design of the NFS robust adaptive sliding mode
controller (NFSRASMC)

Applying the neuro-fuzzy system outputs (17) and (18)
in the control law given by (12), we obtain:

u(t) = 1

β̂(x|θ̂β)
[−α̂(x|θ̂α)− ν(t)−ηsign(s(t))] (26)

Using the control law given by (26), if the value of
β̂(x|θ̂β) gets too close to zero or is equal to zero, the
control signal becomes very large such that the system’s
controllability is not guaranteed and there is a risk of
breaking the whole system. Therefore, this control law
cannot be used and consequently must be improved.

Assumption 5 Whatever are the values of the system’s
(1) parameters, the sign of β(x) is known for all x ∈ Ω

and there is no guarantee that the approximate value
β̂(x|θ̂β) will remain different or not close to zero for
all x ∈ Ω at all moment.
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In order to copewith the singularity problemand ensure
at all moment that the system controllability is not lost,
the control law is designed as follows:

u(t) = ± |β̂(x|θ̂β)|
β̂(x|θ̂β)2 + δ

[−α̂(x|θ̂α)−ν(t)−ηsign(s(t))]
(27)

Remark 1 The negative sign is chosen if β(x) is known
to be negative definite for all x ∈ Ω whatever are
the system parameters values, which are known to be
always positive; otherwise, the positive sign is chosen;
δ is a small positive constant chosen arbitrary to ensure
that singularity is avoided in (27).

Let us select the switching gain as:

η = ρ(εαM + εβM · umax + umax + Ψ ) (28)

where ρ > 1 is a positive design parameter, εαM and
εβM are the assumed maximum values of the NFS
approximation errors, umax is the maximum value of
the amplitude of the control signal and Ψ is the upper
bound of the external disturbance term. 	

Theorem 1 By selecting the value of the switching
gain as in (28), the effects of the design parameter δ

and the approximation errors εα and εβ on the system’s
stability are cancelled. (See the proof further in the
global stability analysis.)

By adding and subtracting the term β̂(x|θ̂β)u(t) to
(10), we obtain (omitting (t) for simplicity):

ṡ = α(x) + β(x)u(t) + ψ(t) + ν(t) − β̂(x|θ̂β)u(t)

+β̂(x|θ̂β)u(t)

= α(x) + (β(x) − β̂(x|θ̂β))u(t) + ψ(t) + ν(t)

+β̂(x|θ̂β)u(t) (29)

Let us design a second intermediate controller as:

u1(t) = −α̂(x|θ̂α) − ν(t) − ηsign(s(t)) (30)

and rewrite (27) as follows:

u(t) = ± |β̂(x|θ̂β)|
β̂(x|θ̂β)2 + δ

u1(t) (31)

By using (31) only in the last term of (29), we obtain:

ṡ = α(x) + (β(x) − β̂(x|θ̂β))u(t) + ψ(t) + ν(t)

±β̂(x|θ̂β)
|β̂(x|θ̂β)|

β̂(x|θ̂β)2 + δ
u1(t) (32)

Let us set another auxiliary controller as:

u∗
1(t) =

[
±β̂(x|θ̂β)

|β̂(x|θ̂β)|
β̂(x|θ̂β)2 + δ

− 1

]
u1(t) (33)

By adding and subtracting the term u1 to (32) and
using (30) and (33), we obtain:

ṡ(t) = α(x) + (β(x) − β̂(x|θ̂β)u(t) + ψ(t) + ν(t)

+u∗
1(t) − α̂(x|θ̂β) − ν(t) − η(t)sign(s(t))

= (α(x) − α̂(x|θ̂β) + (β(x) − β̂(x|θ̂β))u(t)

+ψ(t) + u∗
1(t) − η(t)sign(s(t)) (34)

Applying the identities given by (24) and (25), (34)
becomes:

ṡ(t) = −(θ̃T
α ϕ(x) − εα(x)) + ψ + u∗

1(t)

−(θ̃T
β ϕ(x) − εβ(x))u(t) − ηsign(s(t)) (35)

Theorem 2 Considering system (1) controlled by the
controller given in (31), if all the aforementioned
assumptions hold, and if the weights of the NFS are
updated by the laws derived with the Lyapunov method,
the global stability of the control system is ensured such
that the tracking error e(t) converges to a small neigh-
bourhood of zero in finite time.

Proof of theorems 1 and 2 For global stability analy-
sis, we select a positive definite function as a candidate
Lyapunov function given by (the independent variable
t is ignored for simplicity in notations):

V = 1

2
s2 + 1

2
γ θ̃T

α θ̃α + 1

2
γ θ̃T

β θ̃β (36)

where γ denotes the learning rate of the NFS. 	

The derivative of V (t)with respect to time corresponds
to:

V̇ = sṡ + γ θ̃T
α

˙̃
θα + γ θ̃T

β
˙̃
θβ (37)

As ˙̃
θα = ˙̂

θα and ˙̃
θβ = ˙̂

θβ , (35) and (37) can be
combined to obtain:

V̇ = −s(θ̃T
α ϕ(x)−εα(x))+sψ−s(θ̃T

β ϕ(x) − εβ(x))u

+ γ θ̃T
α

˙̂
θα + γ θ̃T

β
˙̂
θβ + su∗

1 − ηs · sign(s)
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= θ̃T
α (−sϕ(x) + γ

˙̂
θα) + sεα(x)

+ θ̃T
β (−s · u · ϕ(x) + γ

˙̂
θβ) + sεβ(x) · u + s · ψ

+ s · u∗
1 − η|s| (38)

In order to ensure that the parameter γ , the NFS
membership function ϕ(x), and approximate parame-
ters θ̂α and θ̂β do not affect the system’s stability, we
(38) set to zero the terms in which they appear as fol-
lows:

θ̃T
α (−sϕ(x) + γ

˙̂
θα) = 0 (39)

θ̃T
β (−s · u · ϕ(x) + γ

˙̂
θβ) = 0 (40)

From (39) and (40), we obtain:

˙̂
θα = 1

γ
s · ϕ(x) (41)

˙̂
θβ = 1

γ
s · u · ϕ(x) (42)

which are the update laws for parameters θ̂α and θ̂β ,
respectively. Applying these update laws in (38) we
obtain:

V̇ = s · εα(x) + s · εβ(x) · u + s · ψ + s · u∗
1 − η|s|

≤ |s|(εαM + εβM · umax + Ψ + |u∗
1|) − η|s|

≤ |s|(εαM + εβM · umax + Ψ + umax) − η|s| (43)

According to (38), it appears that the approximation
errors εα(x) and εβ(x), the design parameter δ (which
is used in u∗

1 ) and the external disturbance ψ(t) may
affect the system’s stability. In order to tackle this prob-
lem, η in (43) must be selected as follows:

η > εαM + εβM · umax + Ψ + umax (44)

Therefore, selecting the switching gain as in (44)
ensures that the system remains stable, i.e. V̇ ≤ 0, then
limt→∞ e(t) = 0. Theorems 1 and 2 are thus proven.

In order to meet the prescribed control objective,
especially if the system’s trajectory is chaotic, and dur-
ing the transient phase in general, the control law given
in (31) can lead to excessively large control actions,
which cannot be available in practice or if applied to
the system can cause its destruction. To avoid this situ-
ation, the following hard-limiting function is used [18]:

u(t) =
⎧⎨
⎩

umax if u∗ ≥ umax

umin if u∗ ≤ umin

u∗ otherwise
(45)

Fig. 2 The block diagram of the Neuro-Fuzzy robust adaptive
sliding mode control system (NFSRASMC)

where we set u∗(t) = ± |β̂(x|
β̂(x)2+δ

u1(t) and umax is the

chosen upper bound of the control signal.
In order to avoid chattering effects (the very high

switching frequency which may excite some unmod-
elled dynamics), the signum function in (30) is replaced
by the following continuous function:

T (s(t)) = 1 − exp(−q · s(t))

1 + exp(−q · s(t))
(46)

where q is a positive design constant.
Finally, the block diagram of the NFSRASMC is

shown in Fig. 2 along with the description of all com-
ponents.

For any given uncertain linearizable system, the
functioning principle can be summarized as follows:

– Set the values of the design parameters λ1, . . . ,

λr−1, q, γ, εαM , εβM , η, umax, and the initial val-
ues for the system’s state, the NFS weights approx-
imation and the control signal u(t); then for each
time t

– Measure the desired trajectory or reference for the
system’s output and its r th derivative

– Measure the system output
– Compute the output tracking error e(t) and its first,
second, · · · , r − 1th derivatives

– Compute the sliding variable s(t) and the interme-
diate controller ν(t)

– Use the NFS inputs (error e(t) and its derivatives or
the system’s state variables) to compute the mem-
bership functions and then the basis function vector
ϕ(x)

– Use the basis function vector, the available mea-
sured control signal u(t) and the sliding variable
s(t) to tune online the NFS weights
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– Use the NFS outputs to compute the new control
signal u(t)

– Apply the control signal to the hard-limiting func-
tion, for which the output is applied to the system
to be controlled.

5 The new chaotic system and its properties

The new chaotic system proposed in this paper is a
highly nonlinear systemwith two cubic termsmodelled
mathematically as follows:

⎧⎨
⎩

ẋ1(t) = a(x2 − x1)
ẋ2(t) = −cx33
ẋ3(t) = −d + bx32

(47)

where a, b, c and d are the positive system’s parame-
ters.

A MATLAB simulation is performed with the ini-
tial conditions selected as (0.1, 0.8, 1.2). The system
exhibits transient chaotic behaviour when its parame-
ters are selected as a = 1.8, b = 5, c = 1.5, d = 10
(see Fig. 3) and finally settles to torus at long term.
This torus state of the system is illustrated by the phase
portraits in Fig. 4.

5.1 System’s equilibrium point

The equilibrium point of system (47) is obtained by
solving the following system of nonlinear algebraic
equations:

⎧⎨
⎩
0 = a(x2 − x1)
0 = −cx33
0 = −d + bx32

(48)

Three solutions are found, which depend on values
of parameters b and d. They correspond to:

– one coordinate in the real plane:
(
( d

b )
1
3 , ( d

b )
1
3 , 0

)

– and twocoordinates in the complexplane:
(
− 1

2 (
d
b )

1
3

± j
√
3
2 ( d

b )
1
3 ,− 1

2 (
d
b )

1
3 ± j

√
3
2 ( d

b )
1
3 , 0

)
.

As the equilibrium points must be localized in the
real plane, only the first solution is considered. There-
fore, by applying the aforementioned parameter values
in this solution, the system’s equilibrium point is found
as: (1.2599, 1.2599, 0).

By setting f (x) =
⎡
⎣ f1(x)

f2(x)
f3(x)

⎤
⎦ =

⎡
⎣ a(x2 − x1)

−cx33
−d + bx32

⎤
⎦,

the Jacobian matrix of f (x) is obtained as: J (x) =⎡
⎣−a a 0

0 0 −3cx23
0 3bx22 0

⎤
⎦

In order to find the Eigenvalues, let us solve the fol-
lowing characteristic equation (obtained from det[λI −
J (x)] = 0, where I is a 3 × 3 identity matrix):

λ3 + aλ2 + 9bcx22 x23λ + 9abcx22 x23 = 0 (49)

In order to obtain the Eigenvalues at the equilib-
rium point (1.2599, 1.2599, 0), we solve the following
equation obtained from (49):

λ3 + aλ2 = 0 (50)

Weobtainλ1 = 0, λ2 = 0 andλ3 = −a = −1.8.Thus,
the equilibrium point is non-hyperbolic and the corre-
sponding bifurcation is a Bogdanov–Takens bifurca-
tion [38,39]. Two types of attractors can be generated:
an homoclinic orbit or a limit cycle of type Andronov–
Hopft.

5.2 Dissipativity

In order to measure how fast volumes change, under
the flow Φt of the vector field f (x), the divergence of
f (x) is used. The divergence of the vector field f (x)
on R3 is given by:

∇f = ∂ f1
∂x1

+ ∂ f2
∂x2

+ ∂ f3
∂x3

= −a < 0 (51)

Suppose Ω is a region in R3 with smooth boundary,
and letΩ(t) = Φt (Ω) the image ofΩ under the time t
map of the flow [29]. Let V (t) be the volume of Ω(t).
Then using the Liouville’s theorem, we get:

V̇ (t) =
∫

Ω(t)
(∇f)dx1dx2dx3 = −aV (t) (52)

Solving the differential equation (52), we obtain:

V (t) = exp(−at)V (0) (53)

Since a > 0, this means that any volume V (t) must
shrink exponentially fast to zero as t tends to infinite.
Therefore, the new chaotic system (47) is dissipative.
Hence, all orbits of system (47) are eventually confined

123



1610 B. O. Mushage et al.

−0.5
0

0.5
1

1.5

−1
0

1
2

3
−4

−2

0

2

4

x1x2

x3

−0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4
−1

−0.5

0

0.5

1

1.5

2

2.5

x1

x2

−1 −0.5 0 0.5 1 1.5 2 2.5
−3

−2

−1

0

1

2

3

x2

x3

−0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4
−3

−2

−1

0

1

2

3

x1

x3

(a)

(c)

(b)

(d)

Fig. 3 Phase portrait revealing the transient chaos (λmax =
0.0623) exhibited by the system (47) with the parameters a =
1.8, b = 5, c = 1.5, d = 10 and initial conditions (0.1, 0.8, 1.2):

a represents the 3D view of the state variables; b represents the
x1 − x2 phase portrait; c represents the x2 − x3 phase portrait;
and d represents the x1 − x3 phase portrait

to a specific subset Ω that has zero volume [29,37].
This late conclusion is very important as it proves that
assumption 2 holds for the new chaotic system (47).
Therefore, it satisfies the criteria for applicability of the
universal approximation theorem for unknown nonlin-
ear functions so that the approach developed in this
paper can be successfully applied to it.

5.3 Bifurcation analysis and largest Lyapunov
exponent

The Lyapunov exponents measure the rates of diver-
gence or convergence of two neighbouring trajectories
in the phase space [30]. It is also a quantitative mea-
sure of sensitive dependence of the system on the ini-
tial conditions [31]. If one speaks about the Lyapunov

exponent, the largest one is meant. The mean growth
rate of the distance ‖ δx(t) ‖/‖ δx0 ‖ between neigh-
bouring trajectories is given by the largest Lyapunov
exponent (LLE), which is estimated at long term as
[32]:

λmax ∼= lim
t→∞

[
1

t
ln

‖ δx(t) ‖
‖ δx0 ‖

]
(54)

The valueλmax > 0 corresponds to chaos andλmax ≤ 0
stands for non-chaotic states (λmax = 0 shows a torus)
[7,8].

Figure 5 presents the bifurcation diagram and the
corresponding largest Lyapunov exponent when the
control parameter c is monitored in the range [0, 10].
According to Fig. 5, the largest Lyapunov exponent
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Fig. 4 Phase portrait of the torus dynamics (λmax = 0) exhib-
ited by the system (47) with the parameters a = 1.8, b = 5, c =
1.5, d = 10 and initial conditions (0.1, 0.8, 1.2): a represents the

3D view of the state variables; b represents the x1 − x2 phase
portrait; c represents the x2 − x3 phase portrait; and d represents
the x1 − x3 phase portrait

is λmax is always nearly zero in the full range of the
control parameter. This justifies the presence of torus
within the system.

6 Illustrative examples

6.1 Example 1: Control of a disturbed strict-feedback
nonlinear system

Let us consider the example used in [14,33] given as
follows:

⎧⎨
⎩

ẋ1 = 0.5x1 + (1 + 0.1x21 )x2
ẋ2 = x1x2 + (2 + cos x1)u(t) + d(t)
y = x1

(55)

where x1 and x2 are the state variables, y is the system’s
output, d(t) = 5 sin(t) is the external disturbance and
u(t) is the control action. The initial state vector for
this system is selected as [1.2, 1.0].

The reference signal for the system’s output yd is
generated by the van der Pol oscillator given as follows:

⎧⎨
⎩

ẋd1 = xd2

ẋd2 = −xd1 + β(1 − x2d1)xd2

yd = xd1

(56)

with a nonlinear damping parameter selected as β = 3
such that the reference signal yd is non-sinusoidal
(unlike in [14] and [33]) and therefore more challeng-
ing to track. This is better for a good assessment of
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Fig. 5 a Bifurcation diagram and b corresponding largest Lya-
punovExponent. This figure confirms the presence ofToruswhen
monitoring the control parameter c in the window [0 10]. The
system parameters used are a=1.8, b=5 and d=10. The initial
condition is (1, 8, −1.2)

performances (during transient phase and steady state)
obtained for cases when the design approaches intro-
duced either in this paper or in [14] or in [15] are used
to design u(t). The initial state vector for the system
(56) is selected as [1.5, 0.8].

Case 1: u(t) designed with the approach pre-
sented in this paper (NFSRASMC)

In this case, the approach introduced in this paper
is applied to design the control law u(t). The inputs to
the NFS are selected as the system’s states x1 and x2.
We select nine membership functions obtained from:

μAi
j
= exp

[
−

(
x j + 2 − i−1

2

)2
2 × 0.22

]
(57)

for i = 1, 2, . . . , 9 and j = 1, 2. The membership
functions curves are shown in Fig. 6.

The sliding function is obtained from (5) as follows:

s(t) = ė(t) + λe(t) (58)

where we choose λ = 6 (optimal value obtained from
a trial and error process).
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Fig. 6 Membership functions for example 1

The controller is designed as follows:

u(t) = |β̂(x|θ̂β)|
β̂(x|θ̂β)2 + δ

u1(t) (59)

where u1(t) = −α̂(x) − ν(t) − η · T (s(t)) with
T (s(t)) = [1 − exp(−4s(t))]/[1 + exp(−4s(t))]

The intermediate controller ν(t) is given by:

ν(t) = −ÿd + λė(t) (60)

The controller’s parameter δ is selected as: δ = 0.05.
The parameter for the hard-limiter or themaximal input
signal is selected as umax = 12. We select η = (εαM +
εβM ·umax+Ψ +umax)∗2 whereΨ is the upper bound
of d(t), which is 5, and εαM = εβM = 0.05.

Remark 2 As the exact nonlinear control gain function
of (55) can take only positive values whatever may be
the values that the variable x1 can take, the control law
(31) is used with the positive sign chosen.

The update rules given in (41) and (42) are used
with the learning rate selected as γ = 0.005, and the
initial values for the elements of the approximate vector
weights are selected as θ̂αk = 0.1 and θ̂βk = 0.2 with
k = 1, 2, . . . , 81.

Figure 7 shows results of numerical simulation of
system (55) controlled by the NFSRASMC. On the top
of this image is the plot showing comparison between
the system output y(t) and the desired trajectory yd(t).
This plot shows that the NFSRASMC forces y(t) to
track yd(t) with accuracy and without any overshoot.
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Fig. 7 Results for case 1 with the NFSRASMC; On the top:
comparison of system output y(t) (dashed line) and the desired
trajectory yd (t) (continuous line); On the bottom: the control
signal u(t)

This is achieved in a finite time, approximately ts =
0.5. On the bottom is the plot of the control signal u(t),
which remains limited bellow umax = 12 even during
the transient phase. In order to provide a broad insight
of the controller’s performances, we use the following
performance specifications:

– Themean square error (MSE) (during steady state),
which is calculated as follows:

MSE = 1

N

N∑
i=1

e(i)2 (61)

where N is the length of the vector e.
– The peak overshoot Mp in% of the reference signal
maximum amplitude

– The settling time ts
– Steady state error upper bound: maxt→∞ |e(t)|
(which shows the size of the neighbourhood of zero
to which the tracking error is confined)

– The control signal energy (obtained using the two-
norm method) (to assess the control signal perfor-
mance). This energy is desired as low as possible
for better power management

– The total variation (TV) to assess the smoothness
of the control signal [34]. It is desired to have a
small value because a large value of TV means
more complicated or too much solicited or unre-
alistic controller [35]. For a discretized signal, i.e.
u1, u2, . . . , un the TV can be defined as:

TV =
n−1∑
i=1

|ui+1 − ui |. (62)

For this simulation case, the values of these perfor-
mance indexes are found in Table 1.

Case 2: u(t) designed with the approach pre-
sented in [14]

In this case, the approach introduced in [14] is
applied to design the control law u(t). The controller is
given by equation (27) in [14]. It uses the NFS output
and update law given by (26) and (30), respectively, in
[14]. This approach is also based on a NFS, so we use
a NFS with the same membership functions as in the
previous case but with five inputs as suggested in [14].
These inputs are Xe = [x1, x2, yd , ẏd , ÿd ]. The other
controller’s parameters are chosen as k1 = 200, k2 =
10, γ = 5000, σ = 0.001. The initial weight vector
is selected as Ŵ = [0, 0, . . . , 0]T ∈ R95 . For more
information about this design approach, the reader is
referred to [14].

Numerical simulation results obtained when this
controller is applied to the system (55) are depicted
in Fig. 8.

On the top of this image is the plot showing compari-
son between the system output y(t) and the desired tra-
jectory yd(t). This plot shows that the controller forces
y(t) to track yd(t) with accuracy but with some pick

Table 1 Steady state and transient phase performances specifications for the three controllers applied on system (55)

Performance specifications NFSRASMC Controller from [14] Controller from [15]

MSE 1.4749 × 10−5 0.0015 1.1126 × 10−5

Peak overshoot (Mp) 0% 14% 166.67%

Settling time ts 0.5 1 1.678

Steady state error upper bound 0.0202 0.1462 0.0178

Control energy 124.6893 196.4284 5.5 × 104

Total variation (TV) 1.0711 × 103 1.3551 × 103 2.1239 × 103
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Fig. 8 Results for case 2 with the controller from [14]; On the
top: comparison of system output y(t) (dashed line) and the
desired trajectory yd (t) (continuous line); On the bottom: the
control signal u(t)

overshoot (14%). The tracking is achieved in a finite
time, approximately t = 1. On the bottom is the plot
of the control signal u(t), which appears to undergo
some oscillations during the transient phase. In order
to provide a broad insight of the controller’s perfor-
mances, we use the performance specifications defined
in the previous case. The values of these performance
metrics for this case are found in Table 1.

Case 3: u(t) designed with the approach pre-
sented in [15]

For this case, we use the adaptive controller given by
the equation (32) of [15]. This controller uses a radial
basis function neural network for which the update
rule is given by (29) in [15]. The controller parameters
selected as k1 = 200, k2 = 20, γ1 = γ2 = 10, δ1 =
δ2 = 1, β1 = β2 = 5, γz1 = γz2 = 1. For the neural
network design, the inputs are selected as x1 with the
centre evenly spaced in [−1, 1] and [x1, x2] with the
centre evenly spaced in [−3, 3]. For more information
about this design approach, the reader is invited to read
[14].

Numerical simulation results obtained when this
controller is applied to the system (55) are depicted
in Fig. 9. On the top of this image is the plot showing
comparison between the system output y(t) and the
desired trajectory yd(t). This plot shows that the con-
troller forces y(t) to track yd(t)with accuracy but with
an important pick overshoot (166.67%).The tracking is
achieved in a finite time, approximately t = 1.678. On
the bottom is the plot of the control signal u(t), which

0 5 10 15 20
−2

0

2

4

yd
(t

),
y(

t)

 

 

yd(t)
y(t)

0.5 1 1.5
1
2
3

0 5 10 15 20
−2

0

2

4
x 10

4

time

u(
t)

Fig. 9 Results for case 3 with the controller from [15]; On the
top: comparison of system output y(t) (dashed line) and the
desired trajectory yd (t) (continuous line); On the bottom: the
control signal u(t)

appears to undergo important oscillations during the
transient phase, leading to some very large amplitude
of the control signal. In order to provide a broad insight
of the controller’s performances, we use the same per-
formance specifications defined in case 1. The values
of these performance metrics for this case are found in
Table 1.

Remark 3 From the data provided in Table 1, one can
immediately see that with the methodology introduced
in this paper, good results are obtained in terms of tran-
sient phase response, steady state response and control
energy characteristics. Compared to the controller from
[14], the NFSRASMC provides better transient phase
performances (a smaller settling time, no overshoot, a
shorter settling time), better steady state performances
(a lower MSE, a lower upper bound of the steady state
error or a smaller neighbourhood of zero to which the
errors dynamics is confined) and better controller per-
formances (lower TV and control energy). However,
compared to the controller from [15], if one relies on the
numbers showing the steady state performances (MSE
and error bounds), a conclusion can be drawn that our
controller is slightly outperformed during this phase.
But one should notice that a very large control action
is needed (5.5 × 104) so that the controller from [15]
could provide such performances, which is not interest-
ing in practice. In addition, an important pick overshoot
is observed, which may cause the system destruction
in practical application. The controller designed with
our approach provides nearly the same performances in
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steady state, but with better performances in transient
phase and better control signal features.

6.2 Example 2: Control of the new chaotic system

Let us consider system (47) transformed into a non-
homogeneous uncertain and disturbed system as fol-
lows:

⎧⎨
⎩

ẋ1(t) = a(x2 − x1)
ẋ2(t) = −cx33
ẋ3(t) = −d + bx32 + u(t) + ψ(t)

(63)

for which the nominal values of the parameters are a =
1.8, b = 5, c = 1.5, d = 10. The actual values of these
parameters are not known.

Selecting the output as y(t) = x1 and applying (2)
for feedback linearization, we obtain:

⎧⎪⎪⎨
⎪⎪⎩

ẏ = a(x2 − x1)
ÿ = −acx33 − a2(x2 − x1)
y(3) = 3acdx23 − 3abcx32 x23 + a2cx23

+ a3(x2 − x1) − 3acx23u

(64)

Therefore, the relative degree of y(t) is r = n = 3,
which is in accordance with assumption 1.

Putting the last equation of (64) into the form of
(3) and adding the external disturbance term ψ(t), we
obtain:

y(3) = α(x) + β(x) + ψ(t) (65)

where:

• α(x) = 3acdx23−3abcx32 x23+a2cx23+a3(x2−x1),
• β(x) = −3acx23 and
• ψ(t) = 5 sin(t) (therefore Ψ = 5).

Since the system parameters a, b, c and d are not
known, assumption 2 is valid in the case of system
(63), as proven in the previous section. Let us use the
NFS presented in Sect. 3 to approximate the unknown
nonlinear functions α(x) and β(x).

Remark 4 It is easily noticed that for all nonzero val-
ues of x3, the control gain functionβ(x) is semi-definite
negative (i.e. β(x) ≤ 0) whatever the values of the sys-
tem’s parameters are. Hence, assumption 5 is validated
in this case. Therefore, the negative sign is selected in

the controller given in (31). System (63) will be con-
trolled by the NFSRASMC given as follows:

u(t) = − |β̂(x|θ̂β)|
β̂(x|θ̂β)2 + δ

u1(t) (66)

where:

• u1(t) = −α̂(x|θ̂α) − ν(t) − ηsign(s(t))
• T (s(t)) = [1 − exp(−4s(t))]/[1 + exp(−4s(t))]
and

• ν(t) = −y(3)
d + λ2ë(t) + λ1ė(t)

The switching gain is selected as η = 20 ∗ (εαM +
εβM · umax + umax + Ψ ). The assumed upper bounds
on the approximation error are selected as εαM =
εβM = 0.05. The controller parameters are selected
as: δ = 0.05, λ1 = λ2 = 3. The parameter for the
hard-limiter or the maximal input signal is selected as
umax = 12. For this example, the three state variables
of the system x1, x2 and x3(n = 3) are the input of
the NFS. Considering that the inputs are normalized
in the range [−2, 2], let us use seventeen fuzzy rules
(m = 17), for which the corresponding membership
functions represented in Fig. 10 are obtained from:

μAi
j
= exp

[
−

(
x j + 2 − i−1

4

)2
2 × 0.22

]
(67)

for i = 1, 2, . . . , 17 and j = 1, 2, 3
The weights vectors of the NFS are updated online

using the update rules given in (41) and (42) with the
learning rate chosen as γ = 0.001.
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Fig. 10 Membership functions for example 2
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Fig. 11 Numerical simulation results of the new chaotic system
before and after activation of the NFSRASMC at t = 10: a state
x1 and its reference x1d ; b synchronization error on the state x1;

c state x2 and its reference x2d ; d synchronization error on the
state x2; e state x3 and its reference x3d ; f synchronization error
on the state x3
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The control objective is the complete synchroniza-
tion of system (63) with the homogeneous system (47).
The initial conditions are selected as (1.6, 0.8, 1.2)
and (1,−1,−1.2) for system (47) and system (63),
respectively. Numerical simulation is performed with
the fourth-order Runge–Kutta algorithm implemented
in MATLAB with the integration step size�t = 10−4.
Figure 11 shows the simulation results proving that the
controller successfully synchronizes the two different
systems.

During simulation, the controller is not used until
the simulation time 10. We can see in Fig. 11 that
between the times 0 and 10, starting from different ini-
tial conditions, the states of the two systems evolve
on two completely different trajectories, which is in
accordance with the inherent nature of chaotic sys-
tems. When the controller is introduced at the simu-
lation time 10, the states of the system (63) are rapidly
forced to track the trajectories of system (47) states
for all subsequent simulation time. The plots (b), (d)
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Fig. 12 The control signal introduced at simulation time 10

Table 2 Steady state and transient phase performance specifi-
cations for the NFSRASMC applied on the new system

Performance specifications NFSRASMC

MSE 1.2232 × 10−5

Peak overshoot (Mp) 0

Settling time ts 1.5

Steady state error upper bound 0.0032

Control energy 284.6520

Total variation (TV) 1.2942 × 104
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Fig. 13 System’s response when the controllers from [14,15]
are used

and ( f ) of Fig. 11 show how the tracking errors on
the three state variables decay abruptly towards zero
despite the risks of instability introduced by the NFS
approximation errors, the additional design parameter
for singularity avoidance and the external disturbance.
For plotting these error dynamics, we used a large sim-
ulation time to show how the system remains stable,
while the tracking errors remain oscillatory within a
small neighbourhood of zero (e.g. for the first state
variable x1, |e1(t)| ≤ 0.0032). Figure 12 represents
the control signal that is continuous and becomes rel-
atively small as soon as the steady state is achieved. In
order to assess the performances of the controllers for
this example, we used the same performance specifi-
cations as in the previous example. These are found in
Table 2 for the state variable x1 for illustration.

For benchmarking, we made an attempt to control
the same systemwith the controllers from [14,15] used
in the previous example, but this late controllers failed
whatever are the chosen controllers’ parameters. As it
can be observed in Fig. 13, the system’s stability is
lost from the moment these controllers are activated (at
t = 10). This proves that the design approach intro-
duced in this paper is more general that those neural
networks-based approaches proposed in the literature
based on the assumption that β(x) ≥ 0 or β(x) �= 0∀t .

7 Conclusion

In this paper, we have presented a new approach for
Robust Adaptive Sliding Mode Controller design for
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a class of uncertain and disturbed nonlinear systems.
As the adaptive building block of the control system,
which approximates the unknown nonlinear functions,
we used the NFS in order to exploit the learning ability
of the neural network in addition to the structural advan-
tage of fuzzy systems.The newdesign approach is char-
acterized by its particular robustness. In fact, problems
as singularity in the control law, the effects of the intro-
duceddesign parameter for singularity cancellation, the
external disturbances andNFS approximation errors on
the system stability are avoided. We also introduce a
new chaotic system characterized by its high nonlin-
earity and that can have multiple uses in several appli-
cations where chaotic systems are needed. Using this
new chaotic system as an example, we prove that con-
trollers designed with our approach are able to success-
fully synchronize challenging nonlinear systems, while
the approaches available in the literature cannot guar-
antee the same. Therefore, this approach is more gen-
eral than the others. In order to prove that our approach
suits for classical nonlinear systems as well, a con-
troller for a given strict-feedback or linearizable non-
linear dynamical system is designed. Using two of the
most recent neural network-based design approaches
for adaptive controllers reported in the literature, we
designed controllers for the same system. By simula-
tion, we proved that, with the new design approach, the
controller does not only show effectiveness in control-
ling classical nonlinear systems, but it also outperforms
the controller from the literature in terms of accuracy
or meeting the control objective during the steady state
and with best transient performances. Another impor-
tant characteristic of the introduced design approach is
that it ensures that the control signal remains realistic
and relatively small for practical applications, espe-
cially when the controlled plant is characterized by
highly unstable trajectory as for chaotic systems.
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